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Abstract
Background: Disease-modifying treatments for Alzheimer’s disease 
(AD) are currently unavailable and are the focus of an intensive research 
effort. We found vitamin B3, nicotinamide (NA), to significantly reduce 
pathology and improve behavior in AD transgenic mice. These results 
led us to conduct a double-blind, placebo-controlled randomized 
clinical trial of NA in mild to moderate AD.

Methods: Following randomization, subjects received either NA 
(n = 15, 1500 mg twice daily) or placebo (n = 16) for 24 weeks. 
A battery of outcome measures were obtained at baseline and 6- 
week intervals and included the AD Assessment Scale-Cognitive 
Subscale, Clinician’s Interview-Based Impression of Change Plus 
Caregiver Input, AD Cooperative Study-Activities of Daily Living 
Scale, and Clinical Dementia Rating Scale.

Results: There were no significant effects of NA on the primary or 
secondary endpoints. A mild effect of low compliance was observed 
on word recall and command tasks. There were no differences in 
adverse events experienced by NA- and placebo-treated groups.

Conclusions: This study failed to demonstrate that extended-
release NA, or vitamin B3, improves cognitive function in subjects 
with mild to moderate AD over 24 weeks. The lack of efficacy of 
NA may have been due to several contributing factors including 
a low sample size, inclusion of subjects with moderate AD, and a 
relatively short treatment phase. The results also show that high 
dose NA is relatively safe in elderly subjects with AD. With the 
current emphasis on the early diagnosis and treatment of AD, a 
longer duration of treatment with NA in subjects with preclinical AD 
and/or mild cognitive impairment (MCI) may be warranted.
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amyloid and hyperphosphorylated tau into amyloid plaques and 
neurofibrillary tangles, respectively [1]. Over the years these major 
pathological features of AD have become the primary therapeutic 
targets of drug development strategies. One group of drugs that has 
generated enormous interest for the potential treatment of AD is 
naturally-occurring compounds or nutraceuticals, which includes 
vitamins and other nutritional supplements [2]. In particular, 
supplementation with vitamin E and B vitamins, i.e., thiamine, folic 
acid, B6, and B12, has recently been explored in AD clinical trials. The 
results of studies with vitamins and other nutraceuticals have thus far 
been modest [2,3].

Nicotinamide (NA) or niacinamide, is the water soluble amide 
form of niacin (vitamin B3) [4]. NA is a key component of nicotin-
amide adenine dinucleotide (NAD), a co-enzyme involved in many 
cellular oxidation-reduction reactions [4]. In addition to its role as 
a co-factor, NA has been shown to act as a free radical scavenger, 
and modulator of both immune cell function and apoptosis [4]. 
Importantly, NA is an inhibitor of the class III histone deacetylases 
(HDACs), or sirtuins [4,5]. Sirtuins, particularly Sirt1, are involved in 
many key cellular functions and have been implicated in aging [6,7]. 
NA was first isolated in 1935 and has been employed in clinical trials 
for a variety of disorders over the last four decades [8-10]. Studies 
have shown that NA is relatively safe at doses of up to several grams 
per day [10]. The pharmacokinetics of NA depends on dose, species, 
gender, and route of administration [11]. NA is readily absorbed 
from the gastrointestinal tract [12]. Peak serum concentrations are 
reached in humans within one hour of oral ingestion of standard 
preparations [13].

In AD triple transgenic mice, NA selectively decreased the 
accumulation of phosphorylated tau in vulnerable brain regions 
and significantly improved cognitive decline, without affecting 
the accumulation of beta-amyloid [14]. In this study, NA caused a 
marked increase in the levels of acetylated α-tubulin and microtubule-
associated protein 2c (MAP2c), both of which promote microtubule 
stabilization. The effects of NA on tau pathology were also reproduced 
by genetic reduction of Sirt1 levels [14]. Given the finding of selective 

Introduction
Alzheimer’s disease (AD) is the leading cause of age-related 

dementia in the elderly [1]. Progressive cognitive decline due to AD 
is associated with the accumulation, in selected brain regions, of beta-
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targeting of tau pathology in an animal model of AD and the benign 
safety profile of NA in non-AD clinical trials, we performed a 
randomized double-blind placebo-controlled study to test the safety 
and efficacy of NA in subjects with mild to moderate AD.

