
Journal of

Infectious Diseases and Epidemiology
Review Article: Open Access

Blum. J Infect Dis Epidemiol 2017, 3:025

Volume 3 | Issue 1

C l i n M e d
International Library

Citation: Blum HE (2017) The Intestinal Microbial Community and Inflammatory Bowel 
Diseases. J Infect Dis Epidemiol 3:025. doi.org/10.23937/2474-3658/1510025
Received: May 07, 2016: Accepted: March 04, 2017: Published: March 06, 2017
Copyright: © 2017 Blum HE. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

ISSN: 2474-3658

DOI: 10.23937/2474-3658/1510025

The Intestinal Microbial Community and Inflammatory Bow-
el Diseases
Hubert E Blum*

Department of Medicine II, University Hospital Freiburg, Germany

*Corresponding author: Prof. Hubert E Blum, Department of Medicine II, University Hospital Freiburg, 
Hugstetterstrasse 55, D-79106 Freiburg, Germany, Tel: +0049-761-27018116, Fax: +0049-761-27018117, 
E-mail: hubert.blum@uniklinik-freiburg.de

Abstract
Based on molecular, genetic, epigenetic, biochemical and 
microbiological analyses it is increasingly possible to identi-
fy individual disease-related characteristics that define dis-
ease pathogenesis, disease disposition or prognosis as well 
as the efficacy of therapeutic strategies ('personalized med-
icine/precision medicine’). In this context, the global human 
microbiome project, aimed at deciphering the complete set 
of genes of the microbiota, i.e., the individual’s complete mi-
crobial community, was established in 2007 and has mean-
while developed into a major field of biomedical research. 
In particular, the intestinal microbial community has turned 
out to play a major role in human health and disease. In this 
context, the following comment addresses novel insights 
into its contribution to the pathogenesis, prevention and 
treatment of inflammatory bowel diseases (IBD). Beyond 
IBD, the intestinal microbial community is involved in nu-
merous other, common, non-gastrointestinal diseases, such 
as obesity/metabolic syndrome and atherosclerosis as well 
as in health, in particular in immunity, making it one of the 
most dynamic current topics in biomedical research.
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tify, based on genome-wide association studies (GWAS) 
in ethnically different populations, single nucleotide pol-
ymorphisms (SNPs) and their association with specific 
human diseases and individual phenotypic characteris-
tics, respectively [3,4], a third global consortium, the hu-
man microbiome project (HMP), was established in 2007 
[5-9]. The HMP and the ‘Metagenomics of the Human 
Intestinal Tract (Meta-HIT) Consortium Europe’ aim at 
the sequencing of all microbes (eukaryotes, archaea, bac-
teria and viruses) that inhabit specific body sites (Table 
1). Recent data demonstrate that specific compositions 
of the microbial community are associated with health 
and disease [5-9] and suggest that the detailed charac-
terization, function and variation of the microbial com-
munity will reveal important commensal host-microbe 
as well as microbe-microbe interactions with diagnostic, 
therapeutic and preventive implications [10,11].

Intestinal microbial community
In recent years the intestinal microbial community 

has been studied in great detail. The colonization of the 
human gut begins at birth, is characterized by a succes-
sively changing composition and eventually becomes 
relatively stable in adulthood [12]. Important factors for 
the composition of the intestinal microbial community 
are, among others, diet lifestyle and exposure to drugs/

Introduction 
The basic aspects of molecular and cell biology are not 

only integral part of biomedical research but are also in-
creasingly translated into ‘personalized/precision medi-
cine’ with clinical relevance for the diagnosis, treatment 
and prevention of human diseases. Apart from the inter-
national human genome organization (HUGO) project 
that identified the complete sequence of the human ge-
nome about 15 years ago [1,2] and the international hap-
lotype map (HapMap) project initiated in 2005 to iden-

Table 1: Human microbial communities.

Body sites References
Mouth-throat-airways [5,6]
Stomach [5,6]
Intestine [5,6]
Urogenital system [5,6]
Skin [5,6]
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antibiotics. In this context it appears that the administra-
tion of low-dose penicillin early in life has lasting effects 
on the body mass index (obesity) through alteration of 
the intestinal microbial community [13,14]. Recent evi-
dence further suggests that human genetic variation also 
influences the abundance of specific members of the in-
testinal microbial community [15].

The intestinal microbial community is highly variable 
from person to person but family members tend to 
have more similar microbes than unrelated individuals, 
possibly due to shared environmental factors and genetic 
similarities. Recent studies indicate that certain intestinal 
microbial communities are not only associated with 
different chronic diseases but may play a causative role 
in disease pathogenesis [5-9]. This is, last but not least, 
supported by the fact that the transplantation of intestinal 
microbes from diseased animals/humans to healthy 
recipients results in phenotypic disease characteristics, 
e.g., in kwashiorkor [16].

A causal relationship between the intestinal microbial 
community and an increasing number of human diseases, 
have been identified to date (Table 2). In addition, intestinal 
microbes play a central role in drug metabolism, e.g., of 
sulfasalazine, levodopa and irinotecan, both with respect to 
efficacy and to undesired side effects.

The inflammatory bowel diseases (IBD) in humans 
include ulcerative colitis (UC) and Crohn disease (CD).
These are characterized by inflammation limited to the 
mucosal layer of the colon in UC and the transmural 
involvement of the gastrointestinal tract, including ex-
traintestinal sites in CD. While the pathogenesis of IBD 
is not fully understood [17], it is clear that its pathology 
depends among others on the intestinal microbial com-
munity [18,19]. Further, a case-control study identified 
‘IBD-specific’ alterations of the intestinal microbiota 
that may serve as biomarkers for the prediction of dis-

ease predisposition, activity/severity and responsiveness 
to therapy [20,21].

