

International Journal of SurgeryResearchandPractice

RESEARCH ARTICLE

Symptomatic GERD after Sleeve Gastrectomy

Azzam Al-Kadi, MBBS, MSc, MBA, FRCSC^{1,2,3}, Saleh Alnoqaydan, MBBS², Abdulrahman Aljaber, MBBS², Mohammed Alfadhel, MBBS², Ameera Ayed Abumismar, MBBS², Rana Al bahairi, MBBS², Saleh Alsuwaydani, MBBS¹, Mohammed Alfehaid, MBBS¹, Amr Arkoubi, MBBS, FRCSC⁴ and Mohammed Al-Naami, MBBS, FRCSC⁵

¹Department of Surgery, Unaizah College of Medicine and Medical Sciences, Qassim University, Qassim, Kingdom of Saudi Arabia

²Department of Surgery, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia

³Department of Surgery, Dr. Sulaiman Al-Habib Medical Group, Riyadh, Kingdom of Saudi Arabia

⁴Departments of Surgery, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia

⁵Departments of Surgery, King Saud University, Riyadh, Kingdom of Saudi Arabia

***Corresponding author:** Dr. Azzam Al-Kadi, Associate Professor, Department of Surgery, Unaizah College of Medicine and MedicalSciences, Qassim University, KSA, Tel: +966163610151, E-mail: Azzam.alkadi@qu.edu.sa

Abstract

Background: Laparoscopic sleeve gastrectomy (LSG) remains an effective standalone bariatric surgery. Some patients might experience gastroesophageal reflux (GERD) symptoms post LSG despite its beneficial outcome on weight loss and improving obesity morbidities. This study aims to determine the prevalence of post-LSG GERD symptoms and associated risk factors.

Subjects and methods: This study comprises LSG patients who underwent surgery between 2015 to 2020. We applied the GERD- Health-Related Quality of Life (GERD-HRQL) questionnaire to compute the prevalence of GERD symptoms before and after surgery. The answer was rated from 0 to 5 based on GERD symptoms severity.

Results: A total of 160 patients (mean age: 33.8 ± 11.15 years: 63% of female) were included. The mean preoperative and postoperative weights were 133.5 ± 28.21 Kg (BMI 44.86 kg/m2) and 83.32 ± 21.23 Kg, respectively, with the average excess weight loss (EWL) of 69.5% after LSG. The Wilcoxon Signed Ranks test has shown increased GERD symptoms in previous GERD free or mildly symptomatic patients.

Conclusion: LSG was significantly associated with the new onset of GERD symptoms and worsened the mild preoperative symptoms.

Keywords

Bariatric surgery, Laparoscopic Sleeve Gastrectomy (LSG), Gastroesophageal Reflux Disease (GERD), Obesity, Comorbidities, Body Mass Index (BMI)

Introduction

Obesity has been regarded as a significant risk factor for developing gastroesophageal reflux disease (GERD), accounting for more than 50% of people showing mild or severe symptoms [1]. It has been reported that obesity and its related comorbidities reduce the quality of life and life expectancy [2]. Also, it was estimated that the life expectancy of obese patients over BMI 40-45 kg/m² has reduced by an average of 8-10 years [3]. Obesity was prevalent in Saudi Arabia, ranging from 28.7 to 42.0%, with a body mass index (BMI) of 30 kg/ m² [2,4]. The proportion of obese females was higher than males (33.5 versus 24.1%), with a total estimation of 3.6 million Saudi people aged \geq 15 years [2,5,6].

GERD is defined as abnormal gastric contents refluxing into the esophagus due to the failure of an antireflux barrier. The troublesome symptoms associated with GERD are heartburn, dysphagia, laryngitis, chronic

Citation: Al-Kadi A, Alnoqaydan S, Aljaber A, Alfadhel M, Abumismar AA, et al. (2023) Symptomatic GERD after Sleeve Gastrectomy. Int J Surg Res Pract 10:155. doi.org/10.23937/2378-3397/1410155 **Accepted:** August 08, 2023; **Published:** August 10, 2023

Copyright: © 2023 Al-Kadi AS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

cough, and regurgitation. Prolonged acid exposure within the esophagus leads to complications such as Barrett's esophagus and peptic esophageal stricture. The etiology of GERD among obese patients is due to an increase in intra-abdominal pressure combined with more frequent episodes of transient relaxation of the lower esophageal sphincter (LES) [7]. Multiple factors have been identified after LSG, which include reduced esophageal clearance, presence of residual hiatal defect with intrathoracic migration of the sleeve, tight sleeve, medio-gastric sub-stenosis, excessive antrum resection, cranioplasty failures, and a high-fat-containing diet [8].

