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Abstract
Vitamin B12 deficiency is a significant concern among 
patients with end-stage kidney disease (ESKD) undergoing 
dialysis. However, there hasn’t been extensive research 
conducted on this particular patient group. The reported 
incidence rates vary widely, ranging from 20% to 90%, 
reflecting the complexity of its diagnosis. Dialysis patients 
often face multiple nutritional deficiencies, including a 
lack of essential vitamins, due to factors such as dietary 
restrictions, impaired absorption, and nutrient loss during 
dialysis. Diagnosing vitamin B12 deficiency in these patients 
is challenging, and addressing it is crucial to prevent 
complications and improve their overall quality of life. This 
review paper delves into the available body of evidence on 
vitamin B12 deficiency in dialysis patients, examining the 
contributing risk factors, diagnostic challenges, potential 
complications, and available treatment options.
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the duration of dialysis treatment. The prevalence tends 
to increase with the duration of dialysis therapy, making 
long-term dialysis patients more vulnerable to vitamin 
B12 deficiency [1-3]. This prevalence is significantly 
higher when compared to the general population with 
reported figures between 1.5% and 15% [4,5]. Although 
the major site of absorption of vitamin B12 is the terminal 
ileum, the kidneys also play a major role in vitamin B12 
processing through excretion and tubular reabsorption. 
In the initial phases of chronic kidney disease (CKD), 
vitamin B12 deficiency is relatively infrequent. However 
as CKD progresses and noteworthy impairment of 
this function arises, the vulnerability to vitamin B12 
deficiency increases [6,7]. Dialysis patients often 
experience multiple nutritional deficiencies, including 
vitamin deficiencies, due to a variety of factors, including 
restricted diets, poor nutrient absorption, and increased 
nutrient losses during dialysis [2,8,9]. Although it presents 
a diagnostic challenge in this population, identifying and 
addressing vitamin B12 deficiency in dialysis patients may 
play a role in preventing associated complications and 
improving their overall quality of life. This review paper 
explores the intricate aspects of vitamin B12 deficiency 
in dialysis patients, investigating the various risk factors 
that contribute to it, the challenges encountered in 
diagnosis, the potential complications associated with it, 
and the treatment options that are currently available.

Introduction
Vitamin B12 deficiency is a significant concern 

among patients with end-stage kidney disease (ESKD) 
undergoing dialysis, however, it has not been well 
studied. The incidence rates vary among studies, with 
estimates ranging from 20% to 90%, depending on the 
population studied, the diagnostic criteria utilized, and 
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not been validated as gold standard diagnostic tools. 
Measuring serum vitamin B12 levels is often used as a 
first-line screening test, but the sensitivity and specificity 
vary widely across studies [17-19]. Serum B12 levels less 
than 100 pg/mL have been shown to have a specificity 
of 90% for identifying clinically evident deficiency [20]. 
However, It has been demonstrated that low vitamin 
B12 concentrations do not necessarily imply deficiency, 
and levels in the lower half of the reference interval 
do not rule out deficiency [21]. Moreover, vitamin B12 
levels can be falsely normal or high in dialysis patients 
due to the presence of inactive analogues of vitamin 
B12 in the blood [22].

The diagnosis of macrocytic anemia frequently 
prompts a laboratory examination of possible vitamin 
B12 deficiency. When there is clinically obvious vitamin 
B12 insufficiency, macrocytosis (mean corpuscular 
volume [MCV] > 100 fL) usually precedes anemia; less 
commonly neurologic symptoms can occur when both 
values are normal. However, patients can develop 
vitamin B12 deficiency without hematologic changes 
of anemia and macrocytosis [17,23]. Moreover, other 
considerations should be taken into account in ESKD 
patients. There are several other factors that influence 
anemia and MCV in this population such as iron 
deficiency and erythropoietin deficiency. Studies have 
also showed that dialysis patients may have functional 
vitamin B12 deficiency even with normal serum levels 
which is manifested by high methylmalonic acid and 
homocysteine levels due to impaired metabolism [24]. 
Su, et al. [25] investigated the effect of intravenous 
vitamin B12 on dialysis patients with macrocytosis. 
These patients had higher methylmalonic acid levels 
at baseline compared to the controlled group with no 
macrocytosis although both of them had serum vitamin 
B12 levels within the normal range. The macrocytic 
group exhibited a higher and more sustained drop in 
methylmalonic acid after intravenous vitamin B12 but 
no improvement in hemoglobin, reticulocyte count, or 
MCV suggesting functional vitamin B12 deficiency in 
this group.

Neutrophil hypersegmentation is another feature of 
vitamin B12 deficiency that can be used for diagnosis 
and is an early manifestation of megaloblastosis [26]. 
However, it does not appear to be a sensitive indicator 
of mild B12 deficiency in the general population [27]. 
This feature has not been well studied as a diagnostic 
indicator of B12 deficiency in dialysis patients. Saifan, 
et al. [1] is the only study that defined dialysis patients 
with vitamin B12 deficiency as those with high 
methylmalonic acid levels > 800 nmol/L and peripheral 
smear showing characteristic findings of macrocytes or 
hypersegmented neutrophils. 58.25% of patients with 
high methylmalonic acid levels had positive smears. 
This percentage dropped to 31% after treatment with 
intravenous vitamin B12 and re-evaluation of the 
peripheral smears.