Materials and Methods
The study was conducted in compliance with guidelines on human 

experimentation under protocols approved by the Institutional 
Review Boards of the University of California, Irvine, School of 
Medicine and the VA Long Beach Healthcare System (VALBHS). 
Subjects were recruited through the UC Irvine Alzheimer’s Disease 
Research Center (ADRC) and the outpatient Neurology clinics of the 
VALBHS. Inclusion criteria for the study included a minimum age of 
50 years, a diagnosis of mild to moderate dementia based on a Mini-
Mental State Examination [MMSE] score between 13 and 25, brain 
imaging (computed tomographic scan or magnetic resonance image) 
consistent with a diagnosis of probable AD based on published 
criteria [15], Hachinski Ischemic Score < 4, maintenance of stable 
dosing of cholinesterase inhibitors (ChEIs) and/or memantine for at 
least 30 days, and a caregiver/relative available who could assist with 
supplement administration and accompany the subject to all study 
visits. Subjects were excluded from the study if they were diagnosed 
with dementia due to another cause, had other neurological or 
psychiatric diseases including pseudodementia, an unstable medical 
condition, a history of alcoholism, drug abuse, liver disease or peptic 
ulcer disease, started a ChEI, memantine or any investigational drug 
within 30 days of screening, were taking a supplement containing 
NA, were pregnant or had the potential to become pregnant.

This was a randomized, double-blind, placebo-controlled study. 
Following informed consent, a screening evaluation was performed 
that included measurement of vital signs, physical and neurological 
examinations, MMSE-score, and a blood draw for complete blood 
count (CBC), serum electrolytes and liver function tests (LFTs). 
Within 1-2 weeks following screening subjects that met the inclusion 
criteria were randomly assigned to receive either extended release 

Nicotinamide [NA] (Endur-amide [Niacinamide, vitamin B3] 1500 
mg orally twice a day (Endurance Products Company, Tigard, OR), 
or a placebo identical in size, shape and color to NA, for 24 weeks. 
A one-to-one randomization scheme generated via a computerized 
random number generator was used to assign participants to either 
the treatment or placebo group. Preparations were dispensed in 
numerically coded bottles. The allocation sequence was concealed 
from participants and all members of the research team for the 
entire duration of the study. The dose of NA was equivalent to that 
used in other clinical trials and approximated the dose used in our 
pre-clinical study. A baseline evaluation included completion of 
the cognitive subscale of the Alzheimer’s disease Assessment Scale 
(ADAS-cog), Clinician’s Interview-Based Impression of Change 
Plus Caregiver Input (CIBIC-Plus), Alzheimer’s Disease Cooperative 
Study-Activities of Daily Living Scale (ADCS-ADL), and Clinical 
Dementia Rating Scale (CDR). An early safety visit was conducted at 
week 4 to check LFTs, serum electrolytes and CBC. The ADAS-cog, 
CIBIC-Plus, ADCS-ADL and CDR were again completed at weeks 
6, 12, 18 and 24. At week 24 vital signs, physical and neurological 
examinations, and MMSE were also completed. Standard pill counts, 
study drug compliance and adverse events were recorded at each visit.