Bariatric surgery (BS) has been considered a longterm solution for the management of obesity. However, all bariatric surgeries differ in outcomes, risks, and complications. Several surgical approaches are available today for promoting weight loss, like gastric bypass surgery, sleeve gastrectomy, and gastric banding. Laparoscopic sleeve gastrectomy (LSG) is a standalone procedure that is mainly a restrictive surgical approach initially established for highly obese patients with a BMI $\geq 60 \text{ kg/m}^2[9].$

LSG reduces gastric capacity, leading to smaller meal sizes and earlier satiety, resulting in weight loss. LSG has gained popularity worldwide in managing obesity, especially in people with a BMI between 40-45 kg/ m², due to its excellent resolution of comorbidities [5,10,11]. LSG also has beneficial effects such as reduced postoperative dumping syndrome, malabsorption, and marginal ulcers with an improved quality of life than malabsorptive procedures such as gastric bypass [12]. However, several studies reported that symptomatic GERD occurred in 7.8-20% of obese patients within 12-24 months after the LSG procedure [13-15]. Similarly, the incidence of symptomatic GERD after LSG was reported to be between 6.5 to 17.5% of patients at the second and third international consensus summits [16,17]. Enhanced reflux symptoms have been noticed in the first year after sleeve gastrectomy (SG), followed by a gradual reduction up to the third year [18]. Therefore, it is crucial to understand the relationship between the SG procedure and GERD.

LSG can increase the risk of postoperative development of "de novo" GERD and Barrett's esophagus despite its excellent outcome in weight loss [19,20]. Gagner, et al. [16] used a questionnaire-based survey and examined 14,776 sleeve gastrectomies. They reported that 6.5% of patients after LSG suffered from de novo GERD [16]. Similarly, the International Sleeve Expert 2011 analyzed the outcomes of 12,799 sleeve gastrectomy's and reported a higher postoperative rate of de novo GERD of $12.11 \pm 8.97\%$ [21]. This study aims to evaluate the incidence of de novo GERD in obese patients who underwent LSG and the impact of surgery on their pre-existing GERD symptoms.

Subjects and Methods

Subjects

From 2015 to 2020, 537 obese individuals who underwent LSG were included in this cohort research. A total of 377 patients were excluded from our analysis for the following reasons: previous stomach or esophageal surgery (including bariatric or non-bariatric surgical procedures), endoscopic sleeve gastroplasty, positive response to Helicobacter pylori detected by histopathology, and patients who were lost to followup or could not be contacted by phone. Before or during surgery, all patients identified with a hiatus hernia were also excluded from participation. Patients with obesity and GERD who had not responded to medical therapy were also excluded from the study. As a result, the research only included 160 patients who met eligibility requirements. Patients receiving LSG for morbid obesity of all sexes were included. The institutional review board had approved the research protocols. The options for LSG and Roux-en-y gastric bypass were discussed with those patients who have successfully managed their GERD with or without acid suppression drugs. The possibility of increasing GERD symptoms due to LSG surgery was thoroughly discussed with the patients.

Surgery

The procedure is carried out regularly. An intraoperative 36-Fr calibration tube has been used for all surgeries, which have all been performed laparoscopically. All patients followed our post-operative diet and exercise protocols, with an average hospital stay of 36 hours.

GERD questionnaire

This study focused on detecting "de novo" GERD symptoms after LSG. In order to identify acid reflux symptoms, patients were asked to complete a clinical questionnaire, either in person or over telephonic conversations. Each patient was evaluated for demographic and clinical variables, including age, sex, smoking history, socioeconomic position, and urea breath test results. Also, preoperative BMI and average excess weight loss percentage (EWL%), duration of hospital stay, comorbidities, and information on prior gastrointestinal procedures were all included in the gathered data set. The GERD questionnaire (GERDq) was used to evaluate the severity and frequency of GERD symptoms after LSG. The questionnaire was filled out before surgery and reapplied after 18 months post-surgery. As shown in Table 1, GERDq includes six questions that assess the effect of GERD symptoms on patients and their overall quality of life. The questionnaire was accessible in both English and Arabic. This questionnaire determines the frequency of heartburn, regurgitation, pain in the upper stomach, nausea, and difficulty in night sleep due to heartburn/ regurgitation and suggests additional medications for

Please answer the following questions by ticking the appropriate box	How many times does this occur per week?						
in front of each question	0 day	1 day	2-3 days	4-7 days			
How often did you have a burning sensation behind your breastbone (heartburn)?							
How often did your stomach contents (liquid or food) move upward to your throat or mouth (regurgitation)?							
How often did you have pain in the center of the upper stomach?							
How often did you have nausea?							
How often did you have difficulty getting a good night's sleep due to your heartburn and/or regurgitation?							
How often did you take additional medication for your heartburn and/or regurgitation, other than what the physician told you to take (such as Tums, Rolaids, and Maalox)?							

