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Abstract
Heavy metals emission, in particular, mercury is ever in-
creasing due to global urbanization and industrialization. 
Due to increasing number of health problems related to 
heavy metals contamination, monitoring it becomes a cru-
cial task for authorities and environmentalists. Therefore, 
the development of a nanobiosensing technique that can 
detect mercury ions as low as 1 ppb for its limit of quantifica-
tion is necessary to provide sufficient information to ensure 
a sustainable and healthy environment for the community 
around the world. Herein we reviewed reported studies 
on the mercury ions bioavailability and recent progress of 
its detection methods. Comparison of detection methods 
based on electrochemical and optical technique has been 
made. There are two main technological gaps that need to 
be filled, which are sensitivity and practicality of measure-
ment at point-of-check for in-situ analysis. 

the gold extraction technique, for example, is rampant 
across Africa and South America. This sector alone is 
estimated to produce 1000 tonnes of Mercury per an-
num [17]. If these industries are not tightly regulated, 
the level of heavy metals will be elevated tremendous-
ly in the environment and can cause severe problems 
to the biosphere [17,18]. Accumulation of heavy metal 
contaminants can be found in water, sludge, air, and 
soil. Indirect ingesting of these metals will cause bioac-
cumulation in living organisms and eventually will lead 
to biomagnification, a phenomenon of metal ions in-
tensification in higher trophic levels [19,20].

A small amount of heavy metals including Arsenic, 
Chromium, and Cadmium have preferential metabolic 
functions. Obviously, however, it can be detrimental if 
it exceeds the maximum permissible limit (MPL) that is 
also known as the toxic dosage [21-25]. Lead, for exam-
ple, is often associated with damage to the human kidney 
[26,27] and central nervous system [28,29]. It can also 
cause anemia [30], hypertension [31,32], immunotoxicity, 
and oxidative stress [33]. Very recently, it is suggested that 
the presence of lead causes a sympathovagal imbalance 
that leads to a high blood pressure [34]. Copper is another 
well-known heavy metal that is essential for human me-
tabolism activities. Its hemeostasis is maintained by CsoR 
protein [35], and in the form of ceruloplasmin it aids the 
transport of iron to the cells [36,37]. Overexposure to 
this element, however, will lead to dermal toxicity [38], 
respiratory problem [39] and can lead to kidney damage 
through the up-regulation of tumor gene suppressor p53 
and apoptotic gene caspase-3 [40]. Mercury, one of the 
top ten elements or chemicals that pose concerns in public 

Review Article

Introduction
Heavy metals are non-biodegradable elements that 

fall in a group of natural constituents of the earth. Their 
specific gravity is greater than 5.0, and it has relatively 
high atomic weight [1,2]. Many industrial applications 
nowadays involve the use of heavy metals for their pro-
duction which includes mining activities (Cu, Cd, Co, Cr, 
Ni, Pb, Zn, Hg and As) [3-6], power generation indus-
tries (As, Cd, Pb and Hg) [7], smelting industries (Cd, Pb, 
Cu and Zn) [8,9] battery production (Pb, As, Cd, Ni, Hg) 
[10], dyes and textile manufacturing industries (Al, Co, 
Ni, TI, Pb, Cd, Zn, Cu, Cr, Fe and Mn) [11,12], biosol-
ids and manure (As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Mo, Zn, 
Tl, Sb) [13], as well as fertilizer production (As, Cd, Pb, 
Cu, Cr and Zn) [14-16], and other applications. Artisanal 
and small-scale gold mining that use amalgamation as 
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health, is known as neurotoxicant. Exposure to a low level 
of Mercury can cause neurological and behavioral disorder 
[41], heart disease [42], and permanent damage to vital 
organs. Exposure to > 1.6 ppb (or μg/kg body weight) and 
> 4.0 ppb of mercury can cause neurocognitive effects and 
kidney damages, respectively [43,44]. This is even lower 
toxic dosage compared to As, Cd, and Pb for similar ad-
verse effects.

Heavy metal exposure not only affects human health 
but it also can disrupt an ecosystem. In the open ocean, 
99% of plastic debris that pollutants like mercury are 
clinging onto is untraceable [45]. The estuarine biota is 
often in danger as industrial discharges from factories is 
usually released into the nearby river. In a recent study, 
neurotoxic MeHg was found to be bioaccumulated in 
the pelagic food web, in which will become human food 
sources later on [46]. When this contaminated food is 
consumed, it will result in food poisoning among the 
walks of life on earth. The consumption of contaminat-
ed food is a major pathway of human exposure to heavy 
metals as compared to inhalation and dermal contact.

