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Abstract

Inherited metabolic disorders and acute liver failure (ALF) are
often indications for liver transplantation in pediatric patients.
Liver transplantation, however, is limited by the shortage of donor
organs, as well as by the need for chronic immunosuppression.
This review focuses on the latest advancements made in the
field of liver regenerative medicine as possible future alternatives
to pediatric liver transplantation or as a means of temporary
liver function support. Cell transplantation offers great promise
for the treatment and long-term correction of inherited metabolic
disorders, especially when ex vivo gene therapy is combined with
autologous hepatocyte or induced pluripotent stem cell (iPSC)-
derived hepatocyte-like cell (HLC) transplant. Bioartificial liver
(BAL) systems are currently being tested that may be able to
bridge patients to either liver transplantation or endogenous liver
regeneration, in the case of ALF. Still, further research is required
before these forms of cell therapy are incorporated into clinical
practice: the optimal cell type for both cell transplantation and BAL
systems must be found, methods for the large-scale expansion of
these cells must be created, and safety concerns pertaining to each
cell type must be addressed.

Introduction

Liver transplantation is to date the only proven treatment for
pediatric end-stage liver diseases, including biliary atresia and other
cholestatic diseases, as well as acute liver failure (ALF) and a number
of inherited metabolic disorders [1]. Although the success of this
operation has improved significantly in the past few decades, and
the scarcity of organs has been to some extent circumvented by the
utilization of split-liver grafts and living-related donors [2], it requires
life-long immunosuppression, with the medical complications
and growth restrictions that this entails [3]. Alternatives to liver
transplantation are actively being sought after, and cell therapy
has shown promise for the treatment of both inherited metabolic
disorders and acute liver failure.

Inherited metabolic disorders

Metabolic disorders are the second most common indication
for pediatric liver transplantation after biliary atresia [4]. They can
be divided into 1) diseases that result in structural liver damage
with liver failure or cirrhosis, such as al-antitrypsin deficiency, and
2) diseases that are due to an enzymatic defect expressed solely or
predominantly in the liver, but that result in injury of other organ
systems, such as Crigler-Najjar type 1 syndrome [5]. In these diseases

cell transplantation offers the potential for long-term correction of
the metabolic deficiency [6].

Furthermore, primary hepatocyte or stem cell-derived hepatocyte-
like cell (HLC) transplantation, delivered into the liver via the portal
vein, is less invasive than orthotopic liver transplantation, and as the
native liver is not removed the transplanted cells need not replace all
hepatic functions, but only improve the single enzyme deficiency [7].
For the treatment of metabolic disorders, cell transplantation aims at
the addition of cells rather than at the replacement of diseased cells.

Primary hepatocyte transplantation has been used to treat
a number of metabolic disorders in both adults and children,
including familial hypercholesterolemia, Crigler-Najjar syndrome
type 1 (CNSL1), urea cycle defects (UCD), infantile Refsum disease,
glycogen storage disease type Ia, and progressive familial intrahepatic
cholestasis, with clinical improvement and partial correction of the
metabolic abnormality in most cases [8]. In children, most experience
in liver cell transplantation has been acquired in the treatment of
CNS 1 and UCD [9]. The success of hepatocyte transplantation in
CNS 1 s easily monitored through reduction of plasma bilirubin [10],
and its beneficial effects have been reported to last up to 11 months
[11]. Management of hyperbilirubinemia in a CNS 1 infant patient
was also achieved through transplantation of hepatic progenitor cells
[12]. In UCD, periods of hyperammonemia and clinically relevant
crises were shown to be reduced during an observation period of up
to 13 months [13]. Individual results are encouraging, but controlled
clinical trials are necessary to evaluate the overall significance of
hepatocyte transplantation for the treatment of metabolic diseases
[14]. Furthermore, with allogeneic hepatocyte transplantation the
issues inherent to rejection and immunosuppression remain [15],
and its use is limited by the available supply of liver tissue [16].
Autologous hepatocytes can also be used, but this involves performing
a liver resection.

An alternative is the production of autologous stem cell-derived
HLCs. With the development of stem cell technology, and especially
human induced pluripotent stem cells (hiPSCs), the treatment of
hereditary liver disease can be taken a step further: patient-specific
therapies can be created by combining genetic correction with
autologous cell transplantation [17,18]. This allows for the bypassing
of the two main issues inherent to treatment with embryonic stem cells
(ESCs): ethical concerns raised by the destruction of embryos, and
the possibility of immune incompatibility. Disease-free autologous
hiPSCs are generated through ex vivo gene therapy [19], and the
genetically-corrected hiPSCs may then be differentiated and used for
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transplantation. A patient-specific, disease-free line of hiPSCs can be
obtained in 4-5 months [20]. To date, al-antitrypsin deficiency and
familial hypercholesterolemia have both been genetically corrected in
hiPSCs [21,22]. This can also be done using autologous hepatocytes,
but as discussed earlier these must be obtained through liver
resection. Clinically, successful ex vivo gene therapy and autologous
hepatocyte transplantation has been performed only once, for
familial hypercholesterolemia [23]. More recently, a combination
of ex vivo gene therapy with a lentiviral vector encoding FAH and
autologous hepatocyte transplantation was used to correct hereditary
tyrosinemia type 1 in an FAH-deficient pig model [24]. In contrast to
hepatocyte transplantation [25], there are no established large animal
models of human metabolic disease treated successfully with stem
cell-derived HLCs [26].

