Medically Integrated Fitness Program Review to Improve Health and Functional Outcomes

Michael M. Haniff, MD2, Christopher R. Sutton, MS, ACSM-RCEP, EIM3, James J.L. Mateka, MD, PhD(c)2, Peggy McDonagh Bravo, RN, BSN, MA1, Wesley R. Waggener, PhD, CSCS1 and Nathaniel S. Jones, MD, CAQ-SM3

1Power Wellness Management, USA
2HM Healthcare Partners, USA
3Loyola University Medical Center, USA

Abstract

Purpose: Exercise prescription may be a useful tool in the management and prevention of chronic disease among the adult population. There is a dearth of structured exercise prescription programs for improving quality of life, physical function, and overall health. The purpose of this investigation was to evaluate the effects of Next Steps Fitness Programs™ on symptoms and health outcomes among adults with one or more chronic conditions.

Methods: This study was a retrospective examination of Next Steps Fitness Programs™ participants (n = 7,971) between January 2014 to December 2017. Paired t-tests were used to assess percent change between pre-assessment to post-assessment.

Results: Nearly three quarters (n = 5,753; 72%) of participants completed the 8-week program. Change from pre-assessment to post-assessment within the six fitness pathways using paired t-tests revealed mostly significant improvements (adjusted P < 0.01) in BMI, diastolic blood pressure, V02max, number of crunches, isometric bicep strength and mental and physical composite scores.

Conclusion: These findings suggest this structured and personalized fitness program is effective and holds much promise to improve general health and slow disease progression among older adults with one or more chronic conditions if prescribed by the managing care provider.

Keywords
Prescriptive fitness, Exercise training, Exercise prescription, Health outcomes, Chronic disease, Adult

Introduction

Chronic conditions and comorbidities such as Cardiovascular Disease (CVD), diabetes, cancer, and chronic lower respiratory disease are among the leading causes of mortality in the United States. According to The Centers for Disease Control and Prevention (CDC), approximately 60% of adults in the United States suffer from at least one chronic condition, and over 42% have two or more. Furthermore, the estimates of chronic and mental health conditions account for 90% of the nation’s $3.3 trillion health care expenditures each year. By 2050, the population over the age of 65 is projected to reach approximately 84 million, almost double the amount in 2012 [1]. Due to this unprecedented rise in older adults, and the concomitant rise in chronic disease, as well as the associated inactivity in this population, the need to incorporate efficient and effective translational evidence-based physical activity interventions remains vital [2].

Physical activity in the form of exercise has been well documented in the literature. It has proven to be effective in the prevention, onset, and treatment for most chronic conditions [3-5] such as Cardiovascular Disease (CVD) [6,7], chronic obstructive pulmonary disease (COPD) [8], depression [9], diabetes [10], osteoarthritis [11], osteoporosis [12,13], and cancers such as
colorectal, breast, endometrial, and moderate effects against prostate, lung, and ovarian cancers. The 2018 Physical Activity Guidelines for Americans recommend that adults engage in 150 minutes of moderate-intensity physical activity and/or two or more weekly muscle-strengthening activities to gain health benefits. Evidence also shows that there is a positive association between regular exercise and improved quality of life in populations with chronic disease.

Physical activity in the form of exercise prescription has been established as a low-cost intervention in chronic illness to improve overall health, quality of life, and physical function in older adults. Many recommendations for clinicians have been made by the CDC, The American College of Sports Medicine (ACSM), and the American Heart Association that health care practitioners provide counseling and referrals of their patients to participate in physical activity programs designed for specialized populations. Research suggests that if recommended by the patient’s care provider or physician, exercise is considered valuable by the patient, yet less than one-third of providers recommend exercise counseling or education to their patient population. This pitfall may be associated with the many complications and functional declines seen in the aging population and providing patients with optimized treatment. Hence, providers need to recommend an exercise prescription to patients with one or more chronic conditions to maximize health benefits and bend the cost-curve among this significantly growing proportion of our population. To date, there exists a lack of evidence-based, effective, and structured physical activity curriculum within community settings that ensure the dissemination of proper physical activities among adults with one or more chronic conditions.