Table 2: General characteristic of symptomatic GERD patient who underwent LSG.

Parameters	Classification	Frequency	Percentage	Mean ± SD		
Age	11-20	16	10.0			
	21-30	52	32.5			
	31-40	54	33.8	33.8 ± 1.15		
	41-50	23	14.4			
	> 50	15	9.4			
Gender	Female	102	63.8	NA		
	Male	58	36.3			
Smoking status	No Smoking	154	96.3	NIA		
	Smoking	6	3.8	NA		
Pre-BMI	<= 40	54	33.8			
	<= 45	40	25.0			
	<= 50	28	17.5	44.86 ± 7.58		
	> 50	38	23.8			
Post-surgery complications	False	160	100.0	NA		
Pre-existing GERD	False	141	88.1			
	True	19	11.9	NA		

heartburn/ regurgitation. The GERD probability and its influence on quality of life were assessed by scoring the derived response. Probability quality is categorized into four groups from the total scores obtained from GERDq. When the GERDq score is between 0, 1-2, 3-7, and 8-10, the QoL is represented as 0, 50, 79, and 89%, respectively. This study also demonstrated the probability and impact of GERD on daily activities.

GERDq symptom scores

GERDq < 8: low probability for GERD, GERDq \ge 8 and \le 3 on questions 5 and 6 (impact questions): GERD with low impact on daily life, GERDq8 and3 in questions 5 and 6 (impact questions): GERD with a high impact on daily life.

Statistics analysis

Statistical analysis was performed using Windows SPSS version 25 [22]. Data are expressed as means and standard deviations for continuous variables and

numbers or percentages for categorical variables. Comparison among the variables was performed using the Chi-square test or Wilcoxon Signed-Ranks Test as an appropriate test for continuous variables and the Chisquare test for categorical variables. A p-value of < 0.05 was considered statistically significant to reject the null hypothesis.

Results

Basal characteristics of symptomatic GERD patients who underwent LSG

In the current study, 537 obese individuals who underwent LSG surgery over the last 5 years (2015-2020) were considered to study the associated postoperative risk factor and symptoms of GERD. Just 160 patients satisfied our study inclusion criteria, and their characteristic features are summarized in Table 2. The average age of the participants was 33.8 ± 11.15 years. In patients with LSG, GERD symptoms were

Parameters Category	Category	How many times does this occur per week? (% GER likelihood)				Total	Chi-square	df	p-value
		0	50	79	89				
No pre-existing GERD 141 0 0 0 Pre-existing GERD 0 0 19 0 Total 141 0 19 0	141								
	Pre-existing GERD	0	0	19	0	19	0.161	2	0.0016
	Total	141	0	19	0	160			
No post-existing GERD0post-existing GERD0	0	100	26	15	141				
	post-existing GERD	0	10	6	3	19	2.655	2	0.265
	Total	0	110	32	18	160			

 Table 3: Estimation of the likelihood of pre-and post-existing GERD symptoms in LSG.

 Table 4: Determination of the association between pre-and post-existing GERD with LSG.

Pre- and post-existing GERD with LSG		N	Mean Rank	Z	Sig.
Pre-post	Negative Ranks	144ª	78.92	-10.259 ^b	0.0001
	Positive ranks	10 ^b	57.00		
	Ties	6°			
	Total	160			

Note: ^a(pre) < post; ^b(pre) > post; ^c(pre) = post.

Table 5: Effect of patient age, sex, and smoking history on GERD symptoms.

