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Abstract
Objective: To use an artificial intelligence neural network 
to automatically analyze images from high-speed 
videoendoscopy and synchronous electroglottographic 
signals in healthy vocal folds to obtain the accurate glottal 
opening and closing instants in the glottal cycle. This method 
will be compared to the traditional electroglottography point 
derivation method to explore the glottal opening and closing 
characteristics of the vocal folds and better interpret the 
opening and closing instances of the electroglottography.

Methods: Images from high speed videoendoscopy 
(HSV) and signals from an electroglottogram (EGG) were 
simultaneously collected for 20 subjects when pronouncing 
the vowel /i/. High-speed videoendoscopy was used to 
create a periodic one-dimensional waveform diagram of the 
glottal area during phonation which was used to calibrate 
the original EGG signal and obtain the glottal closing instant 
and the glottal opening instant. This data was combined 
into a time domain change diagram and used as a training 
model of the neural network. A prediction of the closed 
point coordinate values for a segment of EGG signals were 
calculated and compared against the real value given by 
videoendoscopy. This process trains the network model to 
predict a wide range of EGG signals.

Results: 1) The positions of the opening and closing instants 
of the vocal cords identified by the DEGG method were 
closer to the peaks than those identified by the analysis of 
the HSV using Glottal Image Explorer software on the same

periodic waveform, and the positions predicted by the 
neural network model were very close to those identified 
by the calibration method; 2) The data analyzed using the 
derivative EGG method had an average OQ was 52.27% 
and an average CQ was 49.52%. In comparison, the data 
analyzed using the neural network had an average OQ of 
34.88% and an average CQ is 66.12%. As such, the EGG 
analyzed using the neural network was significantly closer 
to the calibration method, which had an average OQ was 
34.60% and an average CQ was 65.42%.

Conclusion: There is a high consistency between the glottal 
opening and closing instants predicted by the trained neural 
network and the HSV, which can identify and predict the 
position of the glottal opening and closing points on EGG. 
This method can provide a more convenient and accurate 
method for EGG signal analysis and can be applied to the 
automatic analysis of vibration patterns of various voice 
diseases.
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Introduction
The periodic opening and closing of the glottis are 

fundamental elements of the vocal vibration pattern. 
Irregularities or inconsistencies with the vibrations 
of the vocal folds lead to alterations in voice quality 
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can be used as the supervision signal to calculate the 
characteristic instants in the time-varying signal of the 
glottis region, and the synchronous EGG signal can be 
used as the input to train the teacher-student network 
model. After the training, using only the EGG signal as 
input, the system should be able to accurately estimate 
the characteristic moments of glottal changes from the 
EGG signal alone, without the need for HSV data as a 
monitor and reference.

To provide a more convenient and accurate method 
for the analysis of EGG signals, the synchronous 
acquisition of EGG signals and high-speed imaging of 
healthy human vocal cords vibration was performed. 
These signals were analyzed using an automatic analysis 
performed by an artificial intelligence neural network. 
Once trained, it is expected that this neural network will 
improve the accuracy of vocal cord analysis using EGG 
which will be used as a minimally invasive measure of 
the vibrational patterns of phonation.

Subjects and Methods

Study object and collection method
Twenty subjects aged 20-53 years (mean 32 ± 2.5 

years) without irregular phonation, respiratory diseases 
and other laryngeal lesions were recruited. During 
testing, each subject was observed using an endoscopic 
high-speed camera and a double electrode plate from 
the electroglottograph on both sides of the thyroid 
cartilage to collect images from the laryngeal HSV and 
synchronous EGG signals respectively. Measurements 
were collected over the span of 8 seconds during which 
the subjects pronounced the vowel /i/. The acquisition 
frequency of the HSV was set to 4K frames per second, 
and the acquisition frequency of the EGG was 48 KHz. An 
example of the synchronous measurement is presented 
in Figure 1.