To bridge the gap, Next Steps Fitness Programs™ was developed as a medically integrated, multicomponent exercise and behavioral change intervention designed to deliver individualized fitness protocols for those transitioning from or managing one or more chronic conditions. This investigation aimed to evaluate the effects of Next Steps Fitness Programs™ on symptoms and health outcomes among older adults with one or more chronic conditions, including heart disease, cancer, diabetes, respiratory, obesity, and orthopedics.

Methods

The non-experimental pre-assessment-post-assessment study design was used to examine the benefits of NextSteps Fitness Programs™ among participants with one or more chronic conditions. This retrospective evaluation was approved under Independent Review Board (Sterling #6260) exemption. All identifying information was removed before any research activities.

Sample

The sample was a cohort of Next Steps Fitness Program™ participants who were medically cleared to participate in the fitness protocol by their referring physician or other health care provider into one of the various programs. Next Steps Fitness Programs™ participants completed an 8-week chronic disease pathway (cardiac fitness, cancer fitness, diabetes fitness, pulmonary fitness, weight management, and orthopedic fitness) at one of the 21 fitness facilities located throughout the United States from January 2014 to December 2017 (n = 7,971). Successful program completion was defined as the fulfillment of program requirements, including pre- and post-health assessments.

Clinical measures

A centrally managed repository, PowerLink™ (Lombard, IL) was used to collect informed consent, health history questionnaire, risk stratification data, demographics, and pre- and post-assessment health measures. Age and sex were self-reported. The health measures included fitness-specialists measured anthropometric data at baseline and conclusion of the 8-week Next Steps program pathway. The measures included body fat percentage, body mass index, and weight in kilograms using a calibrated Tanita® BF-350 (Arlington Heights, IL) scale, height in inches using Seca® stadiometer (Chino, CA), estimated maximum oxygen consumption (VO2max) using Polar BodyAge® OwnIndex® and Polar® H2 Bluetooth Heart Rate Chest Transmitter (Bethpage, NY), and blood pressure using MooreBrand® Standard Aneroid Sphygmomanometer and MooreBrand® Sprague-Rappaport Stethoscope (Farmington, CT). Additional measures collected included health-related quality of life using the 36-item, short-form health survey questionnaire (SF-36) for physical composite score (PCS) and the mental composite score (MCS). BMI was calculated using weight in kilograms divided by the square of the converted height in meters (kg/m2). Measures of strength and endurance were assessed using Polar BodyAge® Four Load Cell Platform (Bethpage, NY) and the total number of abdominal crunches. Data was recorded by a certified fitness specialist into the Polar BodyAge® system software.

Statistical analysis

Descriptive statistics were used to report demographics by each program. Pre- and post-assessment evaluation measurements were summarized across all participants using means and standard deviations, stratified by Next Steps Fitness Program™ pathway. The univariate changes were analyzed using a paired t-test of the participant-matched pre-assessment (baseline), and post-assessment (end of the 8-week program) measures at an adjusted significance level of 0.05. The percent change between the pre- post-assessment measures were calculated of the measurements including BMI, diastolic blood pressure, estimated VO2max, number of crunches, arm strength (in pounds) and self-reported values of the SF-36 physical and mental composite.
scores, by dividing the overall change across participants by the mean of the respected pre-assessment score. All analyses were conducted using SPSS 23 (Chicago, IL).

Results

Participant characteristics

Enrollment into the 8-week Next Steps Fitness Programs™ began in 2014 and is currently ongoing. The data presented in this evaluation pertain to adult participants from January 2015 to December 2017. A total of 7,971 participants were enrolled in one of the six Next Steps Fitness Program™ pathways with a mean age of 60.61 (SD = 12.67) years. The majority of participants were female (n = 5,345, 67%). A total of 5,753 (72%) met the study criteria, defined as having completed a pre- and post-assessment within one of the six evaluated program pathways (cardiac fitness, cancer fitness, diabetes fitness, orthopedic fitness, pulmonary fitness, and weight management). Change from pre-assessment to post-assessment within the six program pathways using paired t-tests revealed mostly significant improvements (adjusted $P <0.01$) in BMI, diastolic blood pressure, VO$_2$-max, number of crunches, isometric bicep strength and in the mental and physical composite scores using SF-36 (Table 1). Overall, Next Steps Fitness Program™ participants in the six program pathways experienced the greatest improvements in the total number of crunches by dividing the overall change across participants by the mean of the respected pre-assessment score. All analyses were conducted using SPSS 23 (Chicago, IL).