The primary outcome measure for the trial was total performance 
on the ADAS-cog. Secondary outcome measures included perfor-
mance on the CIBIC-Plus, ADCS-ADL and CDR. To address the a 
priori hypothesis that use of NA would improve mean cognitive func-
tion in subjects with mild to moderate Alzheimer’s disease, the prima-
ry analysis tested the effect of treatment on the mean 24-week change 
from baseline in ADAS-cog. An analysis of covariance (ANCOVA) 
was used to estimate treatment effects on within-subject change in 
mean ADAS-cog score over 24 weeks [16]. Specifically, the 24-week 
ADAS-cog score was regressed on an indicator of treatment and base-
line ADAS-cog. In this case, a test of the coefficient for the treatment 
indicator equaling zero is equivalent to a test of the treatment effect. 
All secondary endpoints were analyzed using this approach. Holm’s 
method was used for significance testing of secondary endpoints to 

         

Nicotinamide trial flow diagram
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Figure 1: Nicotinamide trial flow diagram.
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ethnicity, education, weight, height, MMSE score and body mass index 
(BMI). Fifty-six percent of subjects in the treatment group were male, 
compared to 80% randomized to placebo. Average baseline MMSE-
score was 22 points in both groups. From pill counts, mean treatment 
compliance throughout the study was 72% in both the treatment and 
control groups.

We first examined whether there was any significant change in 
cognitive function within each group over the course of the treatment 
period. The estimated mean within-subject change in the primary 
endpoint, ADAS-cog, from baseline to week 24 in the placebo group 
was -0.067 points (estimate = -0.067, 95% CI -2.78, 2.64, p-value = 
0.96). In the group that received NA, the mean within-subject change 
from baseline to week 24 was -0.42 points (estimate = -0.41, 95% CI 
-2.72, 1.89, p-value = 0.70).

The results for the primary and secondary endpoints between 
treatment groups are presented in the forest plots in Figure 2 
and Figure 3, respectively. These figures show the estimated mean 

adjust p-values for multiple comparisons [17]. Adverse events were 
described qualitatively. The trial was designed to attain 80% power 
when the true mean difference between treatment and control was 
one standard deviation. The planned sample size was for 25 partici-
pants per treatment group. Ultimately, 40 subjects were enrolled and 
31 subjects randomized (Figure 1). Demographic data (continuous 
variables) were analyzed by two sample t-test.

Results
A Consort flow diagram in which the number of subjects enrolled, 

randomized and assessed in the study is shown in Figure 1. Thirty-one 
participants (100%) remained in the study through visits 2, 4 and 5, 
twenty-nine participants (94%) remained through visit 6, and twenty-
eight (90%) through visit 7. Two subjects in each group withdrew from 
the study due to progression of illness or moving out of the area. The 
demographic characteristics of the study population are presented in 
Table 1. The average age of the study participants was 79 years in both 
groups. As shown in Table 1, the groups were comparable with respect to 

Table 1: Baseline characteristics of the subjects by treatment. Continuous variables are reported as mean ± standard deviation, and categorical variables are reported 
as counts and proportions.

Variable NA (n = 16) Placebo (n = 15) p value
Age (yr) 79.75 ± 6.88 79.00 ± 8.40 0.79

Gender
Male 9 (56%) 12 (80%)
Female 7 (44%) 3 (20%)

Race or Ethnicity (no.)
White 12 (75%) 13 (87%)
Black or african heritage 3 (19%) 0 (0%)
Asian 0 (0%) 0 (0%)
Native american 0 (0%) 0 (0%)
Pacific islander 0 (0%) 0 (0%)
Other 0 (0%) 2 (13%)
Unknown 1 (6%) 0 (0%)

Education (no.)
Completion of college or university 8 (50%) 8 (53%)
Some college or university 5 (31%) 3 (20%)
Completion of secondary school 3 (19%) 2 (13%)
Some secondary school 0 (0%) 2 (13%)

Weight (lbs) 159.72 ± 40.44 177.71 ± 20.97 0.13
Height (cm) 169.19 ± 11.71 170.43 ± 7.26 0.73

22.06 ± 3.17 21.27 ± 3.65 0.52
BMI 27.75 ± 3.69 25.79 ± 4.26 0.19

         

Forest Plot for ADAS-Cog Endpoints: Treatment versus Control

Endpoint Estimated Diff 95% CI P-Value n
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Figure 2:   Forest plots for treatment comparisons.
Forest plot of treatment effects on ADAS-Cog endpoints, including estimated mean difference between treatment and control, 95% confidence interval (CI), 
p-values, and number of complete cases (n). P-values and confidence intervals are unadjusted for multiple comparisons. Boxes  plotted  at  mean  treatment  
differences  are  drawn  proportional  to  the standard error. The unadjusted 95% CI for each co-primary endpoint covered zero.
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weeks were not significant; for example, the estimated effect on total 
score for CDR Sum was -0.46 points (95% CI: -1.41, 0.48; p = 0.33).

