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Abstract
Synovitis is common in knee OA patients and a known 
contributor to disease incidence and progression. Macro-
phages are the most common immune cell type present 
in this inflamed synovial tissue and expectedly contribute 
both directly and indirectly to OA progression through the in-
duction of inflammatory mediators, growth factors and pro-
teinases, resulting in enhanced cartilage degeneration and 
osteophyte formation. Furthermore, macrophage infiltration 
and soluble macrophage products may be associated with 
pain in OA, although data are somewhat controversial. OA 
synovium features macrophage heterogeneity, represented 
by the presence of subsets covering the broad spectrum 
of M1 (pro-inflammatory) to M2 (anti-inflammatory) phe-
notypes, whose emergence corresponds to the cytokine 
profile found in OA patients. Conflicting results have been 
reported in both early and advanced OA concerning mac-
rophage number, location, marker expression and cytokine 
profile, which may also be a consequence of the lack of 
universal definitions of disease stages and OA phenotypes. 
In this review, we summarize and discuss the positioning of 
synovial macrophages in knee OA in the context of patho-
genesis, synovitis, and disease monitoring and as a target 
for therapeutic interventions.
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tional changes in many articular and periarticular tis-
sues [2,9,10,13]. Moreover, OA is considered a hetero-
geneous disease, leading to a variety of disease mani-
festations between patients, joints, and disease stages 
[2,9,10,13,14]. Due to this heterogeneity, it is hypothe-
sized that stratification of OA subtypes is warranted in 
order to provide appropriate treatments.

Synovitis is a common feature in OA, but its severity 
and timing differ among patients [2,5,10,12,13,15-18]. 
Synovitis does seem to correspond to pain [10]. Further-
more, several studies have demonstrated an association 
between synovitis and (radiographic) OA progression 
[2,5,9,16] in general and the advancement of cartilage 
breakdown in particular [12,18,19]. Therefore, treating 
synovitis in OA would potentially be beneficial, as both 
symptom alleviation and reduction of joint degradation 
could be achieved [12]. To this end, DMOADs may serve 
as effective treatments of synovitis [12,16].

A possible treatment strategy for OA could be the 
modulation of infiltrating cells. In rheumatic joints, neu-
trophils and lymphocytes generally comprise the ma-

Introduction

Osteoarthritis (OA) is among the ten leading causes 
of disability in the Western world [1-3], affecting the el-
derly as well as individuals of working age [4]. OA is gen-
erally a slowly progressive joint disease and is charac-
terized by pain, stiffness, and sometimes swelling of the 
joint [5,6], all of which can result in impaired function 
[1,3]. Current non-surgical treatment options focus on 
symptom alleviation, including analgesics, anti-inflam-
matory therapy and physical and occupational therapy. 
However, these treatments do not suffice as they do 
not modify the course of the underlying disease [7,8]. 
Hence, due to the high economic and personal burden 
related to OA, there is a large and growing demand for 
disease-modifying therapies (DMOADs).

To date, the pathogenesis of OA has not been elu-
cidated completely. Previously, OA was merely consid-
ered a disease of ‘wear and tear’ [9-12] with cartilage 
degradation as its key characteristic [3]. Nowadays, 
OA is considered a multifactorial disease affecting the 
whole organ (Figure 1), resulting in structural and func-
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Figure 1: Schematic overview of a healthy knee joint (left) and osteoarthritic knee joint (right). The cardinal features of OA 
are cartilage damage, osteophyte formation and subchondral sclerosis, and synovitis. Synovial macrophages play a critical 
role in cartilage degeneration and osteophyte formation by the induction of pro-inflammatory cytokines (e.g. TNF-α and IL-1β), 
growth factors and matrix metalloproteinases (MMPs), resulting in clinical symptoms of OA. Abbreviations: IL-1β, interleu-
kin-1β; TNF-α, tumor necrosis factor α.
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respectively [12]. Typically, synovitis cannot be visual-
ized by X-ray imaging.

Arthroscopy portrays synovitis as localized prolifer-
ative alterations in the synovium with signs of inflam-
mation, such as an increased vascularity [12]. MRI can 
be used to determine the presence and/or extent of sy-
novial thickening and effusion [12,33]. US can be used 
to monitor synovial hypertrophy, hyperemia, and joint 
effusion [12,19]. The latter non-invasive techniques are 
increasingly used for assessing synovitis, as their find-
ings correlate to arthroscopic findings [12,16] and/or 
histopathologically observed synovitis [12,33].

Histological aberrancies in the OA synovium include 
synovial hypertrophy and hyperplasia, accompanied by 
infiltration of mononuclear cells in the synovial sublin-
ing and lining layer [11,12,34]. Inflamed areas in the OA 
synovium show increased vascularization and cellular 
infiltration [18]. Generally, synovitis is found in close 
proximity to damaged cartilage [12,18,35], but no pref-
erential location has been found so far [16].

Synovitis in different OA disease stages

The extent of synovitis differs between disease sever-
ity levels, disease stages, and patients [16]. In general, 
synovitis is present in both early and advanced OA, but 
tends to increase with disease severity [16,19,36,37]. 
Studies by Ayral, et al. demonstrated that in advanced 
OA, characterized by excessive cartilage damage, syno-
vitis detected by arthroscopy was more prominent as 
compared to early-stage OA [18]. However, other stud-
ies have failed to detect synovitis [36,37] or showed sy-
novitis in less than 50% of advanced OA patients [38]. 
Moreover, synovitis can precede the radiographic pre-
sentation of knee OA [39,40], indicating that synovitis 
might even predate cartilage change [39]. These find-
ings underline the great variety in synovitis between OA 
patients, but at the same time its potential importance.