<table>
<thead>
<tr>
<th>Program</th>
<th>N</th>
<th>Pretest (Mean)</th>
<th>Posttest (Mean)</th>
<th>Change (%)</th>
<th>Adjusted p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>1122</td>
<td>37.45 ± 8.10</td>
<td>36.70 ± 7.91</td>
<td>-0.74 (-2%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>1123</td>
<td>78.32 ± 9.05</td>
<td>77.08 ± 8.55</td>
<td>-1.23 (-1%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>V02</td>
<td>799</td>
<td>24.38 ± 5.48</td>
<td>25.64 ± 5.72</td>
<td>1.266 (4%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Crunches</td>
<td>677</td>
<td>32.95 ± 15.77</td>
<td>43.83 ± 15.96</td>
<td>10.87 (24%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Biceps</td>
<td>796</td>
<td>56.41 ± 27.10</td>
<td>64.35 ± 31.08</td>
<td>7.942 (12%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Mental Composite Score</td>
<td>981</td>
<td>50.38 ± 10.53</td>
<td>53.85 ± 8.70</td>
<td>3.465 (6%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Physical Composite Score</td>
<td>983</td>
<td>45.30 ± 9.61</td>
<td>48.96 ± 8.23</td>
<td>3.666 (7%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diabetes Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>444</td>
<td>34.36 ± 7.32</td>
<td>34.14 ± 7.21</td>
<td>-0.22 (-0%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>442</td>
<td>76.66 ± 9.08</td>
<td>75.00 ± 8.56</td>
<td>-1.65 (-2%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>V02</td>
<td>297</td>
<td>24.33 ± 6.44</td>
<td>25.62 ± 6.09</td>
<td>1.291 (5%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Crunches</td>
<td>228</td>
<td>30.89 ± 15.37</td>
<td>40.72 ± 15.24</td>
<td>9.830 (24%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Biceps</td>
<td>286</td>
<td>54.74 ± 21.84</td>
<td>60.80 ± 23.15</td>
<td>6.058 (9%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Mental Composite Score</td>
<td>406</td>
<td>50.55 ± 10.57</td>
<td>54.16 ± 8.23</td>
<td>3.613 (6%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Physical Composite Score</td>
<td>406</td>
<td>43.68 ± 9.34</td>
<td>47.40 ± 8.53</td>
<td>3.724 (7%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Cardiac Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>771</td>
<td>30.54 ± 6.50</td>
<td>30.43 ± 6.40</td>
<td>-0.10 (-0%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>768</td>
<td>73.87 ± 10.06</td>
<td>73.52 ± 9.55</td>
<td>-0.34 (-0%)</td>
<td>0.29</td>
</tr>
<tr>
<td>V02</td>
<td>458</td>
<td>25.47 ± 7.23</td>
<td>26.52 ± 7.20</td>
<td>1.043 (3%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Crunches</td>
<td>311</td>
<td>29.04 ± 15.55</td>
<td>39.02 ± 15.67</td>
<td>9.974 (25%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Biceps</td>
<td>435</td>
<td>51.72 ± 23.33</td>
<td>58.23 ± 26.41</td>
<td>6.508 (11%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Mental Composite Score</td>
<td>684</td>
<td>51.82 ± 9.57</td>
<td>54.34 ± 8.31</td>
<td>2.524 (4%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Physical Composite Score</td>
<td>685</td>
<td>43.38 ± 9.72</td>
<td>46.26 ± 9.36</td>
<td>2.881 (6%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Pulmonary Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>177</td>
<td>30.72 ± 8.08</td>
<td>30.80 ± 8.05</td>
<td>0.078 (0%)</td>
<td>0.59</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>176</td>
<td>75.09 ± 10.72</td>
<td>72.13 ± 8.50</td>
<td>-2.96 (-4%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>V02</td>
<td>93</td>
<td>23.13 ± 8.29</td>
<td>25.13 ± 7.55</td>
<td>1.992 (7%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Crunches</td>
<td>57</td>
<td>22.77 ± 13.75</td>
<td>31.24 ± 15.58</td>
<td>8.473 (27%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Biceps</td>
<td>93</td>
<td>43.57 ± 18.81</td>
<td>47.85 ± 22.57</td>
<td>4.287 (8%)</td>
<td>0.00</td>
</tr>
<tr>
<td>SF-36 Mental Composite Score</td>
<td>151</td>
<td>50.52 ± 11.26</td>
<td>54.06 ± 8.99</td>
<td>3.543 (6%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>SF-36 Physical Composite Score</td>
<td>151</td>
<td>36.26 ± 9.07</td>
<td>39.79 ± 9.43</td>
<td>3.529 (8%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Orthopedic Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>1502</td>
<td>31.23 ± 7.16</td>
<td>31.06 ± 7.05</td>
<td>-0.17 (-0%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>1504</td>
<td>76.05 ± 9.67</td>
<td>74.76 ± 9.05</td>
<td>-1.28 (-1%)</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>
and the physical and mental composite scores, indicating an increase in muscular endurance and perceived quality of life.

