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Abstract
Background: Malaria remains a significant public health 
concern in developing countries. Distinct geographical 
regions have different factors that influence malaria 
transmission. The aim of this study is to develop and validate 
an empirical model to forecast malaria outbreak.
Method: A retrospective follow-up study was conducted 
from June 01 to 30, 2022 in thirty-four woredas that have 
metrological stations and nine developmental corridors. The 
collected data was analyzed by R version 4.0.4.Backward 
stepwise multivariable logistic regression was used.
Result: The presence of irrigation (OR = 1.522, 95% CI = 
1.161-2.142), sunshine (SH > = 7.167) (OR = 4.104, 95% 
CI = 1.706-9.791), Rainfall (> = 98.178) (OR = 21.73, 95% 
CI = 5.755-141.326) and minimum temperate (OR = 0.956, 
95% CI = 0.956-0.997) were significantly associated with 
malaria outbreaks.
Conclusions: Sunshine, minimum temperature, rainfall, 
and irrigation were important to forecasting malaria outbreak. 
Current month climate data have the fitted predictor to 
forecast the outbreak of malaria.
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Abbreviations
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Background
A sudden rise in the number of cases of a disease 

above what is normally expected in that population in 
that area is called a malaria outbreak [1-3]. Based on 
severity and progression depending on the type of 
pathogen causing the outbreak, the effectiveness of early 
warning systems, the preparedness and response time, 
and cultural and security factors has several stages. The 
stages of an outbreak include pre-outbreak, individual 
cases and small clusters of disease, widespread disease, 
outbreak control, and post-outbreak. If an outbreak of 
a highly infectious disease is suspected, this should be 
reported to the appropriate national and international 
authorities as stated by the International Health 
Regulations [4].

Climate-based distribution model of malaria 
transmission in Sub-Saharan Africa describes a simple 
numerical approach to defining the distribution of 
malaria transmission, based on biological constraints of 
climate on parasite and vector development. It provides 
a numerical basis for further refinement and prediction 
of the impact of climate change on transmission. 
Together with population, morbidity, and mortality 
data, the model provides a fundamental tool for the 
strategic control of malaria [5].

Malaria is key public health challenges in Ethiopia. 
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from Amhara Meteorological agency of 34 districts that 
have primary metrological stations.

Data analysis
Binary logistic regression analysis was applied 

to results from malaria outbreak based on Socio-
demographic variables (age, location and migration), 
climatic factors (maximum and minimum temperature, 
relative humidity, rainfall, wind speed, sunshine), type 
of malaria species (PF and PV), geographical factors 
(irrigation and altitude), seasonal adjusted factors 
and malaria outbreak were analyzed. We developed 
a mathematical model by binary logistic regression 
method. Based on our study malaria outbreak was 
defined as the incidence of malaria cases exceed the 
third quartile or second largest value of five years’ 
previous data. Likewise when we had less than five 
years’ data, we can say that any number of malaria 
cases more than double the number in the same month 
of last year’s data was called an outbreak [10].

In the situation, when we have n predictor variable, 
the general regression model (Logit (p) = ln p/(1-p) = β0 
+ β1X1 + β2X2 +……+ βnXn Where: “p” is P (y = 1ǀ X1, 
X2, X3…⋯Xn) and the probability that artifacts affected 
the predictor variable X1, X2, X3……Xn) are taken into 
consideration.

For this study, Missing data was assumed as 
missing at random [11] and was handled using by 
multiple imputation with chained equations (MICE) 
[12]. Sensitivity analysis was done to check whether 
the assumption of missing at random is valid or not. 
Variables with p-values of ≤ 0.25 were entered to the 
multivariable logistic regression model.

Backward stepwise multivariable logistic regression 
analysis was used to an elimination of not significant 
parameters and identifies predictors included into the 
final model. In this way, we could visualize the values 
of the coefficient β for all predictor variables, the 
elimination condition from the model for not statistically 
significant parameters, and the way in which the 
elimination of some parameters could affect the values 
of β coefficient and the mathematical model precision.