To investigate the role of compliance on the outcomes of the trial, 
the participants were divided at the median compliance rate (above 72% 
compliant and below 72% compliant). The results shown in Figure 4, 
Figure 5, Figure 6 and Figure 7 report the estimated mean treatment 

difference in each endpoint and corresponding 95% confidence 
intervals (unadjusted for multiple comparisons). No effect of NA 
was observed for the primary or any of the secondary endpoints. 
Specifically, within-subject change in mean ADAS-cog over 24 weeks 
was estimated to be -0.25 points lower in the treatment arm when 
compared to the placebo arm (95% CI: -3.29, 2.78; p = 0.88). Similarly, 
the estimated effects of treatment on all secondary endpoints at 24 

         

Forest Plot for Secondary Endpoints: Treatment versus Control

Endpoint Estimated Diff 95% CI P-Value n
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Figure 3:   Forest plots for treatment comparisons.
Forest plot of treatment effects on secondary endpoints, including estimated mean difference between treatment and control, 95% confidence interval (CI), 
p-values, and number of complete cases (n).   P-values and confidence intervals are unadjusted for multiple comparisons. Boxes  plotted  at  mean  treatment  
differences  are  drawn  proportional  to  the standard error. The unadjusted 95% CI for each secondary endpoint covered zero.

         

Forest Plot for ADAS-Cog Endpoints: Treatment versus Control
High-Compliance Group

Endpoint Estimated Diff 95% CI n

ADAS-Cog TS
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Figure 4: Forest plots for treatment comparisons by compliance (Primary Outcome Measures).
Forest plot of treatment effects on ADAS-Cog endpoints among the high-compliance group, including estimated mean difference between treatment and control, 
95% confidence interval (CI), p-values, and number of complete cases (n). P-values and confidence intervals are unadjusted for multiple comparisons. Boxes 
plotted at mean treatment differences are drawn proportional to the standard error. The red color denotes a confidence interval that excluded zero. The unadjusted 
95% CI for each co-primary endpoint covered zero, with the exception of AC3TS.
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estimated effect was -0.96 (95% CI:-6.44, 4.71; p = 0.74, Figure 5). On 
average, high-versus-low compliance was associated with +1.6 (95% 
CI: -1.66, 4.80) point difference in the 24-week change from baseline 
in ADAS-cog; the difference was not significant (p = 0.34). All 

difference and unadjusted 95% confidence interval for each endpoint. 
For the high compliance group, the estimated effect of treatment on 
mean change in ADAS-cog over 24 weeks was 0.02 (95% CI: -2.95, 
2.99; p = 0.99, Figure 4). Similarly, for the low compliance group, the 

         

Forest Plot for ADAS-Cog Endpoints: Treatment versus Control
Low-Compliance Group

Endpoint Estimated Diff 95% CI n
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Figure 5: Forest plots for treatment comparisons by compliance (Primary Outcome Measures).
Forest plot of treatment effects on ADAS-Cog endpoints among the low-compliance group, including estimated mean difference between treatment and control, 
95% confidence interval (CI), p-values, and number of complete cases (n). P-values and confidence intervals are unadjusted for multiple comparisons. Boxes 
plotted at mean treatment differences are drawn proportional to the standard error. The red color denotes a confidence interval that excluded zero. The unadjusted 
95% CI for each co-primary endpoint covered zero, with the exception of AC1 Trail1 TS and AC2 TS.