Body Mass Index

Most participants experienced no change in BMI with the exception of participants within the weight management pathway, who experienced a significant decrease in BMI between pre-assessment (\(\overline{X} = 37.45, SE = 0.24 \)) and post-assessment (\(\overline{X} = 36.71, SE = 0.24 \), mean difference = -0.75, percent change = -2.03%, \(t (1,503) = -5.64, adjusted P < 0.001 \)). Changes in pre-assessment BMI were not observed for the other 5 pathways (cardiac fitness, cancer fitness, diabetes fitness, pulmonary fitness, and orthopedic fitness).

Diastolic blood pressure

Approximately three-quarters of participants (75.3%; \(n = 3,245 \)) experienced a decrease and nearly one-quarter (24.7%; \(n = 1,070 \)) experienced no change in diastolic blood pressure. Decreases were observed within weight management (pre-assessment \(\overline{X} = 78.32, SE = 0.27 \), post-assessment \(\overline{X} = 77.09, SE = 0.26 \), mean difference = -1.26, percent change = -1.65%, \(t (441) = -4.64, adjusted P < 0.001 \)), diabetes fitness (pre-assessment \(\overline{X} = 76.66, SE = 0.43 \), post-assessment \(\overline{X} = 75.01, SE = 0.41 \), mean difference = -1.65, percent change = -2%, \(t (441) = -3.90, adjusted P < 0.001 \)), pulmonary fitness (pre-assessment \(\overline{X} = 75.10, SE = 0.81 \), post-assessment \(\overline{X} = 72.14, SE = 0.64 \), mean difference = -2.96, percent change = -4%, \(t (175) = -4.58, adjusted P < 0.001 \)), and orthopedic fitness pathways (pre-assessment \(\overline{X} = 76.05, SE = 0.25 \), post-assessment \(\overline{X} = 74.77, SE = 0.23 \), mean difference = -1.28, percent change = -1.29%, \(t (1,503) = -5.64, adjusted P < 0.001 \); Table 1). Participants within the cardiac fitness and cancer fitness pathways exhibited no significant change in diastolic blood pressure.

V02max

Participants in each pathway (\(n = 2,746 \)) experienced an increase in aerobic capacity. The greatest change was observed within the pulmonary fitness pathway (pre-assessment \(\overline{X} = 23.14, SE = 0.86 \), post-assessment \(\overline{X} = 25.13, SE = 0.78 \), mean difference = 1.99, percent change = 7.0%, \(t (92) = -4.58, adjusted P < 0.001 \)). Both the diabetes fitness (pre-assessment \(\overline{X} = 24.33, SE = 0.37 \), post-assessment \(\overline{X} = 25.63, SE = 0.35 \), mean difference = 1.29, percent change = 5.4%, \(t (296) = -1.73, adjusted P < 0.001 \) and orthopedic fitness (pre-assessment \(\overline{X} = 24.28, SE = 0.24 \), post-assessment \(\overline{X} = 25.57, SE = 0.23 \), mean difference = 1.29, percent change = 5.0%, \(t (906) = 10.34, adjusted P < 0.001 \); Table 1) pathways experienced the second greatest change in aerobic capacity.