Parameters C	Category	How many times does this occur per week? (% GER likelihood)				Total	Chi-square	df	p-value
		0	50	79	89				
Age	11-20	0	11	3	2	16	3.911	4	0.418
	21-30	0	39	6	7	52			
	31-40	0	37	11	6	54			
	41-50	0	14	7	2	23			
	> 50	0	9	5	1	15			
	Total	0	110	32	18	160			
Gender	F	0	67	22	13	102	1.289	2	0.525
	М	0	43	10	5	58			
	Total	0	110	32	18	160			
Smok- ing sta- tus	Non-smoking	0	105	31	18	154	0.929	2	0.629
	Smoking	0	5	1	0	6			
	Total	0	110	32	18	160			

more prevalent in 21-30 years and 31-40 years and less prevalent in the younger population (11-20 years) and the elderly population over 50. Comparatively, female patients were 2 times higher than men. Among the selected individuals, 96.3% did not have the habit of smoking. The pre-body mass index of less than or equal to 40 was documented in 33.8% of the patients, and around 23.8% had more than 50 BMI. The mean preoperative and postoperative weights were 133.5 \pm 28.21 Kg (BMI 44.86 kg/m²) and 83.32 \pm 21.23 Kg, respectively, as depicted in Table 1, with EWL of 69.5% after LSG.

Association of pre-and post-existing GERD with LSG

It was perceived that more than (88.1%) of our patients reported no pre-existing GERD symptoms, while the rest reported actual GERD symptoms (Table 2). The individual with preexisting GERD had a percentage likelihood of only 79 per week. The chance of developing the condition in patients with no pre-existing GERD symptoms has increased to 50% or more after the procedure, as stated in Table 3. Patients who had no prior history of GERD were dramatically affected by LSG. More than 70.9% of patients without preexisting GERD showed 50 times GER per week after LSG. The Wilcoxon Signed-Ranks test assessed the correlation between GERD symptoms before and after LSG. A significant correlation was noticed among patients who developed GERD symptoms after LSG (p = 0.0001) (Table 4). Table 5 shows the age, gender, and smoking on developing GERD symptoms. Post LSG, GERD occurred in all age groups without discrimination of sex. However, the frequency of symptom appearance varied between different age groups and sex. Age and sex were perceived to have no significant influence on the development of GERD symptoms (p-value of 0.418 and 0.525, respectively). Similarly, the GERD symptom was observed in all patients, irrespective of their smoking habit. There was no correlation between smoking and the development of symptoms of GERD in our patients.

Discussion

In the present era, global morbid obesity rates are rising, including in Saudi Arabia [2,4]. Therefore, a simple surgical procedure with minimal technical complications is essential to achieve weight reduction with an acceptable, fast, and long-lasting influence on one's health [5,23].

Over recent years, laparoscopic sleeve gastrectomy (LSG) has become increasingly popular as an obesity therapy because of a significant reduction in the mortality and morbidity rates of the obese population [24-27]. LSG effectively controls obesity-related comorbid diseases, such as hypertension, obstructive sleep apnea, and diabetes mellitus, and maintains longterm weight loss successfully [2,28]. The LSG procedure has been shown to have more advantages than gastric bypass, where the latter causes diarrhea, dumping syndrome, and malabsorptive surgery [29,30]. Unlike vertical gastroplasty or laparoscopic adjustable gastric band, the LSG technique does not entail the introduction of a foreign body. However, there has always been some concern that LSG could cause or exacerbate the symptoms of GERD [31]. There has been a dearth of satisfactory research into the long-term effects of LSG on GERD.

Obesity induces symptoms of GERD reflux by reducing esophageal sphincter pressure (LES), esophageal motility disorders, increased intragastric pressure, gastroesophageal pressure gradient, and increased anatomical abnormalities such as hiatal hernia [32,33]. GERDq is an accurate, validated, and easy diagnostic tool for GERD with the advantages of being patientcentered, highly predictive, and has been shown to reduce health care costs without losing efficacy [34,35]. Our study demonstrated that pre-operative and postoperative weight was 133.5 ± 28.21 and 83.32 ± 21.23 Kg, respectively, and EWL of 69.5% in patients of an average age of 33.8 ± 1.15 years. In the first year after sleeve gastrectomy, the average EWL was 60 to 70%

Controversy persists about the effects of LSG on GERD. Based on the recent BOLD database retrospective investigation, 44.5% of the 4832 patients reported developing GERD after LSG. Preexisting GERD symptoms persisted in most patients with LSG (84.1%), and only 15.9% had remission after LSG procedures. However, 8.6% of patients reported fresh GERD symptoms after LSG [39]. To support these findings, Stenard, et al. [40] examined 13 studies among 5953 individuals, which showed a negative impact of LSG on GERD symptoms. However, in the same review, when 12 trials were analyzed in 1863 patients, LSG had a favorable influence on GERD symptoms [40]. GERD and SLE have been shown to be associated by Oor, et al. [41] in a comprehensive review and meta-analysis of 33 studies. This metaanalysis concluded that the precise impact of LSG on the prevalence of GERD remains unresolved because of substantial heterogeneity across studies and paradoxical results of objective esophageal function testing. Several experts urged physicians to pay close attention to the signs of pre-operative GERD while selecting the best bariatric surgery procedure [41].