Search Strategy
To conduct a comprehensive review, articles were 

gathered from various resources including PubMed, 
Medline, Embase, and Google Scholar using the 
keywords “vitamin B12 deficiency” and “dialysis”. 
Additionally, reference lists of identified articles were 
also screened for potentially relevant studies. The 
search was not limited by publication date, but rather 
focused on capturing a broad spectrum of literature 
to encompass the current understanding and gaps in 
knowledge regarding vitamin B12 deficiency in dialysis 
patients.

Risk Factors
A variety of factors predispose dialysis patients 

to nutritional deficiencies including vitamin b12 
deficiency. First and foremost, dialysis patients are 
frequently advised to adhere to a restricted diet in 
order to manage other aspects of their disease, such as 
fluid and electrolyte balance. These dietary limitations 
could limit their intake of vitamin B12-rich foods 
including meat, fish, and dairy products, increasing their 
risk of deficiency [9,10]. Furthermore, many dialysis 
patients have gastrointestinal problems, commonly 
due to chronic gastritis, which can impede vitamin 
B12 absorption. Malabsorption in these patients is 
exacerbated by decreased production of stomach acid 
and intrinsic factor, both of which are required for B12 
absorption. Some medications commonly prescribed to 
dialysis patients, such as proton pump inhibitors and 
histamine H2 receptor antagonists, can interfere with 
vitamin B12 absorption by increasing stomach pH and 
decreasing intrinsic factor release [11]. Additionally, 
erythropoiesis-stimulating agents used to treat anemia 
in dialysis patients might increase the need for vitamin 
B12, potentially aggravating deficiency if not well 
monitored [12]. Moreover, renal replacement therapies, 
whether hemodialysis or peritoneal dialysis, might result 
in the loss of water-soluble vitamins such as B12. This 
loss is exacerbated by the cumulative effect of repeated 
dialysis treatments and prolonged therapy [13,14]. 
Finally, dialysis patients frequently have concomitant 
comorbidities such as diabetes which can independently 
contribute to vitamin B12 deficiency. Metformin, a 
commonly prescribed medication for the management 
of type 2 diabetes, has been associated with vitamin 
B12 deficiency through several mechanisms, including 
altering stomach acidity and affecting small intestine 
motility [15]. Moreover, diabetic patients can develop 
gastrointestinal dysfunction which can impair absorption 
in the intestines and lead to vitamin deficiencies [16].

Diagnosis
Vitamin B12 deficiency presents a diagnostic dilemma 

in dialysis patients. Vitamin B12, homocysteine, and 
methylmalonic acid levels have not been examined in 
this population as markers of B12 insufficiency and have 
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Another way of looking at vitamin B12 levels is 
through the lens of carrier proteins. Serum B12 is 
bound to two proteins: Haptocorrin (70-90%) and 
holotranscobalamin (10-20%). B12 bound to haptocorrin 
is unavailable for cellular delivery whereas B12 bound 
to holotranscobalamin is available (“active-B12”). One 
study looked at holotranscobalamin against plasma 
cobalamin, methylmalonic acid, and homocysteine and 
found it to have a sensitivity of 1.00 and a specificity 
of 0.89 [37]. Another study was done on 17 patients 
undergoing hemodialysis, whose methylmalonic acid, 
holotranscobalamin, and B12 levels were measured 
at the beginning of the study. They were then given 
B12 injections for 3 months and had their levels 
measured again. The study noted an appropriate and 
statistically significant response in all three markers. 
They concluded that holotranscobalamin can be used as 
a supplementary marker in addition to methylmalonic 
acid to assess the responsiveness of hemodialysis 
patients to vitamin B12 supplementation [38]. However, 
these study designs have been questioned, and there is 
currently no consensus that holotranscobalamin should 
be used instead of standard blood B12 testing [39,40].

Diagnosing vitamin B12 deficiency in dialysis patients 
is challenging and requires careful consideration of 
the clinical context and the use of multiple diagnostic 
methods (Table 1). Serum B12 levels, methylmalonic 
acid, homocysteine, and holotranscobalamin levels are 
useful tools, but their interpretation must be adjusted to 
account for the for the specific challenges presented by 
dialysis patients. More studies are needed to establish 
standardized diagnostic criteria and reference ranges 
adjusted to the challenges faced in dialysis patients.