Synovial macrophages in OA

Synovial macrophages are located in the synovial 
lining and scattered throughout the synovial sublin-
ing in OA, mostly confined to sites of cartilage damage 
[26,37,41-43]. Even though synovial macrophage num-
bers are lower in OA than in RA [44], macrophages are 
the most prominent immune cell type [34,45-47] and 
are highly activated [29,42] in OA.

Animal studies by Blom, et al. suggest that macro-
phage activation can occur due to cartilage damage in 
OA [28,48]. Mediators from cartilage probably leak into 
the synovial fluid and activate synovial macrophages 
(Figure 1). Potential mediators include damage-associ-
ated molecular patterns (DAMPs), including extracellu-
lar matrix (ECM) components released by damaged car-
tilage, e.g. fibrinogen and plasma proteins, such as α1m, 
α2m and Gc-globulin [49], alarmins [50], and basic cal-
cium phosphate crystals [49,51]. DAMPs predominantly 

jority of leukocytes and this is reflected in the synovial 
fluid in active rheumatoid arthritis (RA) [20]. In contrast, 
macrophages are relatively more present in the synovial 
fluid in OA as compared to RA [21]. Furthermore, mac-
rophages are also found to be the predominant inflam-
matory cell type in the synovial tissue in OA [12,22,23]. 
Their role in OA, however, is less well understood.

Macrophages represent a dynamic cell type harbor-
ing the ability to alter their pro- or anti-inflammatory 
phenotype and function upon environmental stimuli 
[24]. Several studies have demonstrated that synovi-
al macrophage infiltration is positively correlated with 
OA progression and disease severity [25,26]. Moreover, 
synovial macrophages have been associated with carti-
lage degradation [27], osteophyte formation [28], and 
pain [29] in OA (Figure 1). As macrophages are key cells 
in the pathogenesis of OA, modulating synovial macro-
phages might be sufficient to alleviate OA symptoms 
and prevent progression.

The potential role of synovial macrophages in knee 
OA will be further discussed in the following paragraphs 
of this review. To ensure a comprehensive overview a 
literature (Supplementary File) search strategy was em-
ployed as described in Supplementary Figure 1.

The synovium in healthy and OA joints

The synovial membrane constitutes a boundary be-
tween the joint and surrounding musculoskeletal tis-
sues [30]. Through the secretion of synovial fluid, sy-
novium conserves articular mobility and limits friction 
between articular cartilage surfaces [6,31]. Additionally, 
the synovial fluid nourishes the articular cartilage and 
removes metabolites and other matrix degradation 
products from the joint [12].

The synovium consists of two layers: the synovial 
lining or intima, comprising 2 to 3 cell layers of syno-
vial macrophages (type A synoviocytes) and fibroblasts 
(type B synoviocytes); and the synovial sublining or sub-
intima, containing collagen type III, blood vessels and a 
few immune cells, including macrophages [6,30-32]. Sy-
novial fibroblasts primarily produce synovial fluid com-
ponents, including hyaluron [30,31], whereas synovial 
macrophages remove joint debris from the synovial flu-
id, clear bacterial infections, and control the pro-inflam-
matory and anti-inflammatory cytokine balance in the 
synovial fluid [30]. Therefore, both cell types are vital 
for the maintenance of joint homeostasis.

Clinical monitoring of inflamed OA synovium

Multiple methodologies are available for detecting 
and grading of synovitis in OA and other joint diseas-
es, including arthroscopy, synovial biopsy, and non-in-
vasive imaging techniques such as magnetic resonance 
imaging (MRI) and ultrasonography (US) [16]. Synovitis 
is detected in 50% of the patients using arthroscopy [18] 
and in 47% and 73% of the patients using US and MRI, 
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type II collagen in OA, present them on their surface, 
and activate T cells [35]. Studies by Shen, et al. show 
that CD4+ T cell numbers increase at OA onset in the an-
terior cruciate ligament transection (ACLT) model. Fur-
thermore, the increased numbers of CD4+ T cells were 
followed by a rise in numbers of synovial macrophages, 
which can possibly be explained by the stimulation of 
CCL9 release by CD4+ T cells [54]. Together, these find-
ings suggest a close interplay between macrophages 
and CD4+ T cells in OA.

Detecting macrophages in OA synovitis

Currently, synovial macrophages can only be visual-
ized histologically. However, non-invasive tools for vi-
sualizing macrophages are under development. Macro-
phage Positron Emission Tomography (PET) imaging us-
ing the macrophage G-protein coupled receptor formyl 
peptide receptor (FPR)-1 tracer showed encouraging 
results in experimental OA [55]. Another approach 
utilizes Etarfolatide, which has a high binding affinity 
for the folate receptor (FR)-β expressed on activated 
macrophages [25]. Single-photon emission computed 
tomography (SPECT) with (99m)Tc-EC20 (Etarfolatide) 
has been successfully applied to detect macrophages in 

signal via Toll-like receptor (TLR) 4, expressed by synovi-
al macrophages, and CD14, which forms a complex with 
TLR-2 and TLR-4 to initiate DAMP-related macrophage 
activation [25,52]. In OA, the expression of macrophage 
markers, including CD14 and MHC class II genes, is asso-
ciated with joint space narrowing and osteophyte for-
mation [26].

Activation of synovial macrophages leads to release 
of tumour necrosis factor (TNF)-α and other pro-inflam-
matory cytokines [49,51], catabolic mediators, such as 
matrix metalloproteinases (MMPs) [12,28], and anabol-
ic factors, which can induce osteophyte formation [28]. 
The notion that release of cartilage breakdown products 
can trigger activation of macrophages and cytokine pro-
duction indicates that synovitis is part of a vicious cycle 
of inflammation and cartilage breakdown [53]. In this 
cascade of events, the activation mechanism of mac-
rophages in OA and their role as either initiator and/or 
drivers of OA remains to be defined.