In our research, GERD symptoms are not affected by characteristics such as the patient's age, gender, smoking history, and obesity, as opposed to the results of Albanopoulo, et al. [23]. On the contrary, Coupaye, et al. [42] demonstrated that smokers were more likely to develop GERD. Our study demonstrated a strong correlation between GERD with LSGs. Similarly, several studies evaluated an increase in GERD prevalence ranging from 2.1 to 34.9% [43-48]. Arias, et al. [43] A single-center retrospective study reported 2.1% GERD after LSG with 26 months of follow-up. On a similar line, Braghetto, et al. [46] found a prevalence of 27.5% after LSG from a single institutional investigation.

In a single-center retrospective analysis, several reports looked for a correlation between LSG and symptoms of GERD [31,45]. After an average follow-up of 32 weeks, Howard, et al. [45] found a 14% increase in GERD symptoms after LSG. Also, there was a significant weight reduction in 176 individuals studied by Carter, et al. [31]. In the same study, the authors classified GERD symptoms into two groups: Early and late (i.e., symptoms observed before and after 30 days). The prevalence of GERD in the early and late post-LSG period was 14.4% and 12.6% [44]. A single-center retrospective investigation found a triphasic response of GERD to LSG. An increase in GERD after LSG was followed by a decline in the third year and an increase in the sixth year of treatment [44].

Tai, et al. [48] have examined symptoms of GERD after LSG for obese patients with an average preoperative BMI of 36.3 kg/m² and reported an increased risk of developing symptoms by 34.9%, the highest increase in the prevalence of GERD recorded. The angle of His has been suggested as a possible cause of the increased occurrence of GERD symptoms after LSG [49]. However, it was found to increase gastric pressure and reduce gastric compliance, dilation of the neo-fundus lead to mild stomach stenosis, gastric stasis, increased gastric acid production, hypotension of LES, hiatal hernia, decreased plasma ghrelin levels, delayed gastric emptying, intestinal hypomotility, and dysmotility [47,50,51].

According to certain studies, the prevalence of GERD decreased from 2.8 to 20% due to LSG [52-54]. Few reports of single prospective research suggested a decline in GERD symptoms by 5 and 20% [55,56]. Retrospective studies by Rawlins, et al. [57] and Chopra, et al. [58] LSG reduced the prevalence of GERD by 4.1 and 0.5%, respectively. The reduced incidence of GERD can be attributed to increased gastric emptying, reduced abdominal fat, restoration of His angle, reduced wall tension, and decreased acid production after LSG treatment [59,60]. Our study found a significant association of LSG with new-onset or worsening GERD symptoms.

Conclusion

GERD with heart burning and regurgitation is common in patients with LSG. There are multifactorial variables, including post and pre-operative conditions, that could influence new-onset or even deteriorate the prevalent condition. Currently, the impact of LSG on GERD is still up for debate. Although several studies that examined LSG-induced GERD differed, there was still considerable variation in the findings. The study showed a new onset of GERD in patients without pre-existing GERD. The score obtained showed the appearance of GERD after LGS irrespective of age group, gender, and smoking status. The study confirmed that none of the variables could predict the onset or worsen the condition. GERD-HRQL questionnaire employed in the study reduced the burden on administrative people and gave a high-level precision score for the effect of a studied variable on GERD symptoms and suggested a strong correlation between LSG and GERD symptoms.

Funding

There are no financial conflicts of interest to disclose.

Declarations

Conflict of interests

The authors declare no conflict of interest.

Ethics approval

Ethical approval was obtained from our local IRB committee.

Consent for publication

The authors claim no consent for publication.