All models were developed at three time point 
with current month data, lag 1 month data (Model 1. 
lag 1) and lag 2-month data (Model 1. lag 2). Secondly, 
we included predictor variables and seasonal adjusted 
factors (SAF) into the model (Model 2). Seasonal 
decomposition was used to decompose the time series 
into a seasonal component, a combined trend and cycle 
component, as well as an error component [13].

To control for the impact of seasonality, we 
decomposed the malaria incidence into three series. 
That is, Yt = Tt + St + Et, where Yt denotes the malaria 
incidence, Tt denotes the trend component, St denotes 
the seasonal component, and Et denotes the residual 
component. To control the impact of seasonality in 

It is one of the significant public health emergencies 
that cause a high-level of morbidity in Amhara 
region. The regional landmass is favorable to malaria 
transmission. Drivers of malaria transmission vary 
across different geographical regions. Climatic variables 
are major risk factor in seasonal and secular patterns 
of malaria transmission along Amhara; Ethiopia. There 
is widespread transmission of Plasmodium falciparum 
(PF) and Plasmodium vivax (PV) malaria, with a ratio of 
1.2 of PF to PV, as seen in blood film tests from a cross-
sectional survey [6].

An empirical model is a model where it is determined 
by the observed relationship among experimental data. 
In developing a correlation, it needs first to identify 
all the variables that may have an influence on it. 
However, in addition to their capacity for process 
optimization, empirical models can be utilized for 
calibration and experimental data prediction for a given 
system. Empirical models that have been used for the 
handling of weathering data have typically used curve 
fitting processes to generalize the results of experiment 
[7]. It is a useful tool for interpreting and applying 
surveillance data. It has a great potential to be used 
as a decision-support tool to predict mosquito-borne 
disease outbreaks [8,9]. The objective of this study is 
to develop and validate an empirical model to forecast 
malaria outbreak at Amhara region, 2022.

Methods

Study setting
The study was conducted in Amhara national 

regional state which has a metrological agency and has 
a five-year malaria surveillance data of 34 districts.

Study design and periods
A retrospective study design was conducted from 

June 1 to 30, 2022 in Amhara regional state, Northwest 
Ethiopia. The start and end of the recruitment period 
for this study covered January 1, 2016, to December 30, 
2021.

Study population
The study population was all reported cases of 

malaria surveillance data in the Amhara public health 
institute within five years period from 2016 to 2021.

Sample size
All reported malaria cases at districts which had only 

primary metrological station in Amhara region from 
January 1, 2016 to December 30, 2021 were included in 
the analysis. A total of 2448 observation were included 
in the follow-up.

Data collection
Data was collected from Amhara regional state public 

health institute's public health emergency management 
directorate, Malaria elimination program team, and 
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When we had less than five years of data, we can say 
that any number of malaria cases more than double the 
number in the same month of last year’s data was called 
an outbreak.

Malaria case: Occurrence of malaria infection in a 
person in whom the presence of malaria parasites in 
the blood has been confirmed by a diagnostic test [20].

Climate zone
 ¾ Kolla (Tropical zone): Districts that had below 

1830 meters in elevation

 ¾ Woyna Dega (Subtropical zone): Includes the 
highlands areas of 1830-2440 meters in elevation.

 ¾ Dega (Cool zone): Districts that had above 2440 
meters in elevation.

Seasons
• Bega (winter) - June, July and August are the 

summer season. Heavy rainfalls in these three 
months.

• Belg (autumn) - September, October and 
November are autumn season sometime known 
as the harvest season.

• Kiremt or Meher (summer) - December, January 
and February are the dry season with frost in 
morning especially in January.

• Tseday (spring) - March, April and May are the 
autumn season with occasional showers. May is 
the hottest month in Ethiopia.