Complications and Treatment

Anemia
Anemia in general and megaloblastic anemia in 

specific are important and preventable complications 
in ESKD patients and account for high morbidity and 

Other diagnostic markers commonly used are plasma 
homocysteine and methylmalonic acid which have a 
negative correlation to serum B12 levels. Studies have 
shown that serum homocysteine levels have superior 
sensitivity and specificity to serum B12, while high 
methylmalonic acid levels have been found to be the 
most sensitive and specific diagnostic tool in the general 
population [28-30]. However, it is not as straightforward 
in patients with renal insufficiency. Both homocysteine 
and methylmalonic acid are elevated in patients with 
renal insufficiency [31-33]. One study evaluated levels 
of both homocysteine and methylmalonic acid, in 
addition to levels of cystathionine in patients undergoing 
hemodialysis. They noted that renal dysfunction alone 
caused only a modest rise in methylmalonic acid, but 
patients undergoing hemodialysis had markedly elevated 
levels of homocysteine, methylmalonic acid, and 
cystathionine. They also noted that markedly elevated 
homocysteine level was mainly attributable to functional 
vitamin B12 deficiency indicated by high methylmalonic 
acid. They concluded that methylmalonic acid is a more 
sensitive indicator of intracellular vitamin B12 deficiency 
when compared to serum vitamin B12 levels [24]. 
Another study showed that plasma vitamin B12, not 
plasma folate or vitamin B6, was negatively linked with 
plasma homocysteine in hemodialysis patients before 
and after treatment, regardless of dose dialysis or taking 
B-vitamin supplementation. This significant association 
between vitamin B12 and homocysteine appeared to be 
attributable to poor vitamin metabolism and functional 
deficiency rather than insufficient intake or excessive 
loss in dialysate [34]. Similarly, in hemodialysis patients, 
B12 therapy has been shown to reverse low serum B12 
levels as well as high homocysteine and methylmalonic 
acid levels [25,35]. On the contrary, other studies 
demonstrated that elevated methylmalonic acid levels 
is a general finding in uremic patients and is not related 
to vitamin B12 deficiency [36]. In conclusion, there is no 
consensus on the validity of these markers as a diagnostic 
tool in this population.

Table 1: A summary of the different diagnostic methods for vitamin B12 deficiency in end-stage kidney disease patients, their 
utility, and cut-off criteria. 

Diagnostic Method Use in ESKD Cut-off Criteria for Deficiency
Serum Vitamin B12 Level Often used as a first-line screening test

Limited use due to false normal and inactive analogues 
(functional deficiency)

< 200 pg/ml

Levels < 100 pg/ml have 
90% specificity for identifying 
clinically evident deficiency 

Methylmalonic Acid More sensitive in ESKD; elevated due to kidney 
dysfunction 

>  0.4 µmol/L

Homocysteine Elevated in ESKD; affected by B12 and folate status > 15 µmol/L

Holotranscobalamin (Active-B12) Promising but requires more research for ESKD specific 
cut-offs

< 50 µmol/L

Neutrophil Hypersegmentation Rarely used; not sensitive for mild deficiency Presence of  > 5% neutrophils 
with ≥ 5 lobes

Macrocytosis (MCV) May be present but not specific; affected by other 
factors in ESKD

MCV > 100 fL
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paresthesia and numbness that is more in lower than 
upper extremities, may be overlapping with most other 
neuropathies and uremic neuropathy in ESKD patients, 
subacute combined degeneration is more specific to 
b12 deficiency [61]. Subacute combined degenration is 
characterized by ataxic gait, decreased proprioception, 
vibration, fine touch, spastic paraparesis, and may 
also include cognitive decline with MRI demonstrating 
hyperintense lesions of posterior columns [62]. Most 
studies have showed that B12 supplementation 
especially methylcobalamin, improves neuropathic 
symptoms in patients with ESKD [55,63]. Kuwabara, 
et al. [55] investigated the effects of intravenous 
methylcobalamin on neuropathy in patients on 
hemodialysis using neuropathic pain grading and nerve 
conduction study. After 6 months of treatment with 500 
mcg intravenous methylcobalamin injection 3 times a 
week, patients reported reduced neuropathic pain and 
showed significant improvement in nerve conduction 
velocities. Similarly, another study found that parenteral 
vitamin B12 treatment improved nerve conduction 
velocities in dialysis patients with low serum vitamin 
B12 levels and slow nerve conduction velocities [63]. 
On the contrary, some studies suggest that elevated 
cyanide levels from cyanocobalamin supplementation 
and impaired renal clearance may worsen already 
existing uremic neuropathy [64-66].