References

- Silveira FC, Poa-Li C, Pergamo M, Gujral A, Kolli S, et al. (2020) The effect of laparoscopic sleeve gastrectomy on gastroesophageal reflux disease. Obes Surg 31: 1139-1146.
- Al-Kadi A, Siddiqui ZR, Malik AM, al Naami M (2017) Comparison of the efficacy of standard bariatric surgical procedures on Saudi population using the bariatric analysis and reporting outcome system. Saudi Med J 38: 251-256.
- 3. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. (2009) Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373: 1083-1096.
- Althumiri NA, Basyouni MH, AlMousa N, AlJuwaysim MF, Almubark RA, et al. (2021) Obesity in Saudi Arabia in 2020: Prevalence, distribution, and its current association with various health conditions. Healthcare (Basel) 9: 311.
- Memish ZA, el Bcheraoui C, Tuffaha M, Robinson M, Daoud F, et al. (2014) Obesity and associated factors--Kingdom of Saudi Arabia, 2013. Prev Chronic Dis 11: E174.
- Al-Kadi A, Al-Naami FRCSC M, Malik FCPS A, Siddiqui Z (2015) Improvement of co-morbidities and quality of life after bariatric surgery on Saudi population. Surg Obes Relat Dis 11: S192.
- Schneider JH, Küper M, Königsrainer A, Brücher B (2009) Transient lower esophageal sphincter relaxation in morbid obesity. Obes Surg 19: 595-600.
- Boru CE, Coluzzi MG, de Angelis F, Silecchia G (2019) Long-term results after laparoscopic sleeve gastrectomy with concomitant posterior cruroplasty: 5-Year follow-up. J Gastrointest Surg 24: 1962-1968.
- Burgerhart JS, Schotborgh CAI, Schoon EJ, Smulders JF, C van de Meeberg P, et al. (2014) Effect of sleeve gastrectomy on gastroesophageal reflux. Obes Surg 24: 1436-1441.
- Sammour T, Hill AG, Singh P, Ranasinghe A, Babor R (2009) Laparoscopic sleeve gastrectomy as a single-stage bariatric procedure. Obesity Surgery 20: 271-275.
- Gagner M, Hutchinson C, Rosenthal R (2016) Fifth international consensus conference: Current status of sleeve gastrectomy. Surg Obes Relat Dis 12: 750-756.
- Porta A, Aiolfi A, Musolino C, Antonini I, Zappa MA (2016) Prospective comparison and quality of life for single-incision and conventional laparoscopic sleeve gastrectomy in a series of morbidly obese patients. Obes Surg 27: 681-687.
- Soricelli E, Casella G, Rizzello M, Calì B, Alessandri G, et al. (2010) Initial experience with laparoscopic crural closure in the management of hiatal hernia in obese patients undergoing sleeve gastrectomy. Obes Surg 20: 1149-1153.
- Cottam D, Qureshi FG, Mattar SG, Sharma S, Holover S, et al. (2006) Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc 20: 859-863.
- 15. Hamoui N, Anthone G, Kaufman H, Crookes P (2006) Sleeve gastrectomy in the high-risk patient. Obes Surg 16: 1445-1449.
- Gagner M, Deitel M, Kalberer TL, Erickson AL, Crosby RD (2009) The second international consensus summit for sleeve gastrectomy. Surg Obes Relat Dis 5: 476-485.