Results
A total of 34 (94%) primary metrological stations 

and nine districts with developmental corridors were 
included within 2448 observations. A total of 3,847,918 
parasitological tests were performed by Microscopy and 
rapid diagnostic test (RDT) with the study period. Out of 
this total tested 919,586 malaria confirmed cases were 
reported with a test positivity rate of 23.9%. Plasmodium 
falciparum by Blood film and RDT accounted 532,298 
(57.9%). Irrigation in the selected metrological study 
area accounted 368 (15%) (Table 1).

Development of empirical model and forecasting 
of Malaria outbreak

For the development of empirical model and 
forecasting of malaria outbreak, variable which have a 
p values of < 0.25 in bivariable analysis were nominated 
for multivariable logistic regression analysis. The 
multivariable logistic regression analysis result showed 
that the monthly outbreaks of malaria were significantly 
associated with rainfall, sunshine, irrigation and 
minimum temperature (Table 1).

The results of model 1 and model 2 showed that 
the monthly outbreaks of malaria were significantly 

logistic regression model, we input the St into the logistic 
regression model as a seasonal factor, which indicate 
the effect of each period on the level of the series were 
used to determine the peak of seasonal variation [14]. 
Forecasting of the outbreak of monthly malaria was also 
done using the best fit model.

Predictors that had association with the malaria 
outbreak in the final model were reported using their 
beta coefficients with 95% CIs, and odds ratios (ORs) 
and risk scores. We tested the goodness-of-fit of 
model via maximum likelihood. The model accuracy 
was assessed by computing discrimination (area under 
the receiver operating characteristic curve (AUC), 
calibration (by calibration plot and Hosmer-Leme show 
model goodness of fit test) using “classifier plots” and 
“givitiR” packages of R respectively [5,15]. An AUC value 
ranges from 0.5 (no predictive ability) to 1 (perfect 
discrimination) [16,17]. The model was assumed to be 
well fitted when calibration test p-value is greater than 
0.05 [18].

The regression beta coefficients, with its 95% 
confidence levels, and the AUC were adjusted for over 
fitting or optimism using bootstrapping technique. 
Internal validation for the model was performed by 
boot strapping [19] method which can be calculated 
by bootstrapping 1000 samples with replacement. The 
boot strapped regression coefficients and the AUC is 
considered as a predictive performance of the model 
that can be expected when the model is applied to 
similar populations in the future. Statistical analyses 
were performed using Statistical Package for the Social 
Science (SPSS) software version 25.0 and R statistical 
programming language version 4.0.4 with “Regression” 
and “Forecasting” procedures. Finally, result is 
presented by using frequencies, proportions, graph and 
tables.

Variables
Dependent variable: Malaria outbreak (Yes/No)

Independent variables: Location, Migration, 
Maximum and minimum temperature (°C), Relative 
humidity (%), Rainfall (mm), Wind speed (km/h), 
Sunshine, Altitude [11], Seasonality factors, Irrigation 
(m3/s), PF by Blood film and RDT, PV by Blood film and 
RDT are the independent variables.

Operational definition
The forecasting model:

Malaria outbreak = α + β1x1 + β2x2 + β3x3 + β4x4

Pr (Malaria outbreak) = exp/(1+exp(X)), where: X = 
β1x1+…+β4x9 [6]

Malaria outbreak: -when we had five years’ previous 
data and malaria cases exceeded the third quartile 
number or second threshold value (or line on the chart) 
then there was an outbreak for that month likewise.

https://doi.org/10.23937/2474-3658/1510327
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mean (≥ 98.178) were 21 time that of areas with rainfall 
below monthly rainfall (OR = 21.73, (5.755, 141.32)). 
Areas that had irrigation had 1.52 times the odds of 
having monthly outbreaks of malaria compare to areas 
had no irrigation (OR = 1.52, 1.16, 2.42) (Table 2).