Resistance to Erythropoiesis-Stimulating Drugs 
(ESA)

Since the US FDA approved recombinant human 
erythropoietin (epoetin alfa) in 1989, epoetin alfa 
and similar agents now known as erythropoietin 
stimulating agents (ESA) have become the standard 
of care for the treatment of erythropoietin-deficient 
anemia, which occurs in the majority of CKD patients 
especially dialysis patients [67,68]. Approximately 
5-10% of patients with chronic renal disease are 
hyporesponsive to ESA, defined as a continuing need 
for more than 300 IU/kg erythropoietin or 1.5 mug/
kg darbepoetin delivered subcutaneously. This type 
of hyporesponsiveness contributes significantly to 
morbidity, death, and the health-care economic 
burden in chronic renal disease, and it poses a serious 
diagnostic and therapeutic challenge. Noncompliance, 
absolute or functional iron shortage, and inflammation 
are the most common reasons of ESA resistance [69]. 
Furthermore, there have been reports of erythropoietin 
resistance caused by vitamin B12 deficiency that was 
reversed following supplementation [12,70]. Zachee, 
et al. [12] reported the first case of resistance to 
human recombinant erythropoietin treatment caused 
by vitamin B12  deficiency in a chronic hemodialysis 
patient. Despite having a normal B12 level before 
erythropoietin treatment, resistant anemia, a low B12 
level, and megaloblastic bone marrow developed after 
only 8 months. Following B12 supplementation, there 

mortality in this population [41-44]. The estimated 
prevalence of vitamin b12 deficiency is high in ESKD 
patients on hemodialysis [1,45]. Studies have shown that 
up to 20% of the patients on dialysis with anemia have 
macrocytic anemia [46,47]. Vitamin B12 is necessary 
for DNA synthesis and its deficiency leads to improper 
DNA maturation, S phase arrest with abnormally 
large nuclei, and other features of megaloblastic 
anemia [18,48]. Vitamin B12 deficiency along with 
the anemic effects from uremic toxins may worsen 
the anemia in hemodialysis patients leading to worse 
outcomes [49]. Su, et al. [25] investigated the effect of 
parenteral vitamin B12 administration in macrocytic 
hemodialysis patients. Vitamin B12 1,000g intravenous 
was administered once weekly for four weeks, with a 
12-week follow-up. Methylmalonic acid level was used 
as an indicator of vitamin B12 status. The effect of B12 
supplementation on MCV and hemoglobin was also 
investigated. Following intravenous vitamin B12, the 
macrocytic group had a greater and more sustained 
reduction in methylmalonic acid  level, however, there 
was no improvement in hemoglobin, reticulocyte 
count or MCV. The decrease in methylmalonic acid 
level suggests functional vitamin B12 deficiency at 
baseline in macrocytic hemodialysis patients, despite 
no significant change in hemoglobin. Similarly, Saifan, et 
al. [1] found no effect of vitamin B12 supplementation 
on hemoglobin levels in deficient dialysis patients 
despite having lower erythropoietin stimulating agent 
requirements. Another study by Minar, et al. [50] showed 
no significant differences in folic acid and vitamin B12 
serum levels between hemodialysis patients with MCV 
greater than 96 fl and those with MCV less than or 
equal to 96 fl. Further research is needed to establish 
the precise pathophysiology of vitamin B12 deficiency 
in hemodialysis patients, as well as its relationship with 
macrocytic anemia and the benefits of supplementation 
on anemia. 

Neuropathy
Neuropathy in hemodialysis patients can be caused 

by a variety of factors, including uremia, vitamin 
deficiencies (B1, B12, etc.), edema, hyperkalemia, and 
others [51,52]. Up to 90% of hemodialysis patients 
suffer from neuropathy symptoms leading to pain, 
loss of sensation, weakness, and sometimes ulceration 
and amputation [53,54]. Studies have also shown 
improvement in uremic neuropathy in dialysis patients 
on treatment with vitamin B12 [55]. B12 deficiency 
leads to demyelination of sensory and motor peripheral 
nerves and central nervous system [56,57]. In B12 
deficiency central nervous system hypomethylation, 
accumulation of methylmalonyl-coA, and impaired 
DNA synthesis with impaired oligodendrocyte growth 
together lead to abnormal myelin production and 
impaired nerve conduction of both sensory and motor 
nerves [57-60]. Although symptoms i.e symmetric 
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there are very few studies that investigated the effect 
of vitamin B12 supplementation alone [35,88]. Further 
prospective and large scale clinical trials accounting for 
potential confounders, baseline levels, and focussed 
on dialysis patients and B12 supplementation will be 
needed to verify the effect of b12 supplementation on 
homocysteine lowering effect and cardiovascular risk 
reduction in this population.

As demonstrated above, vitamin B12 deficiency in 
dialysis patients is associated with a variety of serious 
complications, which emphasizes the importance of 
its prompt recognition and treatment. However, the 
existing body of literature provides limited insights into 
the effects of vitamin B12 supplementation in dialysis 
patients, particularly in terms of reducing the risks 
and treating associated complications such as anemia, 
neuropathy, and erythropoiesis-stimulating agent 
resistance.