- Deitel M, Gagner M, Erickson AL, Crosby RD (2011) Third International Summit: Current status of sleeve gastrectomy. Surg Obes Relat Dis 7: 749-759.
- Lazoura O, Zacharoulis D, Triantafyllidis G, Fanariotis M, Sioka E, et al. (2011) Symptoms of gastroesophageal reflux following laparoscopic sleeve gastrectomy are related to the final shape of the sleeve as depicted by radiology. Obes Surg 21: 295-299.
- 19. Braghetto I, Korn O (2019) Late esophagogastric anatomic and functional changes after sleeve gastrectomy and its clinical consequences with regards to gastroesophageal reflux disease. Dis Esophagus 32: doz020.
- Sebastianelli L, Benois M, Vanbiervliet G, Bailly L, Robert M, et al. (2019) Systematic endoscopy 5 years after sleeve gastrectomy results in a high rate of Barrett's Esophagus: Results of a multicenter study. Obes Surg 29: 1462-1469.
- Rosenthal RJ, Diaz AA, Arvidsson D, Baker RS, Basso N, et al. (2012) International sleeve gastrectomy expert panel consensus statement: Best practice guidelines based on experience of >12,000 cases. Surg Obes Relat Dis 8: 8-19.
- 22. (2018) An Overview of IBM® SPSS® Statistics. IBM SPSS Statistics 25 Step by Step 2018: 15-21.
- Albanopoulos K, Tsamis D, Natoudi M, Alevizos L, Zografos G, et al. (2015) The impact of laparoscopic sleeve gastrectomy on weight loss and obesity-associated comorbidities: The results of 3 years of follow-up. Sur Endosc 30: 699-705.
- Hirth DA, Jones EL, Rothchild KB, Mitchell BC, Schoen JA (2015) Laparoscopic sleeve gastrectomy: Long-term weight loss outcomes. Surg Obes Relat Dis 11: 1004-1007.
- 25. Moon RC, Kreimer F, Teixeira AF, Campos JM, Ferraz A, et al. (2016) Morbidity rates and weight loss after rouxen-y gastric bypass, sleeve gastrectomy, and adjustable gastric banding in patients older than 60 years old: Which procedure to choose? Obes Surg 26: 730-736.
- 26. Gil-Rendo A, Muñoz-Rodríguez JR, DomperBardají F, Trujillo BM, Martínez-de Paz F, et al. (2019) Laparoscopic sleeve gastrectomy for high-risk patients in a monocentric series: Long-term outcomes and predictors of success. Obes Surg 29: 3629-3637.
- 27. Xu C, Yan T, Liu H, Mao R, Peng Y, et al. (2020) Comparative safety and effectiveness of roux-en-y gastric bypass and sleeve gastrectomy in obese elder patients: A systematic review and meta-analysis. Obes Surg 30: 3408-3416.
- 28. Boza C, Daroch D, Barros D, León F, Funke R, et al. (2014) Long-term outcomes of laparoscopic sleeve gastrectomy as a primary bariatric procedure. Surg Obes Relat Dis 10: 1129-1133.
- 29. Quero G, Fiorillo C, Dallemagne B, Mascagni P, Curcic J, et al. (2020) The causes of gastroesophageal reflux after laparoscopic sleeve gastrectomy: Quantitative assessment of the structure and function of the esophagogastric junction by magnetic resonance imaging and high-resolution manometry. Obes Surg 30: 2108-2117.
- 30. Qiang PB, Xiang ZG, Chen G, Cheng Z, Kun HJ, et al. (2020) Gastroesophageal reflux disease complicating laparoscopic sleeve gastrectomy: Current knowledge and surgical therapies. Surg Obes Relat Dis 16: 1145-1155.
- 31. Carter PR, LeBlanc KA, Hausmann MG, Kleinpeter KP, deBarros SN, et al. (2011) Association between gastroesophageal reflux disease and laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 7: 569-572.
- 32. Pandolfino JE, El-Serag HB, Zhang Q, Shah N, Ghosh

SK, et al. (2006) Obesity: A challenge to esophagogastric junction integrity. Gastroenterology 130: 639-649.

- 33. Chang P, Friedenberg F (2014) Obesity and GERD. Gastroenterol Clin North Am 43: 161-173.
- 34. Jones R, Junghard O, Dent J, Vakil N, Halling K, et al. (2009) Development of the GerdQ, a tool for the diagnosis and management of gastro-oesophageal reflux disease in primary care. Alimentary Pharmacology & Therapeutics 30: 1030-1038.
- 35. Jonasson C, Wernersson B, Hoff DAL, Hatlebakk JG (2013) Validation of the GerdQ questionnaire for the diagnosis of gastro-oesophageal reflux disease. Aliment Pharmacol Ther 37: 564-572.
- 36. Gadiot RPM, Biter LU, van Mil S, Zengerink HF, Apers J, et al. (2016) Long-Term Results of Laparoscopic Sleeve Gastrectomy for Morbid Obesity: 5 to 8-Year Results. Obes Surg 27: 59-63.
- 37. Sieber P, Gass M, Kern B, Peters T, Slawik M, et al. (2014) Five-year results of laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 10: 243-249.
- 38. D'Hondt M, Vanneste S, Pottel H, Devriendt D, van Rooy F, et al. (2011) Laparoscopic sleeve gastrectomy as a singlestage procedure for the treatment of morbid obesity and the resulting quality of life, resolution of comorbidities, food tolerance, and 6-year weight loss. Surg Endosc 25: 2498-2504.
- 39. DuPree CE, Blair K, Steele SR, Martin MJ (2014) Laparoscopic sleeve gastrectomy in patients with preexisting gastroesophageal reflux disease. JAMA Surg 149: 328-334.
- Stenard F, Iannelli A (2015) Laparoscopic sleeve gastrectomy and gastroesophageal reflux. World J Gastroenterol 21: 10348-10357.
- 41. Oor JE, Roks DJ, Ünlü Ç, Hazebroek EJ (2016) Laparoscopic sleeve gastrectomy and gastroesophageal reflux disease: A systematic review and meta-analysis. Am J Surg 211: 250-267.
- Coupaye M, Gorbatchef C, Calabrese D, Sami O, Msika S, et al. (2017) Gastroesophageal reflux after sleeve gastrectomy: A prospective mechanistic study. Obes Surg 28: 838-845.
- 43. Arias E, Martínez PR, Ka Ming Li V, Szomstein S, Rosenthal RJ (2009) Mid-term follow-up after sleeve gastrectomy as a final approach for morbid obesity. Obes Surg 19: 544-548.
- 44. Himpens J, Dobbeleir J, Peeters G (2010) Long-term results of laparoscopic sleeve gastrectomy for obesity. Ann Surg 252: 319-324.
- 45. Howard DD, Caban AM, Cendan JC, Ben-David K (2011) Gastroesophageal reflux after sleeve gastrectomy in morbidly obese patients. Surg Obes Relat Dis 7: 709-713.
- 46. Braghetto I, Csendes A, Lanzarini E, Papapietro K, Cárcamo C, et al. (2012) Is laparoscopic sleeve gastrectomy an acceptable primary bariatric procedure in obese patients? Early and 5-year postoperative results. Surg Laparosc Endosc Percutan Tech 22: 479-486.
- 47. Laffin M, Chau J, Gill RS, Birch DW, Karmali S (2013) Sleeve gastrectomy and gastroesophageal reflux disease. J Obes 2013: 741097.
- 48. Tai CM, Huang CK, Lee YC, Chang CY, Lee CT, et al. (2012) Increase in gastroesophageal reflux disease symptoms and erosive esophagitis 1 year after laparoscopic sleeve gastrectomy among obese adults. Surg Endosc 27: 1260-1266.