Research methods
Calibration method: Acquisition of the opening 

and closing points of the vocal cords on the 
electroglottogram signal: To calibrate the signal from 
the electroglottogram, the HSV must first be processed. 
Initially, the individual frames of the high-speed video 
were recorded and processed using the Glottal Image 
Explorer software (GIE). This software created a 
periodic one-dimensional waveform which measured 
the glottal area in respect to time when the vocal cord 
vibrated (Figure 2a). From this waveform, the glottal 
closing moment was marked as the time in each glottal 
cycle when the glottal area was equal to zero, and the 
glottal opening moment was marked as the first non-
zero point after the closing moment (Figure 2b). Next, 
the waveform signals were upscaled to create a one-to-
one correspondence between the original EGG signals 
and the one-dimensional images. This was done using 
sampling pulses to convert the continuous signals into 
discrete signals of time and amplitude.

which can be perceived as voice disorders. Vocal fold 
vibrations are usually observed using laryngoscopy 
which is done using either stroboscopic light or more 
recently high speed videoendoscopy (HSV) [1,2]. Both of 
these techniques require the use of computer assisted 
evaluation due to the difficulty to evaluate the vibration 
pattern of vocal cords though direct human observation.

For HSV, a common method of analysis is by 
tracking the motion of the vocal fold edge [3]. The two 
most common parameters extracted from the motion 
tracking is the Open Quotient (OQ) which is the ratio 
between the time of glottal opening over the duration 
of the glottal cycle and the Contact Quotient (CQ) 
which is the is ratio between the time of glottal closure 
over the duration of the glottal cycle. These quotients 
provide a way to measure changes in the composition 
of the glottal cycle when studying the pathogeneses of 
voice diseases and different vocal patterns [4,5]. These 
studies have broad applications from understanding 
vocal variation in human development to clinical 
studies including Christopher S, et al. which used the CQ 
value to evaluate the effect of semi-closed vocal tract 
training on vocal fold vibration and found that the CQ 
was positively correlated with semi-closed vocal tract 
training and lead to an increase in voice quality [6]. For 
studies examining vocal fold vibration and function, it is 
critical that these vocal fold vibration parameters such 
as OQ and CQ are measured accurately.

A non-invasive alternative to high-speed 
laryngography to detect the opening and closing of vocal 
cords during phonation is electroglottography (EGG). 
Compared with the semi-invasive acquisition of HSV, 
the acquisition of EGG is faster, less invasive, and more 
convenient. However, only the HSV of the glottal area 
can directly visualize the opening and closing state of the 
glottis and obtain the exact opening and closing instants 
of the vibrating vocal folds. Previous studies using EGG 
have observed that there are maximal accelerations in 
opposite directions at the opening and closing phases 
of the glottal cycle, so the first order derivative of the 
original signal of the EEG signal can be obtained which 
gives the DEGG. From this, the opening phase can be 
obtained by the temporal location of the maximum value 
of the derivative and the closing phase can be obtained 
by the temporal location of the minimum value of the 
derivative. Using the maximum acceleration found in 
DEGG, many scholars have been able to use EGG alone 
to evaluate parameters of phonation such as OQ and 
CQ, but this technique has not been fully adopted since 
it still lacks a certain level of accuracy in comparison to 
HSV.

Therefore, considering the respective advantages and 
disadvantages of HSV and EGG, this paper proposes an 
artificial intelligence system of teacher-student network 
mode based on cross-mode supervision. Through the 
teacher-student network model, the HSV visual signal 
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Figure 1: Schematic diagram of synchronously acquired HSV and EGG signals: each frame of the high-speed video are 
correlated to a point at the same time point on the EGG waveform.

         

A)

B)

Figure 2: (a) One-dimensional waveform of GIE segmentation of vocal fold vibration as a function of time domain; 
(b) Schematic representation of the location of key points in a single glottal region change cycle.
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multi-modal signals. This method can not only provide 
more feature information for the analysis task, but it also 
makes the network model more efficient and flexible 
in the implementation of tasks [11]. In this paper, we 
attempt to apply this network model architecture to 
accurately detect glottal closure time only through EGG 
signal without HSV signal.