Activated synovial macrophages in OA can also stim-
ulate other immune cells, particularly T cells. In fact, the 
mononuclear infiltration is mainly comprised of CD4+ T 
cells [34,45,46]. Macrophages can take up fragments of 
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Figure 2: (A) Macrophages can be subdivided in M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages, based 
on in vitro activation mechanism and immunophenotypical markers. M1 macrophages are activated by IFN-γ and LPS and 
by TNF-α, while M2 macrophages are activated by interleukin (IL)-4, IL-13, IL-10 and other specific TLR ligands, such as 
complement components. Activated M1 macrophages predominantly secrete inflammatory cytokines and catabolic media-
tors, whereas activated M2 macrophages release anti-inflammatory cytokines and growth factors. Nowadays, cartilage de-
generation products are considered potential activators of synovial macrophages in OA, which results in (B); a mixed M1/M2 
phenotype expressing distinct markers and releasing a variety of mediators.
Abbreviations: FR β: Folate Receptor β; IFN-γ: Interferon γ; IL: Interleukin; IL-1RA: IL-1 Receptor Antagonist; iNOS: induc-
ible Nitric Oxide Synthase; LPS: Lipopolysaccharide; TGF-β: Tumor Growth Factor β; Th1/2: T Helper Cell Type 1/2; TNF: 
Tumor Necrosis Factor; TLR: Toll-like Receptor.
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Although Folate Receptor β (FRβ) expression has 
been identified as a marker for activated macrophages 
in RA [69-71], its expression on polarized macrophages 
is incompletely known; in tumour-associated macro-
phages FRβ is expressed on M2 macrophages [72], but 
in OA it is also expressed on M1 macrophages [42]. Thus, 
caution should be taken when classifying FRβ+ macro-
phages as M2 macrophages solely on the basis of CD163 
co-expression as both receptors seem to have a mixed 
pattern of expression on M1 and M2 macrophages in RA 
and OA [42].

Macrophage polarization in knee OA

The inflammatory milieu of the synovium in OA 
has been implicated in the skewing of macrophages 
to both pro-inflammatory and anti-inflammatory phe-
notypes. In this respect, Utomo, et al. demonstrated 
that most synovial macrophages in OA have a M2 phe-
notype characterized by IL-10 production [62]. How-
ever, multiple studies demonstrated that both M1 
and M2 macrophage phenotypes are present in OA 
[24,28,41,66,68,73,74]. In fact, synovial macrophages in 
OA were identified to actually express a combination of 
M1 and M2 phenotypic markers, including CD14, CD163 
and CD86 [24,34,36,73,75-77] (Figure 2). It has been hy-
pothesized that the combined expression of both M1 
and M2 macrophage markers might be caused by syno-
vial macrophages being “trapped in transition” [25,29]. 
The exact mechanism underlying activation of M1 and 
M2 synovial macrophages in OA is still unresolved.

In early stages of OA, increased skewing of bone 
marrow monocyte precursors towards the M1 pheno-
type has been reported [74]. However, macrophages 
stimulated with synovial fluid of early OA resulted in 
increased release of CCL2 and IL6 by mesenchymal stro-
mal cells (MSC), which in turn can direct M2 polariza-
tion of macrophages [78]. Studies by Fahy, et al. report 
a large intra-patient variation in phenotypic marker ex-
pression patterns between OA synovium regions. Spe-
cifically, CD86 expression was either absent or pres-
ent on macrophages in the synovial lining or sublining, 
while expression of CD206 was most pronounced on 
macrophages in the lining layer [67]. Likewise, Manfer-
dini, et al. mainly identified CD80 M1 macrophages in 
the OA synovium lining layer, while CD206-positive M2 
macrophages were predominantly located in the sublin-
ing layer [68]. Moreover, Manferdini, et al. reported a 
large inter-patient variability in the M1 and M2 marker 
expression in the OA synovium [68]. Hence, general-
izations of the phenotypic marker expression patterns 
should be exercised with caution.

Several studies have demonstrated differences be-
tween RA and OA synovial macrophage phenotypes. 
Lower expression of CD14+ macrophages was found in 
OA as compared to RA synovium [68], whereas TGF-β 
expression was higher in OA [42]. Furthermore, macro-
phages in OA synovium had lower FRβ expression than 

knee joints of patients with varying degrees of OA [29]. 
Lastly, a recent study demonstrated macrophage visual-
ization in OA using SPECT with 111In-Octreoscan, which 
has a high affinity for the somatostatin receptor subtype 
2 expressed by macrophages [56].

Macrophage polarization and subsets

Macrophages are dynamic cells that can respond to 
stimuli in their microenvironment through modification 
of their phenotype and function [57]. Because of this, 
macrophages are key players in initiation as well as res-
olution of inflammation [57]. Although a spectrum of 
macrophage subsets and even mixed subtypes of mac-
rophages exists [58], a crude subdivision can be made 
in two extremes: “M1” classically activated and “M2” 
alternatively activated macrophages (Figure 2). M2 
macrophages can be further classified in subgroups, in-
cluding M2a, M2b and M2c, based on activation stimuli 
and functions [59-61].

M1 and M2 macrophages exert different functions, 
related to their distinct cytokine release profile. M1 
macrophages are involved in Th1 stimulation and are 
characterized by IL-12, IL-23, TNF-α, IL-1 and nitric ox-
ide (NO) release. M2 macrophages stimulate Th2 cells 
[42,60] and predominantly release IL-10, CCL18, TGF-β 
and IL-1 receptor antagonist (IL-1RA) [42,57,61] upon 
activation (Figure 2). In turn, M1 and M2 macrophages 
are activated through cytokines produced by Th1 
and Th2 cells, respectively [42]. M1 activation occurs 
through interferon γ (IFN-γ), the TLR ligand lipopolysac-
charide (LPS) and components of intracellular bacteria. 
Skewing to M2 macrophages proceeds upon exposure 
to interleukin IL-4, IL-13, parasites, complement factors, 
macrophage stimulating factor (M-CSF), IL-10 and tu-
mor growth factor (TGF)-β [42,57,59] (Figure 2).

