Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles

Alireza Heidari*

Faculty of Chemistry, California South University, USA

*Corresponding author: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St, Irvine, CA 92604, USA

Abstract

In the current paper, the Localized Surface Plasmon Resonance (LSPR) effect induced by Cadmium Oxide (CdO) nanoparticles is used to observe Raman spectrum of human cancer cells, tissues and tumors. The diagnosis and treatment of human cancer cells, tissues and tumors in sample is investigated through Nanomaterial Surface Energy Transfer (NSET) process from human cancer cells, tissues and tumors to the surface of nanoparticles, and Surface Enhanced Raman Scattering (SERS) process, as effective factors for Raman spectrum detection. For interaction of human cancer cells, tissues and tumors with Cadmium Oxide (CdO) nanoparticles, colloidal state and Self-Assembled Monolayer (SAM) methods were used. Both methods have shown good agreement with each other in detecting the Raman spectrum. It should be noted that these methods and techniques can be applied on different types of human’s cancer cells, tissues and tumors, respectively.

Keywords

Surface Enhanced Raman Scattering (SERS), Localized Surface Plasmon Resonance (LSPR), Nanomaterial Surface Energy Transfer (NSET), Self-Assembled Monolayer (SAM), Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors, Cadmium Oxide (CdO) Nanoparticles

Introduction

Since the discovering time of Raman scattering, a great effort has been begin to enhance Raman signal for increasing the detection limit and sensitivity of this method due to inherent low scattering cross section of Raman. Today, Plasmon structures are widely used to enhance Raman signal. This method is known as Surface Enhanced Raman Scattering (SERS) [1-27]. The Enhancement Factor (EF) of Raman signal can reaches up to 1015 times. The main mechanism that affects EF of signal is electromagnetic mechanism and is induced by enhancing the scattered light by the Localized Surface Plasmon Resonance (LSPR) of metallic nanoparticles or in sharp points and other curvatures of Plasmon structures. In this method, molecule should be placed at distance lower than 10 (nm) from the surface of nanoparticles [28-43].

In recent years, a considerable attention has been paid to pair and enhance the surface Plasmon fields in the connection point of metallic nanoparticles through creating various arrays and geometries [44-63]. In order to produce an ideal SERS substrate, various methods such as Electron-Beam Lithography, Nanoimprint Lithography, Self-Assembling of nanoparticles and etc. are used. The first two methods can create very regular and uniform structures with high repeatability. However, such methods need high cost and special laboratory conditions. In contrast, Self-Assembling of nanoparticles is used as a low cost and high productivity method [64-75].

In addition, utilizing Plasmon structures leads to increase the maximum effective distance of Forster (fluorescence) Resonance Energy Transfer (FRET) from 10 (Å) to 220 (Å). This process of energy transfer between fluorophore and surface of nanoparticle named as Nanomaterial Surface Energy Transfer (NSET). In this condition, the quantum gain of energy transfer is defined as:
\[
\phi_T = \frac{1}{1 + \left(\frac{d}{d_0}\right)^4} \quad (1)
\]

where \(d_0\) is the distance in which fluorophore has a same probability for emission and energy transfer to nanoparticle [76-106]. The emitted fluorescence signal by molecule can be enhance by Plasmon field at the vicinity of nanoparticle either at emissive wavelength or at excitation wavelength. At the other hand, fluorescence signal of molecule can be transferred to the neighboring nanoparticle through non-radiant process of NSET. As Plasmon modes are mainly damped in non-radiant form, this process can be led to considerable reduction of fluorescence in the sample. Domination of each of these two processes and its intensity are depend on factors such as overlapping of nanoparticle absorption spectrum with fluorescence spectrum of sample, distance and relative direction between them, size and form of nanoparticles and etc. [107-161].

In the current paper, SERS spectrum of a very light emissive sample of human cancer cells, tissues and tumors is obtained at colloidal condition and over the substrate monolayer produced using Self-Assembled Monolayer (SAM) method. Briefly, 18 \(\text{mg}\) Cadmium Oxide (CdO) nanoparticles solution was heated up to boiling point at 90 \(\text{ml}\) water. Then, 2 \(\text{ml}\) of 1% citrate solution was added to it and was maintained at boiling point for 90 minutes [1].