The schematic diagram of the teacher-student 
network model used in this paper is shown in Figure 3. 
The goal of this Network is to use the original EGG signal 
as an input to predict the corresponding glottal opening 
and closing time (Figure 3).

Training data set: For each of the 20 subjects, video 
frames were extracted to train the neural network. In 
total, 640,000 (4K*8s*20) video frames and 7.68 million 
(64,000*12) EGG signals were used for training the 
neural network.

Approximate glottis opening and closing moment 
obtained by DEGG: In accordance with the methods, 
the EGG signal at the same time were derived to obtain 
the DEGG change graph of the signal across time. The 
maximum DEGG value (glottis closing moment) and the 
minimum DEGG value (glottis opening moment) were 
obtained. An example of the DEGG graph is shown in 
Figure 4.

Comparison
The instantaneous opening and closing time of the 

vocal folds were obtained under the three methods 
(calibration, model training output, DEGG). The OQ and 
CQ parameters of each method were compared to find 
the accuracy of each method.

Construction of the neural network model

Teacher-student network model: Teacher-student 
network model is a widely used method in the field of 
model compression, which can be used to compress 
deep neural network models into a more simplified 
model. The teacher network is the original complex 
neural network which will have the best performance 
and generalization ability when dealing with the tasks. 
This teacher network then simplifies the parameters 
and instructs a more lightweight student network 
how to achieve the best model effect. This model 
architecture can exchange information between both 
single and multi-modal signals, thus providing cross-
modal supervised training [7-9].

Punar Jay, et al. detected voice activity information 
through audio signals. This method is a person 
voice activity detector model based on video signals 
and provides cross-modal supervised training. The 
experimental results show that the trained detector 
model based on specific person activity of video signals 
has better performance than the general detector [10]. 
Ming Zhao, et al. Constructed a human pose recognition 
model using synchronous RF signals and visual signals 
as inputs. They extracted accurate pose information 
from video signals to guide the overall training process 
of the model. Once the network training is completed, 
the model only needs to use RF signals as inputs. The 
activity posture of the human body can be detected in 
a visible scene. In addition, the human pose recognition 
model based on RF signals can also accurately detect 
the 2D pose of the human body in occluded scenes. 
Therefore, through cross-modal supervised training, we 
can achieve interactive learning of network models in 

         

Figure 3: Schematic diagram of input and output of neural network.
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from the neural network are shown in blue in Figure 5.

When comparing the positions of the feature points 
in the same domain from the different measuring 
techniques, it is found that the opening moment and 
the closing moment of the vocal cords identified by the 
signals from the traditional DEGG methods are closer 
to the wave peak on the same periodic waveform 
than those obtained by the calibration curve analyzed 
with GIE. This is seen due to the open-close interval in 
the glottal cycle obtained by the DEGG method being 
smaller than that obtained by the calibration method. In 

Results
Representative graphs of the EGG signal during vocal 

fold vibration by the 3 methods in this study are shown 
in Figure 5.

The degree of glottal opening demarcated by the 
time domain image of the glottal area captured via 
High-speed videoendoscopy is shown in red in Figure 5; 
Characteristic glottal opening and glottal closing values 
were obtained by the DEGG method are shown in yellow 
in Figure 5. Finally, after training the OQ and CQ values 

         

Figure 4: An example of the EGG and DEGG change vs. time graph which shows the glottal opening point (derivative 
maximum) and glottal closing point (derivative minimum). The DEGG signal is seen in gray and the EGG signal is seen in 
blue.