Originally, M1 macrophages were considered pro-in-
flammatory, while M2 macrophages were considered 
anti-inflammatory through production of anti-inflam-
matory and regulatory cytokines and chemokines [60]. 
This gave rise to the assumption that M2 macrophages 
are beneficial in inflammatory diseases and might be in-
volved in tissue repair and wound healing [59]. Howev-
er, this view has been (partially) revisited as M2 macro-
phages have also been associated with chronic inflam-
mation in cancer and other diseases [59,62] and have 
been shown to be able to produce pro-inflammatory 
cytokines in a synovial microenvironment with auto-an-
tibodies in RA patients [63,64].

In addition to their distinct function and cytokine 
release, M1 and M2 macrophages can be distinguished 
through differentially expressed receptors and other 
markers. CD14 [26], a marker of monocytes and macro-
phages, is more abundantly expressed on M2 compared 
to M1 macrophages [25]. CD163 [25,57,62,65,66] and 
CD206 [67] are considered preferred markers of M2 
macrophages. M1 macrophages predominantly express 
MHC class II, CD68, CD80 and CD86 [66,68] (Figure 2).
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chemokines involved in macrophage attraction in chron-
ic inflammation [73,86] and elevated levels of CCL2 pro-
mote OA development [87]. CCL13 is involved in recruit-
ment of monocytes and T lymphocytes to joints. Gao, 
et al. found a positive correlation between serum and 
synovial fluid levels of CCL13 and radiographic severity 
of knee OA [88]. Additionally, CXCL12 is involved in mac-
rophage recruitment and CXCL12 plasma and synovial 
fluid levels are correlated with radiographic OA disease 
severity, which could be explained by their role in mac-
rophage attraction [89]. Other mediators involved in 
macrophage attraction include CCL22, which is elevated 
in the synovial fluid of OA patients [84], and CCL3, of 
which plasma levels are positively correlated with radio-
graphic OA disease severity [90]. Chemokines may thus 
mediate the attraction of macrophages to the joint and 
the worsening of OA.

Synovial macrophages in different OA disease stages

Studies on CD68 expression suggest a pronounced 
macrophage infiltration in synovium of patients with 
early OA compared to advanced OA [73,91]. This co-
incided with an increased expression of nuclear fac-
tor (NF)-κβ, inducible nitric oxide synthase (iNOS) and 
other pro-inflammatory mediators by macrophages in 
early OA [39,93]. Ene, et al. reported high levels of in-
flammatory cytokines, including IL-6, IL-1, TNF-α, and a 
greater mononuclear cell infiltrate in early compared to 
advanced OA [92]. Consistently, Benito, et al. reported 
increased TNF-α, IL-1β and VEGF expression and mono-
nuclear cell infiltration in early compared with advanced 
OA [91]. Lastly, Ning, et al. confirmed an increase in 
macrophage-related mediators in early compared to 
advanced OA [93].

Oppositely, other studies observed similar CD68+ 
macrophages numbers in synovium of early and ad-
vanced OA [83,94]. Additionally, similar synovial flu-
id TNF-α levels were found in early and advanced OA, 
whereas IL-1β expression was increased in the advanced 
stage OA group [83]. The reason for this apparent dis-
crepancy in results is not clear.

It has been hypothesized that innate immunity is 
more prominent in early OA, while adaptive immunity 
dominates in advanced OA. Firstly, larger lymphoid infil-
trations were observed in the synovium in advanced OA 
compared to early OA [38]. Secondly, the more exten-
sive immune cell infiltration in advanced as compared 
to early OA could be explained by the subsequent ac-
tivation of adaptive immunity. Thirdly, this hypothesis 
could explain the increase of mediators such as VEGF, 
IL-4, IL-6, IL-8, CCL3 and CCL4 in advanced stage OA and 
their positive correlation to radiographic severity of OA 
[77,80,91,95].

Macrophage-induced cartilage damage

Several preclinical and clinical studies have shown 
that synovitis is linked to cartilage damage in OA [96]. 

RA macrophages, and FRβ+/CD163+ macrophages were 
more dominant than FRβ+/CD163- macrophages in the 
lining layer of the OA synovium [42]. Together, relative-
ly high M2 marker expression is demonstrated on OA 
synovial macrophages although absolute expression ap-
pears lower than on RA synovial macrophages.

Cytokines and chemokines related to synovial mac-
rophages

In general, higher inflammatory cytokine levels are 
observed in RA compared with OA synovium, although 
both diseases show partly analogous cytokine profiles, 
consisting of elevated levels of IL-1β, TNF-α, IL-6 and 
IL-4 [44,79-82]. However, there are also potentially 
important differences, such as the granulocyte macro-
phage colony-stimulating factor (GM-CSF) expression 
that is more prominent in OA compared with RA [44]. 
In OA, anti-inflammatory cytokine levels, e.g. IL-10, are 
increased compared to healthy controls [73], which may 
be consistent with the suggested dominance of M2 over 
M1 macrophages in OA.