Host genes with effects on the composition of the intes-
tinal microbiota are the IgA locus and the HLA genes as well 
as the defensin genes, the NOD2 gene, the resistin-like mol-
ecule beta gene, the apolipoprotein I gene, the MEFV gene 
and the myeloid differentiation primary response protein 
88 gene. The three components -environment host genetics 
and the microbial community- interact to maintain home-
ostasis in the intestine [6]. The disruption of the stability of 
this interaction may be a trigger for disease development. 
Two recent publications shed a new light on the pathogen-
esis of IBD through the change of the intestinal microbial 
composition involving two different pathways: helminth 
infection [22] and lipocalin-2 expression [23], respectively.

Helminth infection, microbial community and IBD
Epidemiologic studies demonstrated a major increase 

of the incidence of IBD in the developed world, suggest-
ing a change in the environment, including an altera-
tion of the intestinal microbiome [24] and a decreased 
exposure to intestinal parasites, such as helminths [25]. 
In mice deficient for the CD susceptibility gene Nod2 
(Nod2-/-/knockout) [26], it could be demonstrated that 
small intestinal abnormalities develop in the face of a 
sustained colonization with the inflammatory bacteri-
um Bacteroides vulgatus, an ubiquitous member of the 
intestinal microbial community [27]. Chronic infection 
of Nod2 mice with the parasitic worm Trichuris muris, 
however, inhibited colonization with inflammatory Bac-
teroides species and promoted the establishment of a pro-
tective microbial environment enriched in Clostridiales 
[22]. Further, the authors demonstrated that individuals 
from helminth-endemic regions harbour a similar pro-
tective microbial community and deworming treatment 
reduced Clostridiales and increased Bacteriodales, result-
ing in an increased IBD incidence. These data support 

Table 2: Intestinal microbial community in health and diseases (examples).

Health/Disease(s) Reference(s)
Adaptive immunity [28]
Atherosclerosis/Thrombosis [29-32]
Autoimmunity/Allergies [33]
Colorectal carcinoma [34]
Immune-mediated inflammatory [35]
Diseases
Inflammatory bowel diseases [22,23,35,36]
Multiple sclerosis [37]
Rheumatoid arthritis [38]
Psoriasis [39]
Innate immunity [40]
Kwashiorkor [16]
Liver diseases [41]
Metabolic syndrome/Obesity [42-46]
Neurodevelopmental, psychiatric and neurodegenerative diseases
Autism  [47,48]
Depression [47,49]
Alzheimer disease, parkinson disease [47,50,51]
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rial species with inflammatory and tumorigenic potential 
thereby increasing Lcn2 expression. These findings suggest 
a highly intricate interplay between the host and the micro-
bial community in IBD pathogenesis and may eventually 
contribute to IBD prevention and therapy in humans.

Beyond IBD, the intestinal microbial community is in-
volved in numerous other, common, non-gastrointestinal 
diseases, such as obesity/metabolic syndrome and ather-
osclerosis as well as in health, in particular in immunity, 
making it to one of the most dynamic areas of biomedical 
research.
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the hygiene hypothesis whereby certain individuals are 
genetically susceptible to the consequences of a changing 
intestinal microbial community that favours IBD devel-
opment.

Lipocalin-2 protection from IBD and colon cancer
Lipocalin-2 (Lcn2) is an antimicrobial peptide with 

high mucosal and fecal concentrations in patients with 
IBD. It is produced by various cell types, including ep-
ithelial cells, and acts as an antimicrobial defence me-
diator by binding to a subset of bacterial siderophores, 
thereby preventing bacterial iron acquisition and growth 
of siderophore-dependent strains. While it has been im-
plicated in several biologic processes, such as acute phase 
response, erythropoiesis and iron metabolism, its func-
tional role in contributing to IBD development remained 
unclear.

To decipher the role of Lcn2 in colon inflamma-
tion, mice double deficient in Lcn2 and IL-10 (Lcn2-/-/
IL10-/- double knockout) were generated and compared 
to single knockouts and wild-type animals. The exper-
imental data indicate that Lcn2 expression protects 
from early onset colitis and the spontaneous emergence 
of right-sided colonic tumours that result from IL-10 
deficiency. The inflammation is driven by IL-6 which 
also controls tumorigenesis. The Lcn2-/-/IL10-/- double 
knockout mice showed major alterations of their intes-
tinal microbial community, especially with respect to the 
facultative pathogenic Alistipes spp. These contribute to 
inflammation and tumorigenesis as shown by the trans-
missibility of the phenotype and the protection by anti-
biotic therapy. Taken together, the authors demonstrate 
that Lcn2 protects against intestinal inflammation and 
tumorigenesis in the face of an altered intestinal micro-
bial composition [23].

Conclusions and Perspectives
Recent advances in cell and molecular biology resulted in 

an increasingly detailed understanding of the pathogenesis 
of gastrointestinal diseases, including IBD. Apart from an 
increasing number of host genetic susceptibility loci and 
environmental factors, the individual microbial community 
is central for the barrier between microbes and hosts and 
for the mucosal homeostasis. In this context the mucosal 
immune responses to luminal dietary and/or microbial 
antigens play a major role. A thorough understanding of 
IBD pathogenesis depends on the one hand on the detailed 
characterization of the host’s mucosal defence and response 
mechanisms and on the other hand on the careful analysis 
of the complex dynamics of the intestinal microbes.

The two recent publications discussed above [22,23], 
give a first glimpse into the complex mechanisms under-
lying the protection from IBD by the intestinal microbial 
community, i.e., by its modification through chronic hel-
minth infection in susceptible hosts or by changing the 
microbial composition that results in a reduction of bacte-
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