Among all heavy metals, mercury is the most det-
rimental due to its neurotoxic and nephrotoxic prop-
erties. Mercury was started to be used as separating 
agent to separate fibers of fur from the pelt in a felting 
industry, and as a preservative for seeds and vaccine. 
Recent data shows that inorganic mercury was excret-
ed as waste from coal-burning power plant, waste in-
cinerators, alkali-chlor factory and gold mining industry. 
Human exposure to mercury can occur via eating Me-
Hg-contaminated food (fish, shellfish, and other aquat-
ic life), dental amalgam procedure, usage of inorganic 
mercury products (medication, germicidal soap and skin 

cream), occupational exposure (mining or mercury-re-
lated industry) and usage of any other mercury-based 
products (thermometer, sphygmomanometer, fluores-
cent light bulbs and batteries).

Mercury is commonly bioavailable (Figure 1) and en-
ters the food web as methylmercury (MeHg) which can 
be magnified as it passes up the food chain. However, 
the natural form of mercury that often excreted out 
from the industrial area is inorganic mercury, mercury 
(II) ions, and elemental mercury. Elemental mercury, Hg0 
exist in the form of volatile liquid from soil-air flux and 
other anthropogenic releases that can remain suspend-
ed in the atmosphere for one to two years long [47,48]. 
It can be converted to Hg2+ via oxidation and eventual-
ly will reside in the water sources or soil through the 
rain. This Hg2+ will then be converted to methylmercury 
through methylation process by anaerobic sulfur reduc-
tion bacteria which includes Desulfovibrio desulfuricans, 
Desulfobulbus propionicus, Desulfococcus multivorans, 
Desulfobacter sp., and Desulfobacterium sp. [49].

The abundance of mercury in the environment is 
inevitable since the natural ecosystem produces it as 
well [50]. The concentration of Mercury in the ocean, 
precisely at the level shallower than 100 m was tripled 
from its pre-anthropogenic condition to 0.6 pM [51]. 
The increment of their concentration especially when 
localized raised concern among environmentalists and 
population as a whole. According to the World Health 
Organization (WHO), the MPL for almost all heavy met-
als in the environment must be below 0.2 ppm. Further, 
the MPL of mercury ions, have to be below 0.002 ppm.

Due to increasing industrial and mining activity globally, 
we are now facing a silent threat from mercury contamina-

         

The Occurrence and Mobility of Mercury.
Figure 1: Mercury cycle schematic diagram.
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tion. The anthropogenic release of mercury was estimated 
at 2320 tonnes/year in 2010 [52]. Meanwhile the United 
Nations Environmental Programme (UNEP) and the Arctic 
Monitoring and Assessment Programme (AMAP) approxi-
mated the anthropogenic mercury emissions globally has 
an uncertainty range of 1010-4070 tonnes/year. Artisanal 
and small-scale gold mining (ASGM) were identified as the 
major anthropogenic sources (37%) and the dental amal-
gam emitted through cremation were identified as the 
minor anthropogenic sources (0.2%) [53]. Figure 2 below 
shows a mercury emission percentage based on different 
sources of emission.

There are several cases worth mentioning to show that 
contaminated water is one of the main sources where 
mercury contamination could affect most lives. Water 
sources are the reservoir where all the inorganic mercu-
ry would reside before it will be methylated and would be 
magnified in the higher organism hierarchy as it passes up 
a food chain. In general population, dietary intake is the 
most common pathway for mercury contamination. The 
classic case of Minamata Bay Japan, in 1953 witnessed 
2252 victims poisoned with MeHg (5.61 ppm to 35.7 ppm) 
in their marine product [54]. In 1964, the similar case hap-
pened in Niigata with approximately 700 victims through 
the same exposure of the contaminated marine products 
[55]. In 2006, China faced a threat from mercury pollution 
due to their mining and coal-burning industry. National Bu-
reau of Oceanography (NBO) of China stated that there is 
approximately 77 ton of Hg were released into the coastal 
area through river annually [56,57].

