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Abstract
In this paper we discuss the problem of predicting the fish 
toxicity property of chemical compounds, and show how 
this can be approached using a computational intelligence 
method. There are two views on assessing toxicities: One 
says that such properties can be derived from the whole 
molecular structure, the other that some specific functional 
substructures, called Structural Alerts (SA), are able to 
explain the toxicity. In this work, a new Structure-Activity 
Relationship (SAR) approach is proposed to mine molecular 
fragments that act like SAs for the biological activity. We 
apply our data mining method, called SARpy, to a dataset 
about LC50 for the fathead minnow, and build a multiclass 
classifier in the categories defined by the legislation. We 
test the model on an external test set of data about trout 
toxicity. The new model shows marked prediction skills 
and, more interestingly, it is based on mined structural 
alerts. Discovering new knowledge about substructures 
statistically strongly connected to toxicity opens to other 
future in-silico methods. The model is freely available in the 
VEGA huba among other models for aquatic toxicity.
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Toxicology provides the knowledge of mechanisms, 
rules, and data characterized by quality levels and de-
fines the limits of safety of chemical agents. Chemistry 
offers knowledge on chemical descriptors and phys-
ico-chemical properties. Biology studies the mecha-
nisms of the action of the chemicals on the animals and 
the other organisms used for tests.

Predictive Toxicology is a multi-disciplinary science 
that requires the close collaboration among toxicolo-
gists, chemists, biologists, statisticians and Artificial In-
telligence researchers. Statistics and Machine Learning 
integrates all these items to analyze the existing data 
and, especially, to extract new knowledge from the 
data, or at least to generate reliable toxicity predictions 
for chemical compounds [1-4]. In this way, the main 
drawbacks in toxicity studies, like high costs of exper-
iments, duration of the tests, using animals in scientific 
experiments [5], can be surmounted.

The goal of toxicity prediction is to describe the re-
lationship between chemical properties and biological 
and toxicological processes. SAR relates features of a 
chemical structure to a property, effect or biological ac-
tivity associated with the chemical. There are two kinds 
of SAR: qualitative and quantitative. A qualitative rela-
tionship is a general rule, which provides a class label. 
Quantitative structure-activity relationships (QSARs) 
can be developed using continuous (quantitative) data, 
mostly through a regression process. This area was de-
veloped in the last forty years to assess the value of 
drugs and more recently to assess general toxicity.
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Introduction
In our industrialized society, a huge amount of 

chemical substances are used and produced every 
day. This increasing number of chemicals around us 
raises the problem of characterization, prediction and 
evaluation of their consequences to the human health 
and to the environment.
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Three “postulates” of modeling QSARs are accepted:

P1: The molecular structure is responsible for all the 
activities shown.

P2: Similar compounds have similar biological and 
chemo-physical properties.

P3: QSAR is applicable only to similar compounds.

In toxicity prediction various machine learning 
techniques were proposed, from expert systems to 
Artificial Neural Networks (ANN), from decision trees to 
neuro-fuzzy models. There were also local versus global 
models, and different combinations of classifiers [6].

Human experts usually estimate toxicity through the 
detection of particular structural fragments, already 
known to be responsible for the toxic property under 
investigation. In the literature such fragments are 
referred to as structural alerts (SAs) and can be derived 
by human-experts, from knowledge of the biochemical 
mechanism of action (such as the activation of an 
enzyme cascade or the opening of an ion channel, which 
leads to a biological response); these mechanisms are 
still poorly understood and largely unknown.

Only a few approaches have been developed to assist 
experts in directly extracting such knowledge from data. 
Some are based on inductive logic programming (ILP) 
[7]; they cannot be directly applied to standard chemical 
formats for molecule representation and require 
extra computation. Other, including NIKE [8], uses a 
neuro-fuzzy approach to integrate explicit and implicit 
knowledge; however they use chemical descriptors 
derived after complex simulations and not directly the 
chemical 2D structure.

In the following we introduce the problem of our 
investigation, i.e. acute fish toxicity, the data available, 
our method for knowledge extraction, the obtained 
model and its statistics.