Crunches

Participants in each pathway greatly improved in muscle endurance as measured by the total number of abdominal crunches (\(n = 2,029 \)). However, participants within the orthopedic fitness pathway exhibited the greatest improvement in the number of abdominal crunches from pre-assessment \(\overline{X} = 31.00, SE = 0.62 \) to post-assessment \(\overline{X} = 42.76, SE = 0.65 \), mean difference = 11.76, percent change = 27.4%, \(t (617) = 25.68, adjusted P < 0.001 \); Table 1).

Bicep curls

We observed an improvement in the isometric biceps curl strength test amongst all Next Steps Fitness Program™ participants (\(n = 2,705 \)). The greatest improvement was observed within the weight management pathway (pre-assessment \(\overline{X} = 56.41, SE = 0.96 \), post-assessment \(\overline{X} = 64.36, SE = 1.10 \), mean difference = 7.94, percent change = 12%, \(t (795) = 13.79, adjusted P < 0.001 \); Table 1).

SF-36 Physical & mental composite scores

Overall, participants in each pathway experienced a significant mean increase of 3.04 (\(SD = 8.73 \), adjusted \(P < 0.001 \)) points in the mental composite score and 3.93 (\(SD = 8.73 \), adjusted \(P < 0.001 \)) points in the physical composite score as measured by SF-36 (Table 1). The greatest improvement in physical composite score was
observed in the orthopedic fitness pathway (mean difference = 4.83, percent change = 11%, adjusted $P < 0.001$; Table 1). Participants of the cancer fitness pathway experienced the greatest increase in mental composite score (mean difference = 3.71, percent change = 8%, adjusted $P < 0.001$; Table 1).

Discussion

The purpose of this investigation was to evaluate the effects of *Next Steps Fitness Programs*™ on symptoms and health outcomes among older adults with one or more chronic conditions, including heart disease, cancer, diabetes, respiratory, obesity, and orthopedics. *Next Steps Fitness Programs*™ were developed to maximize individualized exercise prescription based on participant fitness goals, recommendations from their referring health care provider, and expertise of the fitness specialist to improve functional fitness and overall quality of life.

Nearly three quarters (n = 5,753; 72%) of the participants completed the 8-week program within the six pathways. Participants generally experienced improvements in risk factors associated with chronic conditions, including BMI, body fat, perceived mental composite score, and blood pressure. The observed improvements indicate that participants have increased their overall physical function, strength, mental health, and quality of life. The magnitude of change in each of the parameters was small, albeit consistent among participants in each pathway, and was found to be parallel findings from other studies on exercise referral [20-28]. An evaluation of a 20-week loaded and unloaded resistance program exhibited similar functional fitness improvements, such as a 16.94% increase in biceps curls among its participants [29]. Similarly, Hamar and colleagues [30] found a significant improvement in physical and emotional health among patients with chronic conditions following participation in the SilverSneakers® program. Despite the small changes over 8-weeks, the results may have more considerable public health significance when disseminated to a larger population.

Physical activity has shown to have a strong protective effect against colon and breast cancers [14-15,31-34]. Regular physical activity among these groups was associated with up to a 50% decrease in all-cause mortality in colon cancer and 41% in breast cancer [31-34]. Recent studies have shown that regular physical activity before and after a cancer diagnosis may improve functional and physical wellbeing [14-18]. Our findings are consistent with those findings as participants within the cancer fitness pathway experienced the most significant improvement in mental composite score from pre-assessment to post-assessment (8%, adjusted $P < 0.001$) and an overall 8% increase (adjusted $P < 0.001$) in the physical composite score.

Regular exercise is well-known to prevent cardiovascular disease such as CAD by as much as 22% in men [35] and 33% in women [36]. Taylor and colleagues [2] described a structured exercise program as vital for patients following a cardiac event such as a Myocardial Infarction (MI), coronary intervention, or heart failure as it may lead to a reduction in mortality in this population by 20-30%. Consistent with other findings, participants enrolled in the cardiac fitness pathway experienced significant improvements in estimated VO2max, strength, and overall physical and mental health composite scores. However, despite these findings, physical activity for cardiac disease rehabilitation is infrequently utilized following hospitalization for an MI or coronary intervention [37].