Development of Nanosensors to Detect Heavy 
Metals

Conventional methods
The determination of heavy metals in the environ-

ment is essential in order to find a targeted area for 
remediation process [58-60]. Several detection tech-
niques have been developed and commercially avail-
able, including atomic absorption spectrometry (AAS) 
[61-63], Synchrotron X-ray fluorescence (SXRF) spec-
trometry [64], microwave plasma atomic emission spec-
troscopy (MP-AES) [65,66], inductively coupled plasma 
mass spectrometry (ICP-MS) [67,68], and cold vapour 
atomic fluorescence spectrometry (CVASF) [69] and 
thermal decomposition mercury analyser (TDMA) [70]. 
These techniques provide sensitive and accurate result 
in determining the level of heavy metal in the environ-
ment. Most of these techniques, however, require a 
sophisticated machine with the time-consuming proce-
dure, and generally, need expensive consumables which 
make it non-practical to be used for in-situ analysis at 
a mass and constant screening level. It is also worthy 
to note that digestion step under an extreme condition 
is usually required for most of these techniques to free 
the metal ions prior to the measurement. This makes 
the results to be questionable because the original en-
vironmental condition of those metals is disregarded 
[71]. These limitations lead to the needs of developing 
simple yet effective techniques to detect heavy metal 
contamination at the point-of-check of an environment. 
This is especially important and useful to be used as a 
front-line screening procedure.

Biosensing methods
In recent years, researchers have turned their at-

tention towards biosensor techniques to be used to 
detect heavy metal contamination. Biosensors are a de-
vice that uses any biological based elements including 
protein, enzymes, cells and nucleic acids to detect the 
presence of molecules; in this case, metal ions. It has 
two main components; biological element as a receptor 

         

Figure 2: Mercury emission percentage based on different sources of emission.
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marily through the usage of color recognition apps on 
the smartphone.

Capturing agents
In environmental monitoring, most biosensors have 

been developed for detection of pesticides and heavy met-
als due to their occurrence in the environment [74]. Some 
groups have reported using whole cell [75], microorgan-
isms such as bacteria, and algae to detect heavy metal ions 
[76]. Alternatively, biomolecules can be utilized as effec-
tive capturing agents. Tanaka, et al. utilized thymine-thy-
mine (T-T) mismatches to capture mercury ions effectively 
at [77]. They showed that mercury ion out of all ions has a 
greater binding affinity with thymine mismatches and sug-
gesting that that Hg2+ is a substitute for imino group and 
bind with the nitrogen of the thymine residue. Soft acid-
ic metals like mercury have a strong affinity with sulfur, 
nitrogen and oxygen elements. Hence protein antibody 
has become a good capturing agent to establish a new 
biosensing platform [78]. In addition to that, monoclonal 
antibodies have been generated to specifically recognize 
heavy metals ions such as Hg2+, Cd2+, Cu2+, Ni2+, Pb2+, Co2+, 
and Ag+ [79-82]. Chelating agents like Rhodamine- [83-87], 
calix[4]arene [87], thioether- [88], and aniline-derivative 
can be used to specifically capture mercury at relatively 

or capturing agent, and physicochemical element as a 
transducer [72]. In the middle between these two com-
ponents lay a surface chemistry that plays an important 
role at the interfacial. The transduced signal of a bio-
sensing method can be amplified, enhanced and more 
effective by manipulating the surface chemical proper-
ties of a particular sensing platform. The biorecognition 
elements typically are whole cells, enzymes, antibodies, 
peptides, small molecules, or nucleic acids that could re-
act selectively and sensitively with the target analytes. 
Meanwhile, signal transduction converts the biological 
response resulting from the interaction with the target 
analytes into a distinct and quantifiable signal [73]. Ionic 
elements like Hg2+ has at least two characteristics that 
can be leveraged as a sensing counterpart element; i) As 
a charge-bearing atom, electrochemical sensing princi-
ple can be used because its presence will alter current or 
impedance. ii) Affinity towards capturing agents can be 
used as a chemical switch to generate molecular struc-
tural transfiguration that subsequently produces an 
optical sensing signal. We tabulated some of the newly 
developed biosensing methods that utilized these two 
concepts (Table 1). The electrochemical-based biosen-
sor has the advantage for the sensitivity, whereas the 
optical-based biosensor can easily be miniaturized, pri-

Table 1: Detection of mercury ions, Hg2+ using optical-based or electrochemical-based biosensor.