Among the available data sets with experimental 
results, the acute toxicity database to fathead minnow 
(Pimephales promels) is considered a “gold standard” 
for quality of toxicity measurement. The chemicals 
were selected from the Toxic Substances Control Act 
(TSCA) inventory of chemicals to represent a cross-
section of industrial organic chemicals. Thus, the 
fathead minnow database is chemically heterogeneous 
and the substances in it represent a large spectrum 
of mechanisms of toxic action. In fact it includes 
compounds acting by different modes and mechanisms 
such as narcosis (type I, II and III), uncouplers of the 
oxidative phosphorylation, reactive electrophiles/
proelectrophiles, acetylcholinesterase inhibitors, and 
central nervous system (seizure) agents.

Recent work is expanding the set of chemicals for 
which more testing results are available. Recently [9] 
analyzed the effect of some antibiotics on fish larvae (Ti-
lapia nilotica) toxicity. Another important area of inves-

tigation is the effect on fishes of pollutants derived from 
agriculture. Recent papers [10,11] report about tests 
on fish of the toxicity of chlorpyrifos, carbaryl, diuron, 
nemacur, and malathion, showing how their presence 
in water poses a concern, in particular for chlorpyrifos 
(for which the experimental LC50 was 0.08 µ mol/L).

The QSAR models so far developed on those data 
predict either the LC50 value or a class, using the 
classification adopted at international levels. We shortly 
present this topic in the next section. Predicting a class 
is more useful for regulatory purposes, and this is our 
choice.

Materials and Methods
The endpoint considered in this paper is fish toxicity, 

an important test for water quality assessment. All 
toxicity data were retrieved from Russom, et al. [12]. 
Tests were conducted at EPA (Environmental Protection 
Agency) using Lake Superior water at 25 ± 1 °C. Aqueous 
toxicant concentrations were measured in all tests with 
quality assurance criteria requiring 80% agreement 
between duplicate samples and 90% to 100% spike 
recovery. Flow-though exposures were conducted using 
cycling proportional, modified Benoit or electronic 
diluters. Median lethal concentrations (LC50, in mg/L) 
were calculated using the Trimmed Spearman-Karber 
method, with 95% confidence intervals being calculated 
when possible. LC50 (96 h), i.e. the lethal concentration 
for 50% of a population within 96 hours. For the 
purposes of this study the logarithm of their reciprocal 
values (log (1/LC50)) was used for QSAR modeling.

The data set contains 568 different compounds. 
Data are quite representative for most industrial 
chemicals, but they are still a very small percentage 
of the commercialized chemicals, and an even minor 
part of all possible chemicals humans can be exposed 
to. Nevertheless, they represent a unique collection of 
data. As typical in data from studies in the life sciences, 
the cost of experimental data is high. Thus, the number 
of experiments is quite low.

Since these values are widely spread and to take 
into account the regulations, the results were also 
transformed into the classification for toxicity to fish as 
provided by Directive 92/32/EEC of the EU for dangerous 
substances [13] (Table 1).

According to EPA the data set can be studied also 
considering the chemical classes included, which are 
indicated in (Table 2).

Table 1: EU classification for fish toxicity.

Class LC50 Damage
1 < 1 mg/L Very toxic to aquatic organisms
2 1 - 10 mg/L Toxic to aquatic organisms
3 10  - 100 mg/L Harmful to aquatic organisms
4 > 100 mg/L May cause long term adverse 

effects to aquatic organisms
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of them [17-19]. The EC project ANTARESb listed about 
250 implemented QSAR models, including many on fish 
toxicity, with R2 similar to those above reported.

To evaluate the performance of the models, a test 
set of 351 compounds with toxicity data on Rainbow 
trout (Oncorhynchus mykiss) was used. This dataset 
was compiled from two sources: the beta version of 
the OECD toolboxc selecting the OECD-HPV inventory, 
and the pesticide dataset used to develop the Demetrad 
model for fish. The data were checked to eliminate 
duplicates, mixture and inorganic compounds. Salt were 
considered in their neutral form.

Extracting Toxicity Rules as SAS
Instead of computing chemical descriptors and 

extracting a good subset for modeling, our approach 
relies on extracting fragments and combining them 
into rules. Our method has been implemented in 
SARpy [20,21], a Python script employing the open 
source OpenBabel 2.2.3 library. SARpy also is public and 
available at https://sourceforge.net/projects/sarpy/.