After adjustment of seasonality as confounder, model 
2 showed that there were significantly associations 
between the variables such irrigation (present), rainfall 
(≥ 98.178), sunshine (≥ 7.167), minimum temperature 
with monthly outbreaks of malaria (Table 2).

The AUC of the final original reduced model was 
55.3% (95% confidence interval: 0.522-0.582). The 
calibration performance (fit of observed to expected risk 
a cross all individuals) assessed by the calibration belt 
using “givitiR Standardization Belt” in R programming 
had a p-value of 0.50 (Figure 1).

The original reduced model coefficients were 
internally validated by bootstrapping technique which 
gives an optimism coefficient of 1.618. This indicated 
that the original reduced model was over fitted (will 
overestimate the effect when applied to new external 
population in the future) and too much optimistic due 
to optimism coefficient is greater than 10%.

The forecasting model
Malaria outbreak = α + β1x1 + β2x2 + β3x3 + β4x4

= -1.465 + 0.432* irrigation + 1.296* rainfall above 
monthly mean (≥ 98.174) + 1.464* sunshine above 
monthly mean (≥ 7.167) - 0.041 Tmin 

Pr(Malaria outbreak) = exp [6]/(1+exp(X)), where: X 
= β1x1+…+β4x9

Calibration plot of the risk prediction model for 
malaria outbreak among malaria cases is presented in 
Figure 2.

Using “Optimal Cutpoints” package and “kappa 
index”, the model had sensitivity of 99.12%, specificity 
of 3.72%, and positive predictive value of 19.07% and, 
negative predictive value of 94.87% respectively. A 
decision curve analysis was performed using “rmda 

associated with rainfall, sunshine, irrigation and 
minimum temperature. The results of model 1 showed 
that the monthly outbreaks of malaria were significantly 
associated with rainfall, sunshine, irrigation and 
minimum temperature. The predictors of minimum 
temperature increased by 1 unit (1 °C), the possibility 
of malaria outbreaks decreased by 2.3% (OR = 0.977, 
(0.956, 0.9979)) (Table 2).

The minimum temperature increased by one unit 
(1 °C); the possibility of malaria outbreaks decreased 
by 2.3 (OR = 0.977, 95% CI; 0.956-0.997). Areas that 
had sunshine exposer above the mean (≥ 7.167) had 
seven-fold higher odds of having monthly out breaks of 
malaria (OR = 7.10, (1.7106-9.791)) compared to areas 
with sunshine with above the mean (≥ 7.167).

The odds of having in areas with rainfall above 
the mean (≥ 98.178) were 21 times that of areas with 
rainfall below monthly rainfall (OR = 21.73, 95% CI; 
5.755-141.32). Irrigation area had 1.52 times the odds 
of having monthly outbreaks of malaria compare to 
areas had not irrigation (OR = 1.52, 95% CI; 1.16-2.42) 
(Table 2).

The results of model lag1 showed that the one month 
lagged effects on malaria outbreak has association with 
variables includes sunshine and rainfall. The odds of 
having areas with rain full above the mean (≥ 98.178) 
were one time that of areas with rainfall below monthly 
rainfall (OR = 1.067, (1.445-5.850)) (Table 2).

The results of model lag 2 demonstrated that the 
lagged effects on malaria outbreak after two months 
later have association with rainfall. Areas that had 
sunshine exposer above the mean (≥ 7.167) had two-
fold higher odds of having monthly out breaks of 
malaria (OR = 2.88, (0.190-0.628)) compared to areas 
with sunshine with above the mean (≥ 7.167) (Table 2).

Areas that had sunshine exposer above the mean (≥ 
7.167) had seven-fold higher odds of having monthly out 
breaks of malaria (OR = 4.10, (1.7106, 9.791)) compared 
to areas with sunshine with above the mean (≥ 7.167). 
The odds of having in areas with rain full above the 

Table 2: Malaria outbreak forecast models in, Amhara region, Ethiopia, 2022.