         

Figure 5: Is a characteristic point diagram of a normal subject by three methods (Red = “GIE analysis of HSV”; Yellow = 
“DEGG Analysis of EGG data”; Blue = “neural network analysis of EGG data”).
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These CQ and OQ values correlate strongly with those 
calculated by the calibration method. Based on these 
average CQ and OQ values from the two EGG analysis 
methods, It can be considered that the predicted vocal 
cord vibration based on the neural network is closer to 
the actual vibration of the vocal cords than the vibration 
predicted by DEGG. This can be seen in Figure 5 where 
there were significant differences in the characteristics 
of the vocal fold oscillation between the traditional 
DEGG point diagram and the neural network point 
diagram. The differences in the point fields can in part 
be explained by the fact that the DEGG method is more 
dependent on a highly stable and simple EGG signal. 
This is caused by the because there are many factors 
including interglottal mucus and irregular vibration of 
vocal cords which affect the relationship between the 
DEGG and glottal closure [12-17]. In comparison, the 
neural network is better able to identify and predict 
the position of the opening and closing of the glottis 
because it is better able to filter the irregularities in the 
EGG signal from the HSV training.

Paragrah on the clinical potential for this neural 
network (Ex. Non-invasive measure of OQ, CQ, and other 
vibration parameters), provide some limitations that it 
may have (Ex. Since this neural network analysis is based 
on a dataset, abnormal vocal fold vibration which is not 
represented in the dataset would not be accurately 
analyzed using this neural network), and what potential 
future studies will be used to address these limitations 
(Ex. Use this neural network with patients who have a 
wide variety of abnormal phonation to better train the 
NN).

Conclusion
The cross-modal teacher-student network model 

we designed extracts the important moments of 
glottal movement in a quasi-periodic way by inputting 
EGG signals, and calculates the vocal fold vibration 
parameters, which provides accurate data for further 
analysis of the opening and closing of vocal fold vibration 
and is expected to be applied to the follow-up study of 
EGG on pathological vocal fold vibration characteristics.
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addition, when a segment of the original EGG signal was 
input into the trained neural network, the location of 
the opening and closing instances were consistent with 
the calibration points.

Obtain the mean value of vocal fold vibration 
parameters OQ\CQ (Table 1) through the feature points 
on vocal fold EGG signals obtained by different methods:

The average OQ and CQ calculated by the DEGG 
collected from the healthy subjects in this study were 
52.27% and 49.52% respectively, the average OQ and 
CQ calculated using the GIE analysis of the HSV was 
34.6% and 65.42% respectively, and the average OQ 
and CQ calculated using the trained neural network was 
34.88% and 66.12% respectively.

Discussion
In this study, the reference/calibration methodology 

was based on the acquisition of High-speed 
videoendoscopy in healthy subjects when pronouncing 
the vowel /i/. Images of the glottal area were extracted 
and analyzed using the GIE software to segment and 
produce a periodic change map. When the sampling 
frequency is high enough, this method has been shown 
to be the most accurate means of measuring the CQ 
and OQ of focal fold tissue since it is able to accurately 
measure the full area of the glottis over the oscillation 
cycle. The sampling frequency of laryngeal high-speed 
photography used in this study is 4K f/s which is well 
above the fundamental frequency of human phonation. 
This meant that each phonation cycle can be accurately 
reconstructed using the images which results in the 
acquisition of accurate characteristic points. In this 
study, the average CQ and OQ obtained after calibration 
were 65.41% and 34.60%, respectively. These average 
CQ and OQ values are consistent with previous studies 
which confirm the accuracy of the calibration curve.

To acquire the standard accuracy of the CQ and 
OQ obtained by EGG, DEGG analysis was performed 
on the EGG signals. The first-order derivation of the 
signal was used to find the maxima and minima which 
were mapped on to the original EGG signal. Using this 
technique, the average CQ and OQ were 49.52% and 
52.27%, respectively. In comparison to the calibration 
curve, this value is significantly different in comparison 
to the calibration curve. The alternative method to 
analyze the EGG signals in this study was using the neural 
network to predict the CQ and OQ based on previous 
comparisons between synchronous EGG and HSV 
data. After training, the neural network measured the 
average CQ as 66.12% and the average OQ as 34.88%. 

Table 1: Comparison of Open Quotient (OQ) and Close Quotient (CQ) of vocal fold vibration in subjects obtained by DEGG, HSV, 
and EGG using the neural network.

Method DEGG method Calibration method Neural network output

OQ (%) 52.27 34.60 34.88

CQ (%) 49.52 65.42 66.12
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