The model is built in SARpy starting from the training 
dataset given in input as a matrix of chemical structures 
and their experimental activity label, written as a 
Comma Separated Values (CSV) table, with structures 
expressed in Simplified Molecular Input Line Entry 
Specification (SMILES) notation. SMILES are ASCII 
strings obtained by printing the symbol nodes (chemical 
elements) encountered in a depth-first tree visit of the 
chemical graph.

From the training set of molecular structures along 
with their experimental activity binary labels, SARpy 
generates every substructure of the chemicals in the 
set, and mines correlations between the incidence of 
a particular molecular substructure and the activity of 
the molecules that contain it. Such task is carried out in 
three subsequent steps:

1. Fragmentation: A recursive algorithm that considers 
every combination of bond breakages working 
directly on the SMILES string and computes every 
substructure of the molecules in the input set.

2. Evaluation: Each substructure is validated as 
potential SA on the training set.

3. Rule set extraction: From the huge set of substruc-
tures collected, a reduced set of rules is extracted in 
the form: “IF contains <SA> THEN <activity label>”.

Fragmentation
The aim of this phase is to detect all the chemical 

substructures present in the training set of chemicals. 
The substructures are identified by recursively applying 

In a previous work on toxicity prediction in the 
fathead minnow Russom, et al. [12] encoded human 
expert knowledge in the definition of modes of action 
(MOA). They classified eight mechanisms involved in 
aquatic toxicity. Then specific chemical fragments have 
been identified, and a heuristic has been developed to 
find the MOA on the basis of these fragments. Finally, 
quite simple QSAR models have been used to predict 
toxicity for specific MOA.

Another interesting QSAR model that uses a low 
number of chemical 3D descriptors and a linear 
regression is described in [14].

The fish dataset contains a diversity of compounds, 
with a diversity of structures. Because of the lack of 
homogeneity it is hard for a single technique to model 
this data and to obtain good results. One attempt to 
overcome the diversity of the data, dividing the set 
using the official chemical classification from EPA, was 
developed in [15]. The results obtained in prediction 
are quite good for some models, with the coefficient of 
determination on the test set R2

test ranging from 0.98 for 
ethers to 0.60 for aldehydes. The accuracy prediction of 
the combined model has R2

test of about 0.8.

Since the classification in chemical classes is 
sometimes ambiguous because more than one 
functional group could be inside one molecule, an 
alternative approach grouped the chemicals together 
with a clustering technique in the input space (the 
descriptors space) using Euclidian distance. In fact the 
chemicals with similar biological and physico-chemical 
properties have similar descriptors and are grouped 
in the same cluster; moreover, for similar descriptors 
is more likely to have similar behavior. This work, as 
reported in [16], obtained accuracy very similar to the 
previous one. Using an unsupervised method it built ten 
clusters and ten models (one for each). All the models 
were tested on an external test set. The performance of 
every local model and of the global model on the test 
set was about 0.77 in terms of R2

test.

Other approaches have been reported, using Genetic 
Algorithms, Support Vector Machines, and integration 

Table 2: Chemical classes in the data set.

Chemical classes Number of compounds
Hydrocarbons 26
Ethers 24
Alcohols 60
Aldehydes 44
Ketones 39
Acids 68
Nitriles, Sulfur compounds 33
Amines 74
Benzenes 33
Phenols 49
Heterocyclics 48
Carbamates, Other pesticides 28
Various classes 42

bhttp://www.antares-life.eu/index.php?sec=modellist
chttp://www.oecd.org/document/23/0,3746,
en_2649_34379_33957015_1_1_1_1,00.html
dhttps://cordis.europa.eu/project/rcn/67471_en.html
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that show high precision and good sensitivity; likelihood 
ratio will be used in the next phase to dynamically 
extract the best set of SAs.

Rule extraction
The final goal is to obtain, from the huge list of 

potential SAs, a reduced set able to predict the target 
class with the best precision. Such requirement is 
implemented as follows:

1. Order the list of potential alerts by likelihood ratio.

2. Select the top ranked one, add it at the rule set and 
remove it from the list of potential alerts.

3. Update TP and FP values of the remaining potential 
SAs, by discarding TPs and FPs in common with the 
alert just selected.