Several studies have evaluated the efficacy of vitamin 
B12 supplementation alone and in combination with 
folic acid in dialysis patients. In most of these studies, the 
end goal was the reduction of total homocysteine levels 
in the blood. Homocysteine is metabolized in two ways: 
Remethylation and transsulfuration. Folate and vitamin 
B12 are both essential to homocysteine remethylation, 
whereas pyridoxal 5′-phosphate (PLP, the physiological 
coenzyme form of vitamin B6) works as a coenzyme 
during homocysteine transsulfuration. Because B 
vitamins (folate, vitamins B6 and B12) are required 
for homocysteine metabolism, the loss of B vitamins 
during hemodialysis treatment in these patients may 
raise homocysteine levels [24,89,90]. The effect of folic 
acid supplementation in lowering homocysteine levels 
is well established in the literature even in patients 
without underlying deficiency, however the effect of 
vitamin B12 supplementation alone is less clear [91-
93]. Moreover, most of the studies investigated the 
effect of vitamin B12 on lowering homocysteine levels 
regardless of the presence of an underlying deficiency 
and included patients with normal baseline serum B12 
levels, although as discussed previously, normal serum 
B12 levels cannot exclude deficiency.

Azadibakshsh, et al. [94] found a significant 
reduction in total homocysteine levels (by 30%) with 
high dose oral supplementation of folic acid (15 mg/day) 
combined with vitamin B12 (1 mg/day) in hemodialysis 
patients with a desirable effect on serum folic acid 
and vitamin B12 levels. Elian, et al. [95] compared 
the effect of oral folic acid, pyridoxine and vitamin 
B12 in dialysis patients to a regimen that includes 1 
mg hydroxocobalamin administered subcutaneously 
once per week after dialysis and found that it reduces 
plasma total homocysteine and methylmalonic acid 
dramatically in vitamin B12-replete hemodialysis 
patients, suggesting that patients with considerable 
persisting hyperhomocysteinemia despite high-dose 
folic acid therapy are likely to respond to the addition of 

was a rapid response with increase in reticulocyte 
count and decrease in transfusion requirements. They 
next analyzed measured B12 levels in 30 hemodialysis 
patients who were given human recombinant 
erythropoietin and discovered that the mean B12 levels 
were the same before and after treatment. Although 
the study showed that screening for B12 deficiency 
was ineffective, it still recommended that any patient 
with human recombinant erythropoietin resistance 
should have their B12 levels checked. Similarly, 
Saifan, et al. [1] investigated the effect of vitamin B12 
supplementation in deficient hemodialysis patients on 
erythropoietin dosages and found a significant decrease 
in the mean erythropoietin dose post B12 treatment 
suggesting that maintaining serum vitamin B12 levels 
increases functionality and may allow for a reduction 
in erythropoietin stimulating agent use, avoiding their 
toxicities and expenses. Su, et al. [25], on the other hand, 
found no change in darbepoetin dosages in macrocytic 
hemodialysis patients after intravenous vitamin B12 
supplementation.

Cardiovascular disease burden and mortality from 
increased homocysteine levels

Patients with CKD and ESKD are known to have 
elevated homocysteine levels likely from associated 
impaired renal metabolism i.e. trans-sulfuration or 
re-methylation pathways, clearance, and vitamin 
deficiency [71,72]. Homocysteine is known to induce 
atherogenesis and atherothrombosis from increased 
reactive oxygen species generation due to presence 
of thiol group and increased Nicotinamide Adenine 
Dinucleotide Phosphate (NADPH) oxidase activity. It is 
also believed to induce further endothelial dysfunction 
and stress from abnormal vascular smooth muscle 
proliferation, lipid peroxidation, impaired nitric oxide 
metabolism, and activation of metalloproteinases [73-
77]. Several studies, including some meta-analyses, 
have demonstrated an elevated cardiovascular disease 
risk from high homocysteine levels and its subsequent 
reduction after vitamin B12 supplementation [78,79]. 
The HOST trial (Homocysteinemia in Kidney and 
End Stage Renal Disease), which included 2056 
patients with advanced CKD and ESRD, found that 
vitamin supplementation (including B12) may lower 
homocysteine levels but did not show a cardiovascular 
or mortality benefit. However, the lack of adherence and 
the inclusion of CKD and ESRD patients in the same group 
are some of the trial’s limitations [80]. Certain studies 
have also shown no or inverse relationship between 
homocysteine levels, cardiovascular risk, and the 
lowering effect of vitamin B12 supplementation [81-84]. 
There is conflicting data associating homocysteine to an 
increased risk of cardiovascular disease in patients with 
kidney disease. MTHFR gene variation may contribute 
to the mixed cardiovascular risk reported in ESRD 
patients with increased homocysteine and its reduction 
by B12, folate, and B6 therapy [85-87]. Moreover, 
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Dierks, et al. [108] is the only study that investigated 
the effect of vitamin B12 supplementation in dialysis 
patients with low serum cobalamin levels (< 180 
pmol/L). Prior to supplementation, all patients had high 
levels of plasma total homocysteine, methylmalonic 
acid, and cystathionine. Plasma total homocysteine 
and methylmalonic acid levels were reduced by 35% 
and 48%, respectively after supplementation with 
intravenous injection of cyanocobalamin (1 mg/wk 
for 4 weeks); however, cystathionine levels remained 
unaltered.