The glassy substrates activated with hydroxyl group were placed in 1\% solution of APTES for 4 hours. After washing with toluene, substrates were submerged into colloidal Cadmium Oxide (CdO) nanoparticles solution for 24 hours and then, were maintained into the water up to the time for using. To measure the Raman spectrum of human cancer cells, tissues and tumors, substrates were placed in 1 \(\mu\text{M}\) solution of sample and then, Raman spectrum was measured.

SERS spectra for samples were obtained using the designed arrangement for Raman spectroscopy. A schematic view of this arrangement is shown in (Figure 1). A laser with 532 (nm) wavelength was used as excitation source. Laser light was focused on the sample by a 4X thing and the scattered Raman signal was collected by that thing and was sent to spectrometer for analysis.

Sample preparation method

Nanoparticles were synthesized based on Alireza Heidari and Christopher Brown method [1]. Briefly, 18 (mg) Cadmium Oxide (CdO) nanoparticles solution was heated up to boiling point at 90 (ml) water. Then, 2 (ml) of 1\% citrate solution was added to it and was maintained at boiling point for 90 minutes [1].

Results and Discussion

The glassy substrates activated with hydroxyl group were placed in 1\% solution of APTES for 4 hours. After washing with toluene, substrates were submerged into colloidal Cadmium Oxide (CdO) nanoparticles solution for 24 hours and then, were maintained into the water up to the time for using. To measure the Raman spectrum of human cancer cells, tissues and tumors, substrates were placed in 1 \(\mu\text{M}\) solution of sample and then, Raman spectrum was measured.

To observe SERS signal at colloidal state, at least 3 hours before the test, 0.01 \(\text{M}\) solution of NaCl and 1 \(\mu\text{M}\) solution of human cancer cells, tissues and tumors were added to Cadmium Oxide (CdO) nanoparticles.

Martials, Research Method and Experimental Techniques

Materials and tools

Cadmium Oxide (CdO) nanoparticles, Sodium Citrate (\(\text{Na}_3\text{C}_6\text{H}_5\text{O}_7\)), Sulfuric Acid, Hydrogen Peroxide, HPLC, Water and APTES (3-Aminopropyl-Triethoxysilane) were supplied from Sigma-Aldrich Corporation.
states over a glassy medium. Maximum Plasmon resonance at colloidal state is about 453 (nm). However, this maximum for the substrates produced using self-assembled method shows a shift towards shorter wavelengths (418 nm). This shift can be attributed to dipole-dipole interaction between arrayed nanoparticles in a two-dimensional structure. Further, a new peak is emerged around 710 (nm) due to pairing of nanoparticles.

Figure 4a and Figure 4b show the enhanced Raman spectrum of human cancer cells, tissues and tumors over substrate and at colloidal state, respectively. Detecting such spectrum from such human cancer cells, tissues and tumors which has very strong absorption and fluorescence in utilized wavelength of laser (Figure 3) can be attributed to Surface Enhanced Raman Scattering phenomenon at the presence of nanoparticles and to reduction in fluorescence due to energy transfer to nanoparticles through NSET process. Figure 3 shows considerable overlapping of fluorescence human cancer cells, tissues and tumors spectrum with absorption spectrum of nanoparticles, especially when

Figure 2: Various stages of formation of substrate; a) Cleaning and activating the glassy medium; b) Surface functionalizing using silane group and; c) Connection of nanoparticles to the surface using silane group.
Figure 3: Absorption spectrum of cadmium oxide (CdO) nanoparticles; a) At colloidal state; b) After self-assembling over substrate and; c) Fluorescence spectrum of human cancer cells, tissues and tumors.
Figure 4: a) Raman spectrum of SERS from human cancer cells, tissues and tumors over self-assembled substrates of cadmium oxide (CdO) nanoparticles; b) Raman spectrum of SERS from human cancer cells, tissues and tumors at colloidal state and; c) Raman spectrum of human cancer cells, tissues and tumors at normal state.
The results show good agreement with reference results.