IL-1β and TNF-α constitute the key mediators re-
leased by activated pro-inflammatory macrophages 
and staining patterns of these mediators correspond 
to the distribution of synovial macrophages in OA [24]. 
Both IL-1β and TNF-α are primarily detected in the lin-
ing layer and to a lesser extent in the sublining layer of 
OA synovium [24,27,83]. Furthermore, IL-1β and TNF-α 
induce pro-inflammatory cytokine production, includ-
ing IL-6 and IL-8, and thereby stimulate inflammation. 
Moreover, IL-1β suppresses type II collagen, which is a 
key constituent of cartilage, and subsequently aggra-
vates cartilage damage [27]. Together, these findings 
suggest that synovial macrophages of mixed pheno-
types account for the pro-inflammatory and anti-in-
flammatory cytokine production to fuel the pathogen-
esis of OA. However, Beekhuizen, et al. did not observe 
elevated levels of TNF-α and IL-1β in advanced OA [84], 
suggesting that these cytokines may not be essential in 
this phase of OA.

Macrophages are not the only cell type in the joint 
capable of producing these indicated cytokines and the 
exact cellular source of remains largely unclear [24]. 
Furthermore, a study by Manferdini, et al. demon-
strates that cell cultures containing both synovial fibro-
blasts and macrophages produced more pro-inflamma-
tory mediators, including IL-6 and IL-8, compared to cell 
cultures with synovial fibroblasts alone [73]. This finding 
illustrates that macrophages are directly involved in the 
induction of inflammatory cytokine release from syno-
vial fibroblasts, but mechanisms driving this process re-
main to be determined.

Chemokines are small secreted factors that medi-
ate recruitment of cells [85]. Several OA studies found 
increased levels of chemokines involved in the attrac-
tion of macrophages. CCL2 is one of the most important 

https://doi.org/10.23937/2469-5726/1510059


ISSN: 2469-5726DOI: 10.23937/2469-5726/1510059

Berkelaar et al. J Rheum Dis Treat 2018, 4:059 • Page 7 of 16 •

significantly elevated in modest to severe knee OA pa-
tients compared to controls [103].

Macrophage-mediated osteophyte formation

Next to cartilage degeneration, the MMP release 
by activated synovial macrophages also permits osteo-
phyte formation and/or progression through cartilage 
matrix remodelling [104,105]. Osteophytes are bony 
outgrowths at the joint margin (Figure 1) and their pres-
ence is associated with pain in OA [12]. In early colla-
genase-induced OA, synovitis is considered a key con-
tributor to osteophyte formation [106]. Synovial mac-
rophages also release growth factors that can induce 
osteophyte formation, such as TGF-β [28] (Figure 1). 
Moreover, macrophage cell surface marker levels were 
directly proportional to osteophyte formation [25].

A study in collagenase-induced OA murine knee 
joints revealed that depletion of synovial macrophages 
resulted in an 85% reduction of osteophyte formation 
after 7 days [28]. This animal model shows resemblance 
with human knee OA and is claimed to be a suitable 
model for studying osteophyte formation during OA. 
Remarkably, in another mouse model of papain-in-
duced OA treated with triamcinolone acetonide (TA), 
Siebelt, et al. reported that enhanced macrophage in-
filtration diminished osteophyte formation [66]. This ef-
fect might have been caused by increased proportions 
of CD163/FRβ-positive M2 anti-inflammatory macro-
phages, which, in in vitro cultures, displayed increased 
IL-10 mRNA expression [66]. These findings underline 
the potential importance of macrophage polarization in 
osteophyte formation in OA.

Osteophyte formation is regulated by growth factors 
produced by synovial macrophages, in particular TGF-β 
[28]. Van Lent, et al. showed that macrophages induce os-
teophyte formation through the production of TGF-β and 
by the expression of factors that induce chondrogenesis 
of mesenchymal cells [107]. Furthermore, their studies 
highlighted the possible crucial role of bone morphogen-
ic proteins (BMPs) in osteophyte formation. Additionally, 
in patients with advanced OA, hepatocyte growth factor 
(HGF) stimulated the macrophage-selective production 
of TGF-β1 and BMP-2 [76]. These findings pinpoint TGF-β 
and BMP as key players in osteophyte formation in OA, 
even though macrophages might not be the exclusive 
producers of these growth factors [28].

In addition to growth factor production, the role 
of the alarmin proteins S100A8/A9 in osteophyte 
formation has been studied in collagenase-induced 
OA, DMM-induced OA and in patients with early OA 
[104,105]. Alarmins are released by activated macro-
phages and signal through TLR-4 [106,108]. Elevated 
alarmin S100A8/A9 plasma levels in patients with early 
knee OA correlated with development of osteophytes 
over 2 and 5 years [104]. Further research is required 
to uncover a possible mechanistic relationship between 
alarmin secretion and osteophyte formation.

Macrophages are the predominant immune cells in sy-
novitis [27] and CD14 deficiency is correlated to delayed 
cartilage degradation in destabilized medial meniscus 
(DMM) OA models in mice [53]. Utomo, et al. studied 
the impact of factors released by macrophage subsets 
on cartilage degradation in an in vitro cartilage explant 
model. Their results demonstrated that pro-inflamma-
tory M1 products stimulate cartilage damage, whereas 
anti-inflammatory M2 factors failed to directly inhibit 
cartilage degeneration or inflammation [97]. Further-
more, a recent study has shown that M1 mediators in-
hibit mesenchymal stem cell chondrogenic capacity and 
thereby exacerbate cartilage damage [68].

Inflammatory mediators released by macrophages at 
least partially induce cartilage damage by both downreg-
ulating matrix anabolism by chondrocytes and inducing 
release of MMPs, aggrecanases and other inflammatory 
mediators by synovial fibroblasts [77,94,98] (Figure 1). 
Bondeson, et al. depleted synovial macrophages by 
anti-CD14 conjugated magnetic beads in synovial cell 
cultures derived from digested OA synovium, which re-
sulted in reduced production of IL-1β, TNF-α and MMPs 
by synovial fibroblasts and in less cartilage damage [22]. 
Furthermore, cartilage degradation was decreased in IL-
1β and TNF-α neutralisation experiments [22].