As seen above, the design, dosage of supplements, 
method of application, and status of other supplements 
and therapies varied among all studies, making the 
ultimate conclusion and recommendations unclear 
(Table 2). Furthermore, the vitamin B12 status of the 
patients studied has not been precisely determined. 
Despite the fact that almost all studies included 
patients with normal baseline serum B12 levels and 
high homocysteine and methylmalonic acid levels, it is 
unclear whether these patients had underlying vitamin 
B12 deficiency because, as previously discussed, there 
are no clear guidelines for diagnosing vitamin B12 
deficiency in this population even with normal serum 
levels. What can be concluded from existing data is that 
the maximum effect of B12 supplementation in ESKD 
patients on dialysis is yielded by injection, rather than 
oral intake and it’s evident by reducing homocysteine 
levels and increasing serum B12 levels. Furthermore, 
the administration of pharmacologic dosage of B12 
in combination with folate makes it more efficient. 
Conducting future studies with randomized controlled 
design, sufficient sample size and on patients with 
underlying vitamin B12 deficiency defined based on 
specific criteria is highly recommended to clarify the 
effect of B12 supplementation in deficient patients.

An essential consideration in the administration of 
intravenous vitamin B12 supplementation, especially in 
high doses before dialysis, is its potential to trigger a false 
blood leak alarm during dialysis. Hemodialysis occurs 
through diffusion across a semi-permeable membrane, 
which separates the patient’s blood from the dialysate. 
When this membrane is disrupted, blood can enter the 
dialysate resulting in significant blood loss. To avoid this 
complication, dialysis machines are equipped with a 
blood-leak sensor which shuts down the hemodialysis 
machine when activated. Intravenous vitamin B12 
causes reddish discoloration of the dialysate leading 
to pseudo-activation of the blood leak alarm [109]. 
Several case reports show that patients who received 
intravenous vitamin B12 prior to dialysis sessions for 
different reasons encountered similar complications 
[109-112]. These occurrences highlight the importance 
of delivering intravenous vitamin B12 supplements after 
dialysis sessions to prevent false alarms and maintain 
patient safety.

hydroxocobalamin, irrespective of their serum vitamin 
B12 levels. Other studies showed similar effects of the 
addition of parenteral 1 mg hydroxocobalamin to oral 
folic acid supplementation on lowering homocysteine 
and methylmalonic acid levels and increasing serum B12 
levels below the levels attainable by folic acid alone [96]. 
Vrentzos, et al. [97] investigated the effect of adding oral 
versus intravenous B12 to folic acid in dialysis patients. 
They found out that, patients receiving intravenous 
treatment had significantly lower total homocysteine 
levels compared to those on oral treatment and that 
the levels increased significantly when intravenous 
treatment was switched to oral treatment.

Chiu, et al. [98] demonstrated that an intravenous 
pharmacologic dose of Vitamin B12 alone is as effective 
as an intravenous low-dose folic acid in treating 
hyperhomocysteinemia in chronic hemodialysis 
patients, and that combining both drugs in low doses 
may have synergistic effects. Koyama, et al. [99] showed 
similar results with similar efficacy of oral folic acid and 
intravenous methylcobalamin post each dialysis in 
reducing homocysteine levels, and a greater effect of 
their combination. Kaplan, et al. [100] is another study 
that investigated the effect of parenteral vitamin B12 
alone in dialysis patients and found it to be effective in 
lowering homocysteine levels and rising serum B12 levels 
even though all patients had a normal serum B12 at the 
beginning of the study. On the contrary, previous studies 
suggested that pharmacologic dose of vitamin B12 would 
work effectively only under folic acid supplementation 
[101-103], and other studies showed no effect of the 
addition of vitamin B12 supplementation to folic acid 
on homocysteine levels [3,104]. Similarly, Arnadottir, 
et al. [105] and Polkinghorne, et al. [88] found that 
oral and intramuscular vitamin B12 supplementation 
respectively had no effect on homocysteine levels in 
dialysis patients, despite increasing blood levels.

Hoffer, et al. [106] went further to try to investigate 
the optimal dosing interval of parenteral vitamin 
B12. They conducted a RCT to compare the plasma 
homocysteine lowering effects of three intravenous 
cyanocobalamin dosage regimens in patients on 
maintenance hemodialysis: 1 mg post-dialysis every 
28, 14, and 7 days in addition to routine oral vitamin 
B supplementation. Results showed that intravenous 
cyanocobalamin at 7- or 14-day intervals had similar 
effect on the reduction of plasma total homocysteine 
concentrations of hemodialysis patients below the levels 
brought about by prior long-term administration every 
4 weeks, with the 7-day regimen having the greatest 
effect on rising serum B12 levels. In another study, they 
also investigated the effect of different formulations 
of vitamin B12. They found that intravenous 
hydroxocobalamin caused a 30-fold higher increase in 
serum B12 levels when compared to an equivalent dose 
of intravenous cyanocobalamin, although both had a 
similar effect on reducing homocysteine levels [107].
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Study Endpoint Treatment Results 
Azadibakshsh, et al. [94] Effect of high dose oral folic 

acid and vitamin B12 on 
homocysteine levels 

High dose oral folic acid (15 mg/
day) + vitamin B12 (1 mg/day)