4. Update likelihood ratios of potential SAs.

5. Return to 1.

To avoid rules with irrelevant behavior, a lowest 
bound on the TP value is considered; furthermore, rules 
that show a precision worse than the prevalence of the 
target class in the training set (i.e., likelihood ratio < 1) 
are removed, since they predict worse than a “random 
rule”. Such rules pruning is dynamically re-executed 
before the extraction of every rule, using the actual TP 
values and likelihood ratios.

With this procedure it is possible to select the next 
SA keeping into account the effect of the SAs already in 
the rule set, The definition of a termination condition 
affects the behavior of the rule set, making it more 
sensitive (late stop) or more specific (early stop). The 
output is presented to the user as an ordered set of 
rules in the form “IF contains <SA> THEN <apply label>”.

The resulting set of rules can be checked on an 
external test set or many-folds cross-validated.

Results on Predicting Fish Toxicity
As already said, the definition of the toxicity in case 

of fish acute toxicity follows thresholds defined on a 
conventional basis, as reported in Table 1. It means that 
the toxic effect is defined according to opportunistic 
values, and there are different thresholds used by 
regulators, but not necessarily connected to a unique 
effect (see the discussion about MOA).

Another point to underline is that the robustness 
of the model depends on the number of chemicals in 
each class. Thus, for instance, in case of the class of 
chemicals with the highest toxicity (meaning toxic at 
a concentration < 1 mg/L), the number of chemicals 
is quite low, and thus the model has to work on 
unbalanced data.

Due to the relatively low number of chemicals with 
experimental data on the fathead minnow, we decided 
to use all of them for modeling purposes, and then to 

a simple fragmentation algorithm, which at each step 
breaks a bond in the molecule and collects the two 
fragments that result. Applying the next fragmentation 
step to the output of the previous, all the possibilities 
of a second bond breakage are explored; and so on, 
until no more new fragments could be extracted. The 
fragmentation of chemical structures is performed 
directly on their SMILES strings. Thus the problem 
of processing a two-dimensional molecular graph is 
reduced to a fast ASCII strings processing. Considering 
that parsing with context-free grammars has worst-
case time complexity cubic, the complexity of SARpy in 
enumerating the substrings is polynomial. In addition 
it has been decided to consider rings as single entities 
during the fragmentation phase: the idea is that the 
same substructures contained in a ring might be found 
as open skeleton in other compounds in the training 
data, otherwise, if always embedded in a ring, then only 
the whole ring itself has to be taken into account.

A further consideration concerns the length, in terms 
of number of atoms, of relevant fragments. Several 
experiments gave evidences that fragments longer than 
18 atoms don’t affect the final model.

Evaluation
Once all the substructures have been collected, 

the next phase consists in their individual evaluation 
as potential SAs using the training set of chemicals. 
Here the binary case of a “positive” or “negative” 
experimental activity label, associated to each structure, 
is considered, so to focus on the search for SAs for 
positive activity.

First of all, each substructure is matched against 
every molecular structure in the training data. Such 
matches can be divided into matches against positive 
structures, called True Positives (TP), and matches 
against negative structures, called False Positives (FP). 
The structural comparison is carried out by the OpenBa-
bel SMARTS matching function after being optimized by 
the use of fingerprints and by taking advantage of the 
hierarchical organization of the fragmentation process. 
In fact, the search for structures potentially containing 
a given fragment can be restricted to the ones that con-
tain a substructure of the fragment itself. Therefore, the 
evaluation process is performed backward in the hierar-
chy of fragments.

Then every fragment is paired with its TPs and FPs 
matches. From these two values, the likelihood ratio, 
which is a measure of precision intrinsic to the test 
(does not depend on prevalence of activity labels in the 
training set) is computed:

( ) ( )likelihood ratio = / FP  /TP negatives positives×

The likelihood ratios are used to rank all the potential 
SAs; also sensitivity is used as a secondary sorting key. 
The evaluation is aimed at identifying the substructures 

https://doi.org/10.23937/2572-4061.1510016
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The reasons are quite probably both the diversity in 
the chemicals used and the fish kind, as expected. In 
fact applying a QSAR model to another species has to 
consider the inter-species differences too.