         

Forest Plot for Secondary Endpoints: Treatment versus Control
High-Compliance Group

Endpoint Estimated Diff 95% CI n
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Figure 6:  Forest plots for treatment comparisons by compliance (Secondary Outcome Measures).
Forest plot of treatment effects on secondary endpoints among the high-compliance group, including estimated mean difference between treatment and control, 
95% confidence interval (CI), p-values, and number of complete cases (n). P-values and confidence intervals are unadjusted for multiple comparisons. Boxes 
plotted at mean treatment differences are drawn proportional to the standard error. The unadjusted 95% CI for each secondary endpoint covered zero.
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promise in preclinical studies, a comparable level of success in AD 
clinical trials has yet to be achieved [2]. In the present study several 
factors may have contributed to the lack of efficacy of NA. First, the 
proposed sample size (25 in each group) was not attained, and the 
total number of subjects enrolled in each group was likely too low to 
detect a mean difference of one standard deviation. Further, the 24 
week duration of treatment may have precluded the observance of 
any long-term effects of NA. Finally, the inclusion of subjects with 
moderate AD may have also negatively impacted the results. Drawing 
a parallel with our preclinical study, NA did not significantly improve 
cognition in one year old transgenic mice with more advanced AD-
related pathology [14]. Importantly, we conclude that high dose NA 
is relatively safe in elderly subjects with AD. Thus, with the current 
emphasis on the early diagnosis and treatment of AD, it may be 
worthwhile to investigate whether NA may be beneficial in patients 
with preclinical AD and/or MCI.
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unadjusted confidence intervals included zero with two exceptions: 
among low-compliance participants the ADAS-Cog subcomponent 
AC1 Trial1 TS (word recall) was somewhat higher in the treatment 
group, i.e., worse performance, but the AC2 TS subcomponent 
(commands) was slightly lower (Figure 5). The corresponding 
p-values were 0.00001 for AC1 Trial1 TS and 0.0003 for AC2 TS, 
which remained statistically significant after implementing the 
Holm’s adjustment for multiple comparisons. The role of compliance 
was explored in post-hoc comparisons of treatment vs. control 
groups for all secondary endpoints (Figure 6 and Figure 7). There was 
no effect of compliance on secondary outcome measures.

Adverse events in the form of very brief non-threatening visual 
hallucinations or delusions were reported by 4 subjects receiving NA 
and 4 subjects receiving placebo. No adverse event resulted in subject 
withdrawal from the study. At 4 weeks, there were no adverse effects 
of NA on serum electrolytes, CBC or LFTs.

Discussion
The results of this study fail to demonstrate that extended-release 

NA, or vitamin B3, improves cognitive function in subjects with mild 
to moderate AD over 24 weeks. Specifically, the primary outcome 
(ADAS-Cog TS) and secondary outcome measures in subjects taking 
NA were not significantly different from those taking placebo. One of 
the major challenges in clinical research that is particularly relevant to 
Alzheimer’s clinical trials is treatment compliance [18]. In the present 
study the mean compliance rate was 72% for both the treatment 
and control groups. Analyses of low and high compliance groups 
revealed a slight effect of low compliance on the word recall and 
commands subscales of the ADAS-Cog. Although these findings may 
merit follow-up in future research, in the present study compliance 
appeared to play a negligible role in the outcomes of this trial.

In addition to its function as an HDAC inhibitor there are other 
functions of NA that make it an attractive neurotherapeutic [4,5]. 
Accordingly, additional reports showed robust effects of NA in 
animal models of AD as well as other neurodegenerative diseases 
[19-24]. However, while NA and other nutraceuticals have shown 
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Figure 7:   Forest plots for treatment comparisons by compliance (Secondary Outcome Measures).
Forest plot of treatment effects on secondary endpoints among the low-compliance group, including estimated mean difference between treatment and control, 95% 
confidence interval (CI), p-values, and number of complete cases (n). P-values and confidence intervals are unadjusted for multiple comparisons. Boxes plotted at 
mean treatment differences are drawn proportional to the standard error. The unadjusted 95% CI for each secondary endpoint covered zero.
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