Macrophages induce cartilage damage through the 
release of MMPs, including MMP-1, -3 and -9 [48], and 
through the secretion of cytokines, which in turn lead to 
proteinase secretion by synovial fibroblasts [99]. Deple-
tion of macrophages from OA synovium resulted in low-
er expression of MMP-2, -3, and -9 [22,48], as well as 
CCL2 [22]. CCL2 is a chemokine involved in macrophage 
attraction and normally associated with increased 
MMP-3 and MMP-13 production [87]. MMP-3 release 
is also increased by TNF-α and IL-1β stimulation [100], 
both key mediators released by macrophages.

In addition to MMP-induced cartilage damage, ac-
tivated macrophages increase cartilage degradation 
through the induction of oxidative stress within the 
joint. Studies by Steinbeck, et al. showed that in early 
OA patients, synovial macrophages produced reactive 
oxygen species (ROS), hypochlorous acid, chlorine gas 
and chlorinated peptides, which exert an oxidative ef-
fect on cartilage [101]. Consistently, myeloperoxidase, 
an enzyme responsible for the production of chlorine 
gas, hypochlorous acid and chlorinated peptides, ap-
peared elevated in early OA compared to controls and 
end-stage OA [101]. Furthermore, a high level of iNOS, 
which induces nitric oxide (NO) production, has been 
detected in OA patients [38]. Specifically, double im-
munohistochemical staining showed strong iNOS ex-
pression in CD68+ macrophages in the synovial lining 
and sublining layer of advanced OA patients [102]. The 
release of NO results in oxidative stress and impacted 
immune processes mediating cartilage integrity [102]. 
These findings were confirmed in a recent study, show-
ing that NO production in synovial macrophages was 
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macrophages and other immune cells, resulting in an 
augmented immune cell infiltrate [115].

Apart from macrophage infiltration, several stud-
ies have demonstrated that cytokine release by mac-
rophages is also related to pain in OA. Notably, serum 
levels of TNF-α were associated with pain in patients 
with symptomatic OA [122], whereas in severe OA, IL-6 
release correlated with pain [123]. IL-6 can be secreted 
by either macrophages or T cells, but the cellular source 
of IL-6 in OA is unknown [123]. Synovial fluid levels of 
macrophage migration inhibitory factor (MIF), a pro-in-
flammatory cytokine mainly produced by macrophages, 
was positively correlated with pain in a study of patients 
with Kellgren-Lawrence (KL) grade 2-4 knee OA [124]. 
MIF induces pro-inflammatory cytokine release by mac-
rophages, which might explain this correlation. Finally, 
synovial macrophages displayed increased nerve growth 
factor (NGF) expression, which was associated with pain 
in OA [77]. Together, these findings underscore a pos-
itive correlation between soluble macrophage media-
tors and pain in knee OA.

Nevertheless, preliminary findings of a study in end-
stage knee OA demonstrated that higher levels of GM-
CSF and its receptor CD116 were correlated with re-
duced pain, independently of the expression of other 
macrophage markers [125]. This seems counterintuitive 
since GM-CSF and its receptor are involved in macro-
phage survival and attraction [126]. However, in early 
collagenase-induced OA, pain was reported to be GM-
CSF dependent [126]. Given the fact that stimulation of 
monocytic progenitor cells might be more pronounced 
in early disease, this could explain the observed differ-
ences between early and advanced OA.

Studies by Klein-Wieringa, et al. and De Jong, et al. 
demonstrate that presence of synovial CD4+ T cells 
rather than macrophages is associated with knee pain 
in advanced OA [45,46]. Nevertheless, an indirect role 
of macrophages may still be envisioned as they are in-
volved in activation of CD4+ T cells and T cells activate 
macrophages in return.

Synovial macrophage-related OA therapies

Effects of intra-articular therapies on macrophages: 
Glucocorticoids slightly reduced CD68+ macrophages in 
the lining layer in patients with symptomatic knee OA, 
but this did not translate into different MCP-1, MIP-1 
alpha, MMP-1, MMP-3, TIMP-1, and TIMP-2 levels in 
the synovial lining and sublining layers [127]. Rochetti, 
et al. reported a reduction of macrophage numbers in 
advanced knee OA after intra-articular injection of hy-
aluronan or methylprednisolone [128]. Mechanistically, 
this involved two processes; hyaluronan appeared to 
mainly stimulate reparative processes, whereas the cor-
ticosteroid appeared to reduce the inflammatory pro-
cess [128].

Intra-articular therapies might not only reduce mac-

In OA, subchondral bone remodeling is spatially vari-
able and related to disease stage [109]. Bone resorption 
is increased in early stages, whereas in advanced stag-
es ectopic bone formation predominates [109]. Mac-
rophages can influence this process of bone remodel-
ing, which involves bone resorption by osteoclasts and 
formation by osteoblasts [109]. The multinucleated 
osteoclasts originate from the same precursor cells as 
macrophages through stimulation of M-CSF and recep-
tor activator of NF-κB ligand (RANKL) [110,111]. More-
over, macrophages are able to induce osteoclastogen-
esis though the production of inflammatory cytokines, 
including IL-1, TNF and IL-6 [110]. These cytokines pro-
mote osteoclastogenesis both directly by stimulating 
osteoclast precursors and indirectly by inducing RANKL 
on synovial fibroblasts [110,111].