SARpy has been able to extract fragments that can 
provide useful insights on the understanding of the 
toxic mode of action. For instance, SARpy has found that 
fragments related to toxicity have Sn, dithiophosphates, 
and halogenatated aromatic rings, which are known to 
be associated to aquatic toxicity. Using the same tool 
those fragments would be eventually correlated to 
MOA, an area where there is not sufficient structural 
knowledge. The full list of the alerts found by SARpy and 
applied by the model to make predictions according to 
the three thresholds is in Appendix 1.

This new model can be compared to other available 
models.

In a recent exercise [23], researchers tested five 
available models for fish toxicity, namely ECOSA, KATE, 
TEST, ADMET, and CADRE-AT, all based on logP, against 
a new test set, not used in developing any of the models. 
This new set contains 83 chemicals, distributed in many 
chemical classes. The output of the models was one of 
the 4 categories. CADRE-AT (a model based on neural 
nets, and not freely available) obtained the high total 
accuracy of 83%, missing only 3 predictions. The other 
models had a total accuracy lower that 58% and many 
missing predictions. For the majority of compounds is 
was impossible to classify them into MOA.

The same EPA Fathead Minnow Acute Toxicity 
database has been used to create a model as reported 
in the EU project OpenToxe. The models were developed 
using descriptors and regression on a training set of 90% 
(522 compounds) and test set of 10% (58 compounds). 
The reported statistical parameters are: R2test about 0.7, 
and Q2train about 0.6 [24].

The use of (Q)SAR models is expected to increase 
in various regulations. The European Plant Protection 
Products Regulation requires that registrants establish 

use a second set of compounds for testing purposes. 
However, the second set of compounds is for another 
fish, trout, and includes a high number of pesticides 
(more then 50%). These two factors should be carefully 
considered, because they represent differences 
compared to the population of the values used to train 
the model.

We applied SARpy to identify the fragments related 
to toxicity, according to the different thresholds of Table 
1. Thus, SARpy discovers a series of fragments which 
serves to label chemicals as toxic with the threshold of 
100 mg/L, another series of fragments for the threshold 
at 10 mg/L, and so on. The overall model is composed 
by three individual models done with SARpy.

The overall model has been then implemented 
within the VEGA platform (http://www.vega-qsar.eu) 
[22], where the user can freely get the predicted class 
simply introducing the SMILES code of the chemical(s) 
of interest.

Table 3 shows the numbers of predicted molecules 
in each class as obtained for the four toxicity classes. 
Computing the accuracy on the training set, the accuracy 
is 87.5% the highest threshold of 100 mg/L, is 85% for 
the threshold of 10 mg/L, and it is 92% for the threshold 
at 1 mg/L. The average accuracy is so greater than 88%.

Thus, the models for the three thresholds provide 
good results.

To check the generalization capability of the model 
we tested it with an external test set. This test set 
contains compounds for which results on trout toxicity 
were available. Table 4 shows the results for this test 
set. As before stated, there is difference in the fish, 
which may get different toxicity values. Furthermore, 
this data set contains in most of the cases pesticides, 
and thus there is quite a lot of chemicals which are 
labeled as very toxic, and may contains SAs not covered 
within the training set. The accuracy for the threshold 
at 100 mg/L is still quite good (79%), but it is lower for 
the thresholds at 10 mg/L (63%) and at 1 mg/L (65%). 
The average accuracy is so 69% on the trout test set. 

Table 3: Chemical classes in the data set.

Predicted  
< 1 mg/L 1 - 10 mg/L 10 - 100 mg/L > 100 mg/L Observed
35 23 14 0 < 1 mg/L
6 102 31 8 1- 10 mg/L
4 27 134 21 10  - 100 mg/L
0 4 38 123 > 100 mg/L

Table 4: Results for the external test set (TROUT).

Predicted  
< 1 mg/L 1- 10 mg/L 10 - 100 mg/L > 100 mg/L Observed
24 62 35 19 < 1 mg/L
5 53 40 10 1- 10 mg/L
1 14 20 21 10 - 100 mg/L
2 8 14 23 > 100 mg/L

ehttp://www.opentox.org

https://doi.org/10.23937/2572-4061.1510016
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more and more interest in the scientific community and 
in the industrial world as accompaniment or replacement 
of existing techniques. For regulatory purposes it is 
important to obtain satisfactory classification accuracy 
on new chemical families not well studied. In this area it 
is important to develop models that can take advantage 
of statistical analysis on great numbers and can be 
further refined to improve or confirm the results and 
give more insights into the domain.