Models Variable Β 95% CI 2 Log likelihood

Model 1 

Irrigation area            -1.092 1.161-2.42 -2262.439

Minimum temperature (°C)    -0.041 0.956-0.997  

 Rainfall (mm)     2.913 2.913-5.755 141.326

Sunshine    1.467 1.711-9.791  

Model Lag 1 
Rainfall (mm) 1.067 1.445-5.85 -2325.497

 Sunshine -1.067 0.19-0.628  

Model Lag 2 Rainfall (mm) 1.058 1.423-5.837 -2342.813

Model 2

Minimum temperature (°C) -0.041 0.934-0.983  

Rainfall (mm) 2.913 4.189-141.326  

 Sunshine 1.467 1.776-10.582  

https://doi.org/10.23937/2474-3658/1510327
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Figure 1: ROC_AUC of original risk prediction model for malaria outbreak among reported malaria cases at specified 
districts, Amhara region, Ethiopia, 2022.

         

Figure 2: Calibration plot of the risk prediction model for malaria outbreak among malaria cases at specified districts, 
Amhara region, Ethiopia, 2022.
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lag 2 and current data with seasonal decomposition 
on irrigation (present), rainfall above the mean(> = 
98.178), sunshine above the mean (> = 7.167), minimum 
temperature on outbreaks of malaria within the study 
period at 34 districts/stations in Amhara region. Model 
1 with irrigation (present), rainfall (> = 98.178), sunshine 
(> = 7.167), and minimum temperature after adjustment 
of seasonal factors had best predictive effect. This study 
identified outbreaks of malaria associated with climatic 
factors, such as temperature, rainfall and sunshine and 
also geographical factors such as irrigation in Amhara 
region.

Malaria outbreaks appeared to be forecasted using 
the current climatic data, with specificity and sensitivity 
(SE: 99.12%, SP: 3.715%) even after adjustment for 
seasonality during January, 2016-December, 2021 in 
Amhara region. This is similar with a malaria forecasting 
model based on monthly case reports and climate 
variables in a result finding in Hefei, China [6]. This 
study provides evidence to support the meteorology 
and irrigation-malaria relationship and to determine the 
validity of meteorological and geographical conditions 
such as irrigation to create a general forecasting model 
of malaria outbreak.

Malaria outbreak was affected by sunshine, 
minimum temperature, rainfall and irrigation in this 

package”, and “remotes package” to evaluate the 
use of the prediction model across range of threshold 
probabilities, hence to assess clinical “net benefit” 
for the prediction model in comparison to default 
strategies. The model has the better net benefit across 
the entire range of threshold probabilities (Figure 3).

This model showed that predicting malaria outbreak 
at districts in the region for preparedness and provides 
intervention is better than giving intervention without 
using this model. Therefore, management decisions 
made using the model would provide a better net 
benefit to malaria outbreak. Generally, decisions made 
based on this model would have higher public health 
importance.

Discussion
In this study, current climate data was better to 

forecast monthly outbreaks of malaria. Sunshine, 
minimum temperature, rainfall and irrigation were 
optimal combinations to forecast malaria outbreak. The 
result of this finding is similar with a malaria forecasting 
model based on monthly case reports and climate 
variables conducted in Hefei, China [6]. This similarity 
may be due to the nature of data that we incorporate 
in the model.

This study simulated the effects of current lag 1, 

         

Figure 3: A decision curve plotting net benefit of the model against threshold probability of malaria outbreak among malaria 
cases at specified districts, Amhara region, Ethiopia, 2022.
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The gap in the specificity may be from differences in the 
predictors included in the model. The second reason 
maybe climate difference. Thirdly, the difference may 
be geographical difference between the countries.

In this study, minimum temperature, sunshine and 
rainfall above the mean and presence of irrigation were 
significantly associated with malarial outbreak in the 
study area. Whereas the finding was different from 
study done at Boricha District in the Simada regional 
state of Ethiopia [27]. The difference in study result 
might be due to meteorological station area coverage 
and recording difference in between the two areas and 
it needs further investigation.