- 49. Himpens J, Dapri G, Cadière G (2006) A prospective randomized study between laparoscopic gastric banding and laparoscopic isolated sleeve gastrectomy: Results after 1 and 3 years. Obes Surg 16: 1450-1456.
- 50. Sharma A, Aggarwal S, Ahuja V, Bal C (2014) Evaluation of gastroesophageal reflux before and after sleeve gastrectomy using symptom scoring, scintigraphy, and endoscopy. Surg Obes Relat Dis 10: 600-605.
- Rebecchi F, Allaix ME, Giaccone C, Ugliono E, Scozzari G, et al. (2014) Gastroesophageal reflux disease and laparoscopic sleeve gastrectomy. Ann of Surg 260: 909-915.
- 52. Soliman A, Maged H, Awad A, El-Shiekh O (2012) Laparoscopic crural repair with simultaneous sleeve gastrectomy: A way in gastroesophageal reflux disease treatment associated with morbid obesity. Journal of Minimally Invasive Surgical Sciences 1: 67-73.
- Gibson SC, le Page PA, Taylor CJ (2013) Laparoscopic sleeve gastrectomy: Review of 500 cases in single surgeon Australian practice. ANZ J Surg 85: 673-677.
- 54. Soricelli E, Iossa A, Casella G, Abbatini F, Calì B, et al. (2013) Sleeve gastrectomy and crural repair in obese patients with gastroesophageal reflux disease and/or hiatal hernia. Surg Obes Relat Dis 9: 356-361.

- 55. Weiner RA, Weiner S, Pomhoff I, Jacobi C, Makarewicz W, et al. (2007) Laparoscopic sleeve gastrectomy - influence of sleeve size and resected gastric volume. Obes Surg 17: 1297-1305.
- Melissas J, Koukouraki S, Askoxylakis J, Stathaki M, Daskalakis M, et al. (2007) Sleeve gastrectomy - A restrictive procedure? Obes Surg 17: 57-62.
- 57. Rawlins L, Rawlins MP, Brown CC, Schumacher DL (2013) Sleeve gastrectomy: 5-year outcomes of a single institution. Surg Obes Relat Dis 9: 21-25.
- Chopra A, Chao E, Etkin Y, Merklinger L, Lieb J, et al. (2011) Laparoscopic sleeve gastrectomy for obesity: Can it be considered a definitive procedure? Surg Endosc 26: 831-837.
- 59. Johari Y, Wickremasinghe A, Kiswandono P, Yue H, Ooi G, et al. (2020) Mechanisms of esophageal and gastric transit following sleeve gastrectomy. Obes Surg 31: 725-737.
- Popescu AL, Ioniţa-Radu F, Jinga M, Gavrilă AI, Săvulescu FA, et al. (2018) Laparoscopic sleeve gastrectomy and gastroesophageal reflux. Romanian Journal of Internal Medicine 56: 227-232.