During 5 seconds for all samples. In this comparison, fluorescence human cancer cells, tissues and tumors spectrum is attenuated up to 25 times due to high concentration of fluorescence in 1 (μM) solution of human cancer cells, tissues and tumors molecules and saturation of spectrometer (Figure 4c).

Table 1 shows vibration modes related to human cancer cells, tissues and tumors molecules. Frequency shift of this test is compared with a reference which its results show good agreement with reference results [1].

Conclusions, Perspectives, Useful Suggestions and Future Studies

The results obtained in the current study show the effect of Cadmium Oxide (CdO) nanoparticles on Raman spectrum detection through two mechanisms of SERS and NSET. In order to confirm the effect of nanoparticles on various conditions, colloidal and self-assembled monolayer mediums were used. The results obtained from both states are in good agreement with each other.

References
18. Alireza Heidari (2016) Measurement the amount of vitamin D2 (Ergocalciferol), vitamin D3 (Cholecalciferol) and absorbable calcium (Ca²⁺), iron (II) (Fe²⁺), magnesium (Mg²⁺), phosphate (PO₄⁻) and zinc (Zn²⁺) in apricot using high-performance liquid chromatography (HPLC) and spectroscopic techniques. J Biom Biostat 7: 292.
19. Alireza Heidari (2016) Spectroscopy and quantum mechanics of the helium dimer (He₂+), neon dimer (Ne₂+), argon dimer (Ar₂+), krypton dimer (Kr₂+), xenon dimer (Xe₂+), radon dimer (Rn₂+) and ununoctium dimer (Uuo₂+) molecular cations. Chem Sci 7: e112.

49. Alireza Heidari (2016) DNA/RNA fragmentation and cytol-

Alireza Heidari (2016) A comparative study of conformational behavior of isosrotein (13-Cis Retinoic Acid) and tretinoin (All-Trans Retinoic Acid (ATRA)) nano particles as anti-cancer nano drugs under synchrotron radiations using hartree-fock (HF) and density functional theory (DFT) methods. Insights in Biomed 1: 2.

Alireza Heidari (2016) Polyorphism in Nano-sized graphene ligand-induced transformation of Au38-xAgx/xCu(x)(SPh-IBu)24 to Au36-xAgx/xCu(x)(SPh-IBu)24 (x = 1-12) nanomolecules for synthesis of Au144-xAgx/xCu(x)(SR)60, (SC4)60, (SC6)60, (SC12)60, (PET)60, (p-MBA)60, (F)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60 nano clusters as anti-cancer nano drugs. J Nanomater Mol Nanotechnol 6: 3.

97. Alireza Heidari, Christopher Brown (2017) Combinatorial therapeutic approaches to DNA/RNA and benzylpenicillin (Penicillin G), fluoxetine hydrochloride (Prozac and Sarafem), propofol (Diprivan), acetylsalicylic Acid (ASA) (Aspirin), naproxen Sodium (Aleve and Naprosyn) and dextromethaphetamine nanocapsules with surface conjugated DNA/RNA to targeted nano drugs for enhanced anti-cancer efficacy and targeted cancer therapy using nano drugs delivery systems. Ann Adv Chem 1: 061-069.

111. Alireza Heidari (2017) Vibrational decihertz (dHz), centihertz (chz), millihertz (mHz), microhertz (μHz), nanohertz (nHz), picohertz (pHz), femtohertz (fHz), attohertz (aHz), zeptohertz (zHz) and yoctohertz (yHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. International Journal of Biomedicine 7: 335-340.

116. Alireza Heidari (2017) Vibrational decahertz (daHz), hectohertz (hHz), kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz), petahertz (PHz), exahertz (EHz), zettahertz (ZHz) and yottahertz (YHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. Madridge J Anal Sci Instrum 2: 41-46.