Several studies have shown that macrophages isolat-
ed from the synovial fluid of knee OA patients differen-
tiated into osteoclasts and showed lacunar resorption 
upon RANKL stimulation [112-114]. However, Adamo-
poulos, et al. reported greater osteoclast differentiation 
upon RANKL stimulation of RA synovial fluid macro-
phages as compared to OA synovial fluid macrophages 
[112,113]. Nevertheless, although osteoclast differenti-
ation of synovial fluid macrophages may be more rel-
evant in RA, the induction of osteoclast formation by 
macrophages could still be a contributing mechanism 
involved in, for instance, osteophyte formation in OA.

Macrophage infiltration correlates with pain

Synovitis has been recognized as one potential de-
terminant of pain in OA patients and in animal models 
[2,38,77,115,116]. Synovitis as observed by MRI is re-
lated to knee pain [117], even more when using con-
trast-enhanced MRI [118,119] or dynamic contrast-en-
hanced MRI [120]. However, another study reported 
that changes in synovitis were not associated with con-
comitant changes in pain [96]. Also, in an animal mod-
el of collagenase-induced OA, the peak of synovitis did 
not correlate with the detection of pain [121]. Whether 
these contradictory findings relate to different OA phe-
notypes in patients and/or are merely limitations of ani-
mal OA models, warrants further investigation [116].

The specific association between macrophages and 
OA pain has been described in a monosodium iodoace-
tate (MIA) rat model of OA [116]. Furthermore, macro-
phage infiltration correlated with pain in patients with 
varying degrees of human knee OA [29]. These infiltrat-
ing macrophages were activated based on shedding 
of CD163 and CD14 markers and were associated with 
pain [29]. Another study confirmed the association of 
macrophage CD14 expression with pain in patients with 
knee OA [25]. Furthermore, elevated expression of CCL2 
in synovium was found in patients with symptomatic OA 
and CCL2 level in the synovial fluid of these patients was 
associated with pain [85]. Conceivably, these mediators 
play a role in OA-related pain through the attraction of 
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sels and higher COX-2 and IL-1 expression compared 
with the low cellularity subgroup, whereas other cyto-
kine levels were similar. Remarkably, only patients with 
high synovial cellular infiltrate responded to anti-TNF 
treatment although groups were small [130]. This find-
ing highlights the heterogeneity between patients and 
its potential importance for the response to treatment.

Moderate, positive effects were observed by broad-
ly-acting anti-inflammatory drugs. For example, in ACLT 
rabbits, statins inhibited CCL2 and MMPs, reduced infil-
tration of CD68+ macrophages in the OA subintima [99] 
and decreased articular cartilage degradation. Likewise, 
CCL9 neutralization reduced macrophage and CD4+ T 
cell infiltration and pro-inflammatory IL-1β expression in 
ACLT mice, which translated into less severe histopatho-
logical signs of OA, decreased osteoclast formation, and 
decreased MMP-13 expression [131]. Furthermore, a 
study in patients with advanced knee OA revealed that 
celecoxib treatment decreased macrophage infiltration 
and cytokine expression in the synovial membrane, in-
dependent of cyclooxygenase (COX)-2 inhibition [132].

Methotrexate (MTX) may exert a positive effect on 
OA as the folate receptor β on synovial macrophages 
may serve as an entry route [71]. A pragmatic phase 
III trial of MTX in knee OA patients is currently running 
[133]. However, given the lower number of FRβ posi-
tive macrophages in OA as compared to RA, its effica-
cy might be less in OA [42]. To this end, assessment of 
FRβ expression by non-invasive macrophage imaging 
[25,29] could prove a useful diagnostic tool to identify 
OA patients eligible for MTX therapy.

Summary, conclusions and future directions

Synovial macrophages are thought to be key players 
in OA and appear to play a role in the characteristic os-
teophyte formation, cartilage degeneration and pain. 
Several studies have suggested that macrophages in 
OA synovium are the main producers of inflammatory 
mediators, which in turn induce release of proteinases, 
aggrecans and growth factors by synovial fibroblasts. 
Although activators of synovial macrophages remain 
unknown, it is hypothesized that ECM debris activates 
macrophages in OA, which in turn aggravates the an-
abolic and catabolic imbalance in the OA joint. There-
fore, synovial macrophages in synovitis are considered 
as critical drivers of OA.

In synovitis, synovial macrophages are mostly pres-
ent in the lining layer of the synovium and irregularly 
distributed in the synovial sublining layer. These mac-
rophages display both M1 and M2 phenotypes, as evi-
denced by expression of cell surface markers, gene ex-
pression, and cytokine profiles. Although the M1/M2 di-
chotomy is a highly simplified concept and mainly based 
on in vitro observations, it is a helpful tool. Unfortunate-
ly, in most OA studies, macrophage polarization is not 
fully characterized. Nevertheless, it has become clear 

rophage numbers, but also modulate macrophage phe-
notypes. Glucocorticoids increase synovial macrophage 
expression of CD163, a proposed marker of M2 mac-
rophages producing IL-10 [25,62,65,66]. Utomo, et al. 
added dexamethasone to synovium explants of OA pa-
tients and showed an anti-inflammatory effect in gene 
expression analyses [62]. In addition, dexamethasone 
was added to primary human monocytes that were first 
polarized in vitro in either M1 or M2 phenotypes. Dexa-
methasone suppressed the pro-inflammatory M1 mac-
rophages and enhanced the anti-inflammatory M2 mac-
rophages. Similar experiments were performed with 
rapamycin, bone morphogenetic protein 7 (BMP-7) and 
pravastatin. Generally, rapamycin and BMP-7 enhanced 
the inflammatory response in synovium explants and 
suppressed M2 macrophages. Pravastatin had no im-
pact on the inflammatory status of the explants but did 
suppress M2 macrophages. Furthermore, because of 
different results between untreated synovium explants 
and explants that were pre-treated with IFN-γ and 
TNF-α, it was concluded that the impact of the tested 
compounds may be different between disease severity 
levels [62].