Significant reduction in total 
homocysteine  levels by 30% 
with a desirable effect on serum 
folic acid and vitamin B12 levels 

Elian, et al. [95] Effect of hydroxocobalamin 
on plasma total 
homocysteine and 
methylmalonic acid levels

1 mg hydroxocobalamin 
subcutaneously per week after 
hemodialysis 
vs .
standard treatment (oral folic acid 
+ pyridoxine + vitamin B12)

32% reduction in plasma 
total homocysteine and 19% 
reduction in methylmalonic acid 
levels 

Vrentzos, et al. [97] Effect of oral vs. intravenous 
vitamin B12 with oral folic 
acid on homocysteine levels

Oral folic acid (1 mg/day) + oral 
vitamin B12 (600 mcg) 
vs.
Oral folic acid (1 mg/day) + 1 mg 
intravenous vitamin B12 

Significant reduction in 
total homocysteine levels 
with intravenous treatment 
compared to oral treatment

Chiu, et al. [98] Effect of intravenous vitamin 
B12 alone vs. intravenous 
low-dose folic acid alone 
vs. combination of both on 
homocysteine levels 

1 mg Intravenous vitamin B12 
weekly after hemodialysis
vs.
3mg intravenous folic acid weekly
 vs.
combination of both 

Intravenous vitamin B12 alone 
is as effective as intravenous 
low-dose folic acid in lowering 
homocysteine levels with the 
combination of both having a 
greater effect

Koyama, et al. [99] Effect of high dose oral 
folic acid vs intravenous 
methylcobalamin vs 
combination of both on 
homocysteine levels

High dose oral folic acid (15 mg/
day) 
vs.
500 mg intravenous 
methylcobalamin after each 
hemodialysis 
vs.
Combination of both 

Similar efficacy of both 
treatments in reducing 
homocysteine levels, with 
greater effect in combination

Kaplan, et al. [100] Effect of parenteral vitamin 
B12 alone on homocysteine 
levels

Three parenteral injections of 1 
mg vitamin B12 given at 4-week 
intervals

Significant reduction in  
homocysteine levels and 
increase in serum B12 levels

Arnadottir, et al. [105] Effect of oral vitamin B12 
on homocysteine levels and 
vitamin B12 levels 

2 mg oral vitamin B12 3 times a 
week (after each dialysis session) 
for 6 weeks 
vs.
No treatment 

Significant increase in serum 
vitamin B12 levels in treated 
group with no significant 
reduction in homocysteine 
levels compared to control 
group

Polkinghorne, et al. [88] Effect of intramuscular  
vitamin B12 on homocysteine 
levels and vitamin B12 levels

1 mg intramuscular vitamin B12 
monthly for 3 months 
vs.
1 ml saline placebo injection

Significant increase in serum 
vitamin B12 levels in treated 
group with no significant 
reduction in homocysteine 
levels compared to placebo 
group

Hoffer, et al. [106] Comparison of different 
intravenous cyanocobalamin 
dosage regimens on plasma 
homocysteine 

1 mg Intravenous cyanocobalamin 
post-dialysis every 28, 14, and 7 
days + routine oral vitamin B

7- or 14-day intervals had 
a similar effect on reducing 
homocysteine concentrations, 
with 7-day regimen increasing 
serum B12 the most

Hoffer, et al. [107] Effect of different 
formulations of vitamin B12 
on serum homocysteine and 
vitamin B12 levels 

1 mg intravenous 
hydroxocobalamin weekly 
for 8 weeks followed by 
cyanocobalamin for 8 weeks 
vs.
1 mg intravenous cyanocobalamin 
weekly for 8 weeks followed by 
hydroxocobalamin for 8 weeks

Hydroxocobalamin 
increased serum vitamin 
B12 concentrations 40-fold 
compared to cyanocobalamin 
which   increased them only 
10-fold, but both treatments 
reduced plasma homocysteine  
concentrations similarly by 33%

Dierks, et al. [108] Effect of vitamin B12 in 
patients with low baseline 
serum levels (< 180 pmol/L) 
on homocysteine and 
methylmalonic acid levels

1 mg intravenous cyanocobalamin 
weekly for 4 weeks

Reduction in plasma 
total homocysteine and 
methylmalonic acid levels by 
35% and 48%, respectively

Table 2: This table summarizes the studies on vitamin B12 supplementation in dialysis patients. It provides a comparison of the 
different treatment modalities and their effect on homocysteine, methylmalonic acid, and vitamin B12 levels.
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4.	 Brito A, Mujica-Coopman MF, López de Romaña D, Cori 
H, Allen LH (2015) Folate and Vitamin B12 Status in Latin 
America and the Caribbean: An Update. Food Nutr Bull 36: 
S109-S118.