To this end we have developed a new model for 
fish toxicity using SARpy, a system able to focus on the 
important structural features hidden in the database. 
The difference of SARpy with respect to other (Q)SAR 
approaches is its ability to extract relevant knowledge 
in the form of structural alerts during the learning 
stage. The models show their capability to predict the 
fish toxicity, even though they suffer in some cases for 
the unbalanced distribution of the data and chemical 
nature.
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whether pesticide metabolites pose a risk to the 
environment. Fish acute toxicity is one of the required 
endpoints. EFSA recently published a “Guidance on 
tiered risk assessment for plant protection products for 
aquatic organisms in edge-of-field surface waters” in 
which it outlines the opportunity to apply non-testing 
methods, such as SAR and QSAR. Considering this 
issue Burden and coworkers developed a retrospective 
analysis about the state of the art in predicting fish 
toxicity. They extracted experimental fish LC50 values 
for 150 metabolites from the Pesticide Properties 
Databasef. Then predicted them using the US EPA’s 
ECOSAR software, and compared the predictions to 
the experimental data. They observed a significant 
correlation between predicted and experimental 
fish LC50 values and concluded that for 91% of the 
substances the predictions were sufficiently predictive. 
They concluded that the applicability of QSAR models 
in the metabolite assessment could be recommended 
[25].

It is worth discussing our results in perspective, 
considering other available approaches and future 
developments.

Recent research has individuated toxicokinetic 
models as tools to help in assessing the environmental 
risk. For aquatic species, and in particular for fish and 
for some chemical classes, some PBTK (physiologically 
based toxicokinetic) models are available [26]. This 
software can be of great interest in studying the acute 
toxicity of fish.

Another recent direction in filling the data-gap in 
toxicity prediction is providing new software to improve 
read-across. In our experience, after the results on a 
round-robin exercise on read across [27] involving about 
20 experts, we found that the results were largely user-
dependent on assessing fish toxicity (spanning from 
non toxic to high toxic for the same chemical), even 
considering that most of the experts used tools as OECD 
toolbox. In case of other toxicological endpoints, when 
experts used a property tailored system as ToxRead 
[28], the answers were more consistent with each 
other. ToxRead presents in a structured and hierarchical 
way the structural alerts present in the target and the 
similar molecules.

It is our future task to extend ToxRead by inserting 
new properties, as fish toxicity, and the structural 
alerts so far collected. We are aware that those alerts 
have now only a statistical meaning (the full process of 
transformations not being available for most of them); 
however we expect that they will help experts in the 
assessment.

Conclusions
Alongside classical methods as in vivo and in vitro 

experiments, the use of computational tools is gaining 
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C(OCC=C)CC
c1c(cccc1CC)CC
O(CC)P(=S)(O)
C=CC=C
C(=O)OCCCC
O=[N+]([O-])c1cc(cc(c1)C)
c1cc(c(cc1C))C
SCC
O(c1ccccc1)CCCC
c1cccc2ccccc12
c1cc(ccc1O)Br
c1ccccc1c2ccccc2
O=Cc1c(F)cccc1
O=C(OC)CC
[*;D1]#C[C;!D4][!C;D1]
*[C;D2][C;D2][C;D2][C;D2][C;D2][C;D2]*
[s;R]
[$([c]([Cl,Br,F])[c]([Cl,Br,F])),$([c]([Cl,Br,F])[c][c]([Cl,Br,F]))]

SAs for class 3 toxicity
C(OC)c1ccc(cc1)
NCCCCCC
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c1ccc(cc1)Br
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c1ccc(cc1)CCCC
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c1ccc(cc1)Cl
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C(C(Cl))Cl
O=P(OCC)(OCC)OCC
N(CCC)(CCC)C
o1c(ccc1)
C#CCC(O)
C(CCCl)C
OCC#CC
O=[C;D2][C;D2]
C=C
c1ccccc1
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