Genetically-corrected autologous hepatocyte or stem cell-derived
HLC transplantation may be the logical next step in the treatment of
inborn errors of metabolism. However, several important limitations
to widespread clinical use of cell transplantation for correction
of metabolic deficiencies still exist. Results, although promising,
are still modest, and evidence of long-term efficacy is lacking. This
may in part be due to the low levels of engraftment seen in cell
transplantation. Some diseases, such as hereditary tyrosinemia type
I and al-antitrypsin deficiency,inherently provide a natural selective
advantage for the transplanted cells [27,28], but in other cases injury
to the recipient liver or other methods to increase engraftment may
be necessary [29,30]. Furthermore, and although cell transplantation
is far less invasive than orthotopic liver transplantation, it has on rare
occasion been associated with complications including portal vein
thrombosis [31,32]. Finally, there are other limitations to cell therapy
that are specific to the use of stem cells particularly: stem cell-derived
HLCs have not yet reached a full degree of functional maturity, and
the issue of their potential for tumorigenicity must be addressed [33].

Cell transplantation may in the future take the place of liver
transplantation for the treatment of inherited metabolic disorders
in children. Before this happens, however, the ideal cell type for this
therapy must be identified, and a method for efficient, large-scale
production of cells, as well as for their successful engraftment after
transplantation, must be developed. More information is necessary
on the dosage of cells required in children, taking into account that
restoration of around 10% of original enzyme activity is usually
sufficient to achieve metabolic control [34], and on the optimal
method of delivery [35]. Further research on the use and behavior
of stem cell-derived HLCs is also necessary in order for them to be
safely incorporated into clinical practice. These advancements may
beused not only for inborn errors of metabolism, but also for the
treatment of hepatocellular carcinoma and chronic liver disease in
adults [36]. In the case of inherited metabolic disorders specifically, ex
vivo gene therapy followed by autologous cell transplantation holds
great promise for the treatment of single-gene abnormalities.

Acute liver failure

ALF is an emergent situation with high mortality rates and a
very limited time frame to locate and prepare a donor liver suitable
for transplantation [37]. In this context, cell therapy may serve as a
bridge to liver transplantation by supporting hepatic function while
waiting for a donor organ [38]. This may be achieved through two
methods: liver cell transplantation or bioartificial liver (BAL) support
systems. Liver cell transplantation has been reported in at least ten
pediatric patients, with hyperammonemia reduction, coagulation
improvement, and hepatic encephalopathy regression seen in the
majority of patients [9].

BAL systems remove toxic substances from the blood through
albumin dialysis and at the same time perform synthetic liver
functions through the incorporation of live, functioning hepatocytes
into the device [39]. To date, none of the tested BAL devices have
demonstrated survival benefit in a randomized controlled trial
despite improvement in clinical and biochemical parameters [40,41],
but research in this field is still very active, with a spheroid reservoir

BAL recently being shown to improve survival in a porcine model
of drug-overdose ALF [42]. Porcine hepatocyte spheroids have
also been used in a BAL built for pediatric use and have displayed
successful ammonia detoxification [43], but this device has not been
clinically tested. Further investigation of BAL systems in the clinical
and pediatric settings is warranted.

Several different cell types have been tested in BAL devices;
to date, none has demonstrated clear superiority over the others.
Primary hepatocytes show a tendency to lose function and apoptose
in vitro, which may be partially overcome by culture in a spheroid
configuration [44], but human hepatocytes are not easily accessible
and porcine hepatocytes used in the HepatAssist device are
associated with concerns of xenozoonosis. HepG2/C3A immortalized
hepatoblastoma-derived human cells have also been used in the
ELAD device, but the issue of their possible tumorigenesis has not
yet been resolved. A future solution to this problem may be the
expansion of hepatocytes in large-scale animal bioreactors: animal
models of tyrosinemia type 1 have been created that could allow for
liver repopulation with human hepatocytes due to the graft’s selective
advantage over the native fumarylacetoacetate (FAH)-deficient cells
[45,46]. Finally, hepatocytic induction of fibroblasts into hiHeps has
recently yielded promising results in a BAL device demonstrating
improved survival in a porcine ALF model [47].

Although liver transplantation is the only proven therapy for
patients unlikely to recover from ALF, a large retrospective United
Network for Organ Sharing (UNOS) data analysis showed that 5-year
patient and graft survivals in children with ALF were significantly
lower than in children transplanted for biliary atresia [48].
Furthermore, recovery without transplantation occurs in 15%-20%
of patients with severe hepatic encephalopathy [1]. This means that
endogenous regeneration takes place in the liver that in some cases
is capable of restoring hepatic function, so that cell therapy may be
able to eliminate the need for liver transplantation in selected patients
[49]. When transplantation is necessary, bioengineered liver grafts
may in the future allow us to bypass the shortage of donor organs
while eliminating the need for chronic immunosuppression [50,51].

Conclusions

Cell therapy has shown promise as an alternative to orthotopic
liver transplantation for the treatment of inherited metabolic disorders
and ALF in pediatric patients. Primary hepatocyte transplantation
has been used in children with CNS 1 and UCD with encouraging
results, and in the future genetically corrected autologous stem cell-
derived HLC transplantation may offer a long-term solution to single-
gene metabolic disorders. In both metabolic disorders and ALF, cell
therapy may serve as a bridge to liver transplantation by supporting
normal liver function while a suitable donor organ is found, and in
ALF cell-based therapeutics may in some cases also serve as a bridge
to spontaneous endogenous regeneration, bypassing the need for
liver transplantation altogether. Cell therapy for ALF includes cell
transplantation as well as BAL systems. However, several important
challenges must be overcome before these practices are incorporated
into the clinical setting. Namely, the optimal cell type for each
modality of cell therapy must be determined, and mechanisms set
in place for the obtainment of cell quantities sufficient for large-
scale clinical application, with eflicient in vitro culture and in cell
transplantation successful in vivo engraftment. Furthermore, these
treatments must demonstrate safety in humans and within the
framework of pediatrics.
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