5.	 Clarke R, Evans JG, Schneede J, Nexo E, Bates C, et al. 
(2004) Vitamin B12 and folate deficiency in later life. Age 
Ageing 33: 34-41.

6.	 Hazin H, Neelakantappa K, Ramasahayam L, Abdel-
Maksoud A, Fogel J, et al. (2008) Vitamin B12 handling by 
the kidney, a major site of b12 traffic: Normal and abnormal 
physiology. Blood 112: 1855.

7.	 Birn H (2006) The kidney in vitamin B 12 and folate 
homeostasis: Characterization of receptors for tubular 
uptake of vitamins and carrier proteins. Am J Physiol-Ren 
Physiol 291: F22-F36.

8.	 Shaikh H, Hashmi MF, Aeddula NR (2023) Anemia of 
chronic renal disease.

9.	 Khoueiry G, Waked A, Goldman M, El-Charabaty E, Dunne 
E, et al. (2011) Dietary intake in hemodialysis patients does 
not reflect a heart healthy diet. J Ren Nutr 21: 438-447.

10.	Crews DC, Kuczmarski MF, Miller ER, Zonderman AB, 
Evans MK, et al. (2015) Dietary habits, poverty, and chronic 
kidney disease in an urban population. J Ren Nutr 25: 103-
110.

11.	Miller JW (2018) Proton pump inhibitors, H2-receptor 
antagonists, metformin, and vitamin B-12 Deficiency: 
Clinical implications. Adv Nutr 9: 511S-518S.

12.	Zachee P, Chew SL, Daelemans R, Lins RL (1992) 
Erythropoietin resistance due to vitamin B12 deficiency. 
Case report and retrospective analysis of B12 levels after 
erythropoietin treatment. Am J Nephrol 12: 188-191.

13.	Jankowska M, Lichodziejewska-Niemierko M, Rutkowski 
B, Dębska-Ślizień A, Małgorzewicz S (2017) Water soluble 
vitamins and peritoneal dialysis - State of the art. Clin Nutr 
36: 1483-1489.

14.	Heinz J, Domröse U, Westphal S, Luley C, Neumann 
KH, et al. (2008) Washout of water-soluble vitamins and 
of homocysteine during haemodialysis: effect of high-flux 
and low-flux dialyser membranes. Nephrology (Carlton) 13: 
384-389.

15.	Sayedali E, Yalin AE, Yalin S (2023) Association between 
metformin and vitamin B12 deficiency in patients with type 
2 diabetes. World J Diabetes 14: 585-593.

16.	Ahmed SS, El-Hafez HAA, Mohsen M, El-Baiomy AA, 
Elkhamisy ET, et al. (2023) Is vitamin B12 deficiency a risk 
factor for gastroparesis in patients with type 2 diabetes? 
Diabetol Metab Syndr 15: 33.

17.	Berg RL, Shaw GR (2013) Laboratory evaluation for vitamin 
B12 deficiency: The case for cascade testing. Clin Med Res 
11: 7-15.

18.	Green R (2017) Vitamin B12 deficiency from the perspective 
of a practicing hematologist. Blood 129: 2603-2611.

19.	Campos AJ, Risch L, Nydegger U, Wiesner J, Van Dyck MV, 
et al. (2020) Diagnostic accuracy of Holotranscobalamin, 
Vitamin B12, methylmalonic acid, and homocysteine 
in detecting B12 deficiency in a large, mixed patient 
population. Dis Markers 2020: 7468506.

20.	Snow CF (1999) Laboratory diagnosis of vitamin B12 and 
folate deficiency: A guide for the primary care physician. 
Arch Intern Med 159: 1289-1298.

21.	Rasmussen K, Pedersen KO, Mortensen ES, Mølby L, 

Conclusion
In conclusion, vitamin B12 deficiency in dialysis 

patients is a multifaceted challenge with wide-ranging 
implications for their health and quality of life. Diagnosis 
remains a diagnostic dilemma, with conventional 
markers showing limited sensitivity and specificity. 
Complications of vitamin B12 deficiency, such as 
anemia, neuropathy, and resistance to erythropoiesis-
stimulating agents, highlight the importance of early 
recognition and treatment. Treatment options, 
particularly the use of parenteral supplementation, 
have shown promise in lowering homocysteine levels 
and improving B12 status. However, differences in study 
designs and dosages have raised concerns regarding the 
optimal approach. To address the unique challenges 
presented by dialysis patients, future research should 
focus on developing standardized diagnostic criteria 
and reference ranges and conducting well-designed 
randomized controlled trials to clarify the impact of B12 
supplementation in deficient patients. Furthermore, it 
is worth noting that the majority of studies investigating 
vitamin B12 deficiency in dialysis patients have focused 
on those undergoing hemodialysis, emphasizing the 
need for additional research specifically targeting 
peritoneal dialysis patients. Overall, the complexity of 
vitamin B12 deficiency in dialysis patients highlight the 
importance of a tailored, multidisciplinary approach to 
prevention, diagnosis, and treatment to improve the 
well-being of this vulnerable patient population.
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