Sensor type Capturing agents LOD 
(ppb)

Detection 
time

Practical 
for in-situ 
analysis

References

Optical-based 
biosensor

AunPs with 3-mercaptopropionic acid and 
adenosine monophosphate

100 Several 
minutes

Yes Yu and Tseng [93] 

Papain-functionalized gold-nanoparticles 
(P-AuNPs)

40 Several 
minutes

Yes Guo, et al. [95]

Cysteine functionalized gold- 
nanoparticles (C-AunPs)

20 > 10 minutes Yes Chai, et al. [102]

AuNPs modified with quaternary 
ammonium group-terminated thiols

6 Several 
minutes

No Liu, et al. [99]

Mercaptopropionic acid-homocysteine-
PDCA-modified gold nanoparticles

5 15 minutes Yes Darbha, et al. [103]

Aggregation-induced quenching of the 
fluorescence of 11-mercaptoundecanoic 
acid (11-MUA) protected 20 nm AuNPs

1 10 minutes No Huang, et al. [86]

Electrochemical-
based sensor

Heated carbon nanoparticles 1 2 minutes No Aragay, et al. [78] 
Protein-functionalized reduced graphene 
oxide (rGO)

0.2 Few seconds No Sudibya, et al. [104]

Bimetallic Au-Pt nanoparticles/organic 
nanofibers with anodic stripping 
voltammetry

0.08 100 seconds No Gong, et al. [105]

AuNPs-graphene hybrid nanocomposite 0.06 110 seconds No Gong, et al. [106]
Gold nanoparticles/carbon nanotubes 
(Au-NPs/CNTs) composites with anodic 
stripping voltammetry

0.06 2 minutes No Xu, et al. [107]

Nanostructured magnesium silicate 
hollow spheres

0.07 Several 
minutes

No Xu, et al. [108]

Electrochemically reduced GO (ERGO)-
based diode with

N-[(1-pyrenyl-sulfonamido)-heptyl]-
gluconamide (PG) as the modifier

0.02 Several 
minutes

No Fang & Liu [109]

Layered titanate nanosheets 0.005 80 seconds No Yuan, et al. [110]
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Table 2: Capturing agents that have been used to capture mercury (II) ions.

Name Structures References
Terphenyl-based reversible receptor with Rhodamine

[83] 

Rhodamine-based molecular probe

[84] 

Rhodamine-based using the spirolactam ring opening

[85] 

Rhodamine B with ferrocene substituent

[86]

Calix[4]arene-based receptor

[87]

Thioether + aniline-derived ligand framework linked to 
a fluorescein platform

[88]
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Gold-nanoparticles (AuNPs)-based biosensor is an-
other type of versatile colourimetric assay methods. It 
has high extinction coefficient which makes it suitable 
to act as a sensing platform [78,94,95]. Gold-nanoparti-
cles possess an exploitable property due to its intrinsic 
surface plasmon resonance that strongly depends on 
the sizes of the particles. It is also possible to modify 
the AuNPs with various kinds surface functionalization 
to specifically serve as mercury ions capturing agent in 
sub-ppm concentration [96]. Moreover, the color pro-
duced by the AuNPs is various, depending on the dis-
tance between the particles. As the distance between 
particles decreases, it will promote plasmon coupling 
which will shift the plasmon-band to a lower energy lev-
el. This will result in a change of color of the AuNPs solu-
tion from red to blue (in the case of 20 nm and 40 nm); 
namely a redshift phenomenon [97]. AuNPs can aggre-
gate and disperse, which can be regulated by the ligand 
that is functionalized onto its surfaces. For example, 
the analyte that can bind with the ligand on top of the 
AuNPs will make two or more particles to attract each 
other which result in a subsequent change of color. The 
concept is also rightly applicable vice versa. The capa-
bility of gold nanoparticles to be conjugated with differ-
ent types of ligands through surface chemistry, open a 
room of exploitation for this biosensing platform.

Bio-Conjugated Gold-Nanoparticles
Bio-conjugated gold nanoparticle is a modification 

onto gold nanoparticles surface in order to make it se-
lective and sensitive towards desired interactions. Due 
to the capability of gold-nanoparticles to be conjugat-

high affinity in-vitro or in-vivo (Table 2). Moreover, oxygen, 
nitrogen, or sulfur-based crown structures also exhibit ef-
fective mercury chelating [89,90]. These strong binding ki-
netics often incorporated with fluorophores in the Förster 
resonance energy transfer (FRET) techniques using terphe-
nyl derivatives or any other branched moiety as a flexible 
linker. An electrochemical method can also be employed 
by integrating rhodamine with ferrocene substituent [86]. 
Spirolactam ring opening in rhodamine can also be manip-
ulated to induce a color change of the rhodamine solution. 
Hence with the presence and absence of Hg2+, the chemo-
sensor can be turned on and off, respectively. There are 
also structure-switching DNA biosensors that are formed 
through formation of many weak non-covalent bonds 
which can detect mercury ions as good as CVAFS with an 
only minimal volume of sample is required for the detec-
tion purpose [71,91]. Yu & Tseng that used 3-mercapto-
propionic acid and adenosine monophosphate to detect 
mercury ions down to 0.1 ppm in a high salt condition.