129. Alireza Heidari (2018) Heteronuclear correlation experiments such as heteronuclear single-quamation correlation spectroscopy (HSQC), heteronuclear multiple-quamation correlation spectroscopy (HMOC) and heteronuclear multiple-bond correlation spectroscopy (HBMC) comparative study on malignant and benign human endocrinology and thyroid cancer cells and tissues under synchrotron radiation. J Endocrinol Thyroid Res.

132. Alireza Heidari (2018) Pros and cons controversy on heteronuclear correlation experiments such as heteronuclear single-quamation correlation spectroscopy (HSQC), heteronuclear multiple-quamation correlation spectroscopy (HMOC) and heteronuclear multiple-bond correlation spectroscopy (HBMC) comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. EMS Pharma J 1: 002.

143. Alireza Heidari (2018) Vivo 1H or proton NMR, 13C NMR, 15N NMR and 31P nmr spectroscopy comparative study...

151. Alireza Heidari (2018) Niobium, technetium, ruthenium, rhodium, hafnium, rhenium, osmium and iridium ions incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Nanomed Nanotechnol 5: 138-144.

158. Alireza Heidari (2018) Angelic acid, diabolic acids, draculin and miraculin nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Med & Anal Chem Int J.

162. Alireza Heidari (2018) Cadaverine, ornithic acid, ramnetin, sodium ethyl xanthate (SEX) and spermine (Spermidine or Polyamine) nanomolecules incorporation into the nanopolymeric matrix (NPM). Sur Cas Stud Op Acc J.

165. Alireza Heidari (2018) Cadaverine (1,5-Pentanediamine or Pentamethylenediamine), diethyl azodicarboxylate (DEAD or DEADCAT) and putrescine (Tetramethylenediamine) nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Hiv and Sexual Health Open Access Open Journal 1: 4-11.

170. Alireza Heidari (2018) Uranocene (U(C8H8)2) and bis(Cyclooctatetraene)iron (Fe(C8H8)2 or Fe(COT)2)-enhanced precatalyst preparation stabilization and initiation (EPPSSI) nano molecules. Chemistry Reports 1: 1-16.

175. Alireza Heidari (2018) A clinical and molecular pathology investigation of correlation spectroscopy (COSY), exclusive correlation spectroscopy (ECOSY), total correlation spectroscopy (TOCSY), heteronuclear single-quantum correlation spectroscopy (HSQC) and heteronuclear multiple-bond correlation spectroscopy (HMBC) comparative study on malignant and benign human cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations using cyclotron versus synchrotron, synchrocyclotron and the large hadron collider (LHC) for delivery of proton and helium ion (charged particle) beams for oncology radiotherapy. European Journal of Advances in Engineering and Technology 5: 414-426.

185. Ricardo Gobato, Alireza Heidari (2018) Using the quantum chemistry for genesis of a nano biomembrane with a combination of the elements Be, Li, Se, Si, C and H. ResearchGate.

187. Alireza Heidari (2018) Fucitol, pterodactyliadiene, DEAD or DEADCAT (DiEthyl AzoDICarboxylaTe), skatole, the nanoputians, thebacon, pikachurin, tie fighter, spermidine and mirasorvone nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Glob Imaging Insights 3: 1-8.

189. Alireza Heidari, Ricardo Gobato (2018) First-time simulation of deoxyuridine monophosphate (dUMP) (Deoxyuridylic Acid or Deoxyuridylate) and vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-trihydroxy-12,13-epoxytrichothec-9-En-8-One)-enhanced precatalyst preparation stabilization and initiation (EPPSI) nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human cancer cells, tissues and tumors treatment under synchrotron and synchrocyclotron radiations. Parana Journal of Science and Education 4: 46-67.

190. Alireza Heidari (2018) Buckminsterfullerene (Fullerene), bullvalene, dickite and Josiphos ligands nano molecules incorporation into the nano polymeric matrix (NPM) by immersion of the nano polymeric modified electrode (NPME) as molecular enzymes and drug targets for human hematology and thromboembolic diseases prevention, diagnosis and treatment under synchrotron and synchrocyclotron radiations. Glob Imaging Insights 3: 1-7.