Citation

Špaleková M, Kotrbancová M, Fulová M, Šimonyiová D (2019) Risk of Legionellosis from Exposure to Water Aerosol from Industrial Cooling Tower. Int Arch Public Health Community Med 3:020. doi.org/10.23937/2643-4512/1710020

Copyright

© 2019 Špaleková M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ORIGINAL ARTICLE | OPEN ACCESS DOI: 10.23937/2643-4512/1710020

Risk of Legionellosis from Exposure to Water Aerosol from Industrial Cooling Tower

Margita Špaleková1*, Martina Kotrbancová1, Miriam Fulová1 and Danka Šimonyiová2

1Institute of Epidemiology Medical Faculty Comenius University, Bratislava, Slovak Republic

2Public Health Authority of Slovak Republic, Bratislava, Slovak Republic

Abstract

Background

Community-acquired cases of Legionella infection or even outbreaks can be attributed to inhalation of aerosols from devices such as hot water system, cooling towers, hot tubs, industrial equipment and indoor fountains. Legionellae survive in water in temperatures between 20 ℃ and 50 ℃ and tend to colonize particularly water systems rich of sludge, rust, biofilms and amoebae where they can multiply. Cooling towers (CT) in industry are used as heat-transfer devices in which warm water is cooled by evaporation in atmospheric air. Aerosols can transmit Legionellae to susceptible hosts, who can contract either Legionnaires´ disease (elderly with many risk factors) or Pontiac fever (young or middle-aged people relatively healthy without any risk factors).

Aim

Aim of the study was risk assessment of legionellosis for workers in contact with contaminated water aerosol from industrial cooling towers.

Methods

Water samples from industrial cooling towers and air samples were processed by standard manner (EN ISO 11731) and plated on special buffered charcoal yeast extract agar with 0.1% ketoglutarate and L-cysteine (BCYα medium) containing glycine, vancomycin, polymyxin B, cycloheximide (GVPC medium) for Legionella isolation. Exposure of workers to water aerosols was evaluated by interview, questionnaire, serological testing (agglutination test), cultivation of sputum on BMPA (BCYα medium with cefamandole, polymyxin B, anisomycin), detection of Legionella antigen in urine by ELISA and DNA Legionella in sera by PCR.

Results

Sampling water from 6 cooling towers revealed isolates of Legionella pneumophila (L.p.) serogroups 1, 5, 10 from four of them (1,6 × 102 - 1,49 × 104 /200 ml). Investigation of air around three CT showed contamination by L. p. serogroup 12 in one of them. Antibodies only against this L. p. serogroup 12 were detected in single sera (1:128 - 1:256) in 13 workers, i.e. in two external workers working directly inside CT (diving) and 11 internal workers, who attended instruction meeting lasting several hours close to this tower. The workers contracted non-pneumonic infection - Pontiac fever with mild clinical symptoms.

Conclusion

Exposure to water aerosols produced by the industrial cooling tower led to the cluster of non-pneumonic professional Legionella infection in workers. Results of the study were used for recommendation of repressive (disinfection, operating regimen of towers) and preventive (respiratory protective equipment, monitoring of Legionella colonization, etc.) measures.