In a rat model of papain-induced OA, intra-articular 
triamcinolone acetonide (TA) injections resulted in re-
duced osteophyte formation but did not affect cartilage 
degeneration or subchondral sclerosis. Mechanistically, 
in vitro experiments showed that TA elicited its effect by 
inducing monocyte differentiation to M2 macrophages 
[66].

A currently investigated approach aiming at macro-
phage skewing is Tissuegene-C, a cell-mediated gene 
therapy modality for localized delivery of TGF-β1. In a 
rat MIA model, IL-10 production and other M2 mac-
rophage markers were elevated in knee joints of the 
Tissuegene-C group as compared to the control group, 
although M1 macrophage numbers were similar. These 
findings suggest that Tissuegene-C induces an anti-in-
flammatory environment in the knee joint [129]. Tissue-
gene-C is currently being tested in phase II clinical trials 
in knee OA patients [129].

Macrophage-related cytokines as treatment target: 
So far, targeting cytokines has yielded disappointing re-
sults [7]. For instance, anti-NGF-β therapy in knee OA 
patients resulted in substantial pain reduction but was 
accompanied by serious side effects [7]. Furthermore, 
anti-IL-1β treatment has failed to improve clinical out-
comes in OA [7], even though IL-1 is a key cytokine pro-
duced by activated macrophages. Finally, anti-TNF ther-
apy has shown similar, disappointing results in OA [7].

The lack of response in OA patients may be a result 
of their heterogeneity. Schue, et al. compared high and 
low cellularity subgroups of radiographic knee OA with 
respect to response to anti-TNF treatment with inflix-
imab. At baseline, the high cellularity subgroup showed 
increased numbers of mononuclear cells and blood ves-
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that the polarization state of synovial macrophages var-
ies between OA patients and between disease severity 
stages. More research is warranted to gain insight in the 
role of distinct macrophage phenotypes.

The role of macrophages might differ in early and ad-
vanced OA. It is hypothesized that innate immunity plays a 
key role in early OA pathology, whereas in advanced stages 
adaptive immunity is more prominent. However, macro-
phages attribute to both immune responses. Macrophages 
have mainly been studied in animal models, ranging be-
tween DMM, ACLT, collagenase-induced and spontaneous 
OA models. However, differences in models should be 
noted and cautious interpretation of results is warranted. 
The surgically-induced DMM model of OA is not associated 
with inflammation, although minor inflammation can be 
triggered by the surgical procedure, whereas the collage-
nase-induced model is associated with significant synovitis 
[50]. As a result, different models may draw different con-
clusions about the role of macrophages in OA.

To conclude, as synovial macrophages are consid-
ered key drivers of synovitis and are associated with OA 
progression, targeting synovial macrophages represents 
a potential treatment approach. Therapies involved in 
macrophage phenotype modulation are promising; how-
ever, more knowledge is required about macrophage 
polarization in different disease stages and between OA 
phenotypes. Synovial macrophage imaging and marker 
characterization might be able to identify knee OA pa-
tients eligible for macrophage-targeted therapies. Hence, 
future research should focus on the role of macrophages 
in early and advanced OA and between different pheno-
types of OA patients.
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Supplementary File

Methods
Search strategy

The literature search was performed on March 8, 2017 
using the MedLine Advanced (PubMed) and the Embase 
Advanced search engines. The following keywords and 
their synonyms were used: Osteoarthritis, synovium or 
synovitis and macrophage. These keywords were used 
for searching titles and abstracts and were introduced 

in the Medical Subject Heading (MeSH) vocabulary 
thesaurus system or Embase controlled vocabulary 
(EMTREE) (Supplementary Table 1 and Supplementary 
Table 2). A total of 389 records were retrieved after 
duplicates were removed. When retrieved articles 
fulfilled each of the inclusion criteria based on their 
title and abstract (N = 97) or when not, all criteria could 
be judged from title and abstract (N = 27), they were 
fully read for deciding on definite eligibility. Potentially 
relevant citations in fully read articles that were not 
among the MedLine and Embase search results were 
retrieved and manually included when they fulfilled 
each of the inclusion criteria (N = 6). As a result, a total 
of 104 articles was included in this study.

Inclusion and exclusion criteria
Supplementary Figure 1 depicts a flow diagram of 

the stepwise selection of the records. The search was 
limited to English research articles. Studies presenting 
non-original data, such as reviews, were excluded. 
Conference presentation abstracts were included if they 
contained retrievable data. Furthermore, experimental 
studies in non-human subjects and in vitro experiments 
were included.

Supplementary Table 1: Overview of the terms used in both 
MedLine and Embase search.

Keyword Synonyms
Osteoarthritis -	 Osteoarthritis

-	 Osteoarthrosis
-	 Degenerative Joint Disease

Synovium -	 Synovial Membrane
-	 Synovial Tissue

Synovitis -	 Synovial inflammation
Macrophage -	 Macrophage

-	 Monocyte
-	 Histiocyte

Knee  

Supplementary Table 2: Overview of the search strategies used.

Search engine Search strategy Result
(number of records)

MedLine (osteoarthrit* OR osteoarthrosis OR degenerative joint diseas*) AND knee AND 
(synovi* OR synovitis OR synovium) AND (macrophag* OR monocyt* OR histiocyt*) 
NOT review [Publication Type] AND English[Language]

176

Embase osteoarthrit* OR osteoarthros* OR 'degenerative joint diseas*' AND (synovi* OR 
synovitis) AND (macrophag* OR monocyt* OR histiocyt*) NOT review:it AND [english]/
lim AND knee

389
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Supplementary Figure 1: Overview of the step-wise selection of records and numbers of included/excluded articles.
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