Colorimetric Assay as a Biosensor to Detect Mer-
cury Ions

Simple, robust, and inexpensive biosensors for de-
tecting and monitoring pollutants in the environment 
can be developed using colorimetric assay method. Due 
to its vivid visible response and rapid measurement pro-
cess, colorimetric biosensors have been utilized to de-
tect mercuric [92,93], and other metal ions [76]. Since 
the signal produced in the form of bright and distinctive 
color, thus, it can act as an indicator to provide an ear-
ly warning for detection and monitoring of the level of 
heavy metals in the environment.

Mercuryfluor-1 (flourescent probe)

[89]

N,N’-dibenzyl-1,4,10,13-tetraraoxa-7,16-diazacyclo-
octadecane

[90]

Terphenyl-based reversible receptor with pyrene and 
quinoline as the fluorophores

[91]
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14.	Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, 
et al. (2010) Effect of fertilizer application on soil heavy met-
al concentration. Environ Monit Assess 160: 83-89.

15.	Sabiha-Javied, Mehmood T, Chaudhry MM, Tufail M, Irfan N 
(2009) Heavy metal pollution from phosphate rock used for 
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16.	Mortvedt JJ (1995) Heavy metal contaminants in inorganic 
and organic fertilizers. Fertil Res 43: 55-61.

17.	Spiegel SJ, Veiga MM (2010) International guidelines on 
mercury management in small-scale gold mining. J Clean 
Prod 18: 375-385.

18.	Hilson G (2006) Abatement of mercury pollution in the 
small-scale gold mining industry: Restructuring the policy 
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19.	Malik RN, Hashmi MZ, Huma Y (2014) Heavy metal accu-
mulation in edible fish species from Rawal Lake Reservoir, 
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20.	Bellinger DC, Chen A, Lanphear BP (2017) Establishing 
and achieving national goals for preventing lead toxicity 
and exposure in children. JAMA Pediatr 171: 616-618.

ed with many biomolecules such as DNA, protein, and 
enzyme, there were many studies carried out to im-
prove utilization of AuNPs [78]. There are three ways 
to conjugate and functionalize gold nanoparticles. The 
most common approach is via covalent coupling be-
tween gold and thiol group to ligate molecules onto the 
gold-nanoparticles surface [98]. There is also physical 
absorption where electrostatic or hydrophobic interac-
tions are used. However, since this is a weak interaction, 
any physiological change to the AuNPs solution including 
pH and temperature can lead to detachment of ligand 
molecules [99]. The third approach is using an explicit 
specificity of ligand molecules by tagging gold-nanopar-
ticles with antigen and uses it for detection of antibody. 
This approach is a fundamental idea to build a platform 
to detect any antibody and widely used in medical field. 
Hung, et al. develop a biosensor using series of alkan-
ethiols which capable of detecting mercuric (Hg2+), silver 
(Ag+) and lead (Pb2+) ions [100]. They used sulfur group 
in alkanethiols to bind strongly with gold-nanoparticles 
and let the -OH functional group attract mercury ions.

Conclusion
The optical-based sensor is a promising sensor to 

detect mercuric pollution due to its vivid signal that is 
directly observable through the naked eye. The quali-
tative signal can be analyzed quantitatively using colour 
recognition and processing apps that are commercially 
available, and in-situ detection can be done through a 
smartphone. Furthermore, with the availability of the 
internet-of-things and cloud server, polluted areas and 
regions can be mapped in a real-time manner. Hence an 
automated early warning system can be put in operation 
[101]. Nonetheless, the reported studies shown here 
suggest that the sensitivity of optical-based detection 
methods remains a challenge. Electronic and electro-
chemical sensors, on the other hand, are very sensitive 
methods. However, to make a practical POC device, the 
electrochemical devices that are currently used need 
to be miniaturized, and enabled the operation without 
a plug-in electrical current source. The combination of 
the ability to detect mercury in a dynamic range of a 
very low concentration (ppt-ppb or pM-nM), and the 
POC compatibilities that allow in-situ analysis for mass 
screening, can open a new avenue of applications.
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