The forecasting model developed in Ghana 
indicated that mean minimum and maximum monthly 
temperatures lagged at three months were significant 
interpreter of malaria incidence while rainfall was not 
[28]. This difference might be related to climatic and 
geographical difference of Ghana and Ethiopia.

Strength and Limitation of the Study
 ¾ Forecasting model was constructed using easily 

obtainable climatic variables such as temperature, 
rainfall, sunshine and geographical variables like 
irrigation.

 ¾ Metrological data is not restricted to selected 
districts rather it across roads and highways.

Migration and irrigation data were had information 
only in nine development corridors rather than specific 
registered number in the region

Conclusions
The incidence of monthly malaria outbreak was 

18.62% in study period. A combination of predictors; 
sunshine, minimum temperature, rainfall and irrigation 
were important forecasting for malaria outbreak. 
Prediction model had poor discrimination power, not 
internally valid, but calibrated.

Recommendations
The recommendation would be the following.

For Researchers
 ¾ To conduct studies by using onsite recorded 

climatic data, irrigation distance related to 
malaria area, migrants related to its origin and 
other climatic related factors.

For Amhara Public health institute and other 
health agencies 

 ¾ To apply the forecast model for forecasting 
monthly outbreaks of malaria

 ¾ To apply the forecast model in the malaria 
epidemic preparedness and response

study. However, study done in China showed that, 
relative humidity, sunshine, and barometric pressure 
were significantly associated with malaria outbreaks 
after adjustment for seasonality [6]. This difference may 
be due to data that we incorporate in the model was 
collected from the station sites that was constructed 
across the road highway rather than malaria areas 
and also may be the difference of climatic condition 
between countries.

In this study, rainfall and temperature were 
significantly associated with malaria transmission. A 
study by Midekisa, et al. showed that rainfall rather 
than temperature is the most important predictor of 
malaria transmission in Africa [21,22]. However, a study 
conducted in Nigeria indicates that the association 
between malaria and temperature varied even in a 
country [23]. The discrepancy may be geographical 
difference and different drivers for malaria transmission 
in different ecological areas.

Sensitivity of the current model was in line with a 
study done on malaria early detection algorism in 
Amhara region by Nekorchuk, et al. (sensitivity = 80%-
100%) [24]. The possible explanation for this similarity 
may be die to similarities in the study setting, climatic 
and geographic factors.

Sensitivity of the current model was higher than 
a study in East Africa [11] and in China [6]. Possible 
explanation may be due to differences in the prevalence 
of disease. It may also be from differences of predictors 
included in the study. Moreover, the model had high 
sensitivity (99.12%) it is less likely to predict false 
negative monthly outbreaks of malaria.

Specificity and positive predictive power of this 
model was lower than a malaria epidemic prediction 
models in East Africa by Githeko AK, Ogallo L, Lemnge 
M, Okia M, Ototo EN. using temperature and rainfall 
that had 75%, specificity of 99% and positive predictive 
power of 86% [25] and in Madagascar [26]. The reason 
may be from difference in data used for analysis in 
which a model Githeko AK, Ogallo L, Lemnge M, Okia 
M, Ototo EN., used malaria data only from hospitals 
(confirmed inpatient malaria data). Furthermore, the 
gap may be from differences in the quality of malaria 
and meteorological data (temperature and rainfall was 
collected from meteorological stations closest to the 
source of the malaria data) in the East African study. The 
other possible explanation may be the higher sensitivity 
of the current model that may decrease its specificity.

The specificity of the present model was lower 
than a furcating model done using Relative humidity 
sunshine and barometric pressure in an empirical model 
developed by Zhai JX, et al. in Hefei, China, 1990-2011 
with a sensitivity of 70.52% and specificity of 70.30% 
[6]. Therefore, the present model will be more likely to 
forecast false negative monthly outbreaks of malaria. 
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