Participants within the pulmonary fitness pathway exhibited the most significant change in maximum oxygen uptake, as measured by VO2max (7.0%, adjusted $P < 0.001$). These findings parallel the importance of physical activity in patients with COPD as VO2max is considered reflective of disease severity [38]. The overall increase in physical (8%) and mental (6%) health composite scores indicate that participants perceive health benefits. Further cementing findings that exercise among patients with COPD are associated with a reduction in the FEV1 decline and disease progression [8,38].

Orthopedic fitness was the most popular pathway among the *Next Steps Fitness Programs*™ program participants. We observed the greatest increase in the number of abdominal crunches from pre-assessment to post-assessment (mean change = 7.94, percent change = 27.4%, adjusted $P < 0.001$) among this group was observed and is an indicator for improvement in muscular strength and endurance. Physical activity among this group has been shown to have a positive effect on bone mineral density and a reduction in falls and fractures among patients with osteoporosis and demonstrated reductions in pain, function, and quality of life among patients with osteoarthritis [12,13].

Participants in the diabetes fitness pathway experienced significant changes in each measured parameter, indicating that the program was effective in improving disease symptomatology. The most significant change was observed within the strength and endurance measures; however, BMI was the only parameter with the least improvement. One study found that exercise among patients with type 2 diabetes can achieve greater glycemic control and a reduced triglyceride level [39]. Although we did not measure hemoglobin A1c levels, it can be surmised that this led to greater glycemic control.

Obesity affects a considerable proportion of the American population [40]. It was not surprising that the weight management pathway had the second-highest number of participants (n = 1,123) and the only to experience a significant decrease in BMI (-2%, adjusted $P < 0.001$). All participants in the weight management
pathway improved their strength and endurance as well as their physical and mental health composite scores. An overall mean decrease (-1.23%) in diastolic blood pressure along with a decreased BMI and increases in aerobic capacity, strength, and endurance observed in 8-weeks indicate that risk factors for disease progression, such as hypertension have been slightly reduced.

Program model

Next Steps Fitness Programs™ were developed as a medically integrated, multicomponent exercise and behavioral change intervention designed to deliver individualized fitness protocols for those transitioning from or managing one or more chronic conditions. Medical integration is the program’s conceptual framework, aimed at bridging the gap between fitness professionals and healthcare providers in the prevention and treatment of chronic pain and disease. Each wellness center offering Next Steps Fitness Programs™ has a dedicated medical integration task force to oversee program delivery while utilizing non-binding recommendations from their Medical Advisory Committee, consisting of physicians, department directors, healthcare providers, rehabilitation therapists, and a resource for the wellness center.

Participants are referred to the program by a healthcare provider, either through an electronic medical record or physically bringing the referral to the wellness center. Two follow-ups are sent back to the referring provider, to close the loop on the referral and to send the pre- and post-assessment results. Upon enrollment, each participant is scheduled for 16 appointments that include a pre- and post-assessment with two 60-minute supervised exercise sessions per week for 8-weeks. An individualized exercise plan is prescribed as part of the pre-assessment consultation utilizing guidelines from the ACSM and comprised of progressive resistance training paired with functional movement training. There are on average, 8-10 participants in each session, supervised by degreed and certified fitness specialists. Each participant utilizes their exercise plan independently. Each participant begins with a 15-minute warm-up that may include brisk walking and conclude their exercise session with a 15-minute cool-down that includes upper and lower body flexibility exercises.

Limitations

The major limitation of this evaluation is the lack of a control or comparator group, which would have allowed for inferences to be made with a higher level of confidence. Moreover, the use of secondary data limited the ability to identify direct causal factors and to follow-up for disease progression assessments through the medical integration and care-provider teams. Additionally, more than half the number of participants had a follow-up assessment, which significantly decreased the sample size and limited findings among each of the cohorts as well as factors as to the reasons, such as motivation for lack for program completion. We acknowledge the Polar OwnIndex® method of estimating VO2max has not been shown to be reliable in unhealthy populations. Lastly, although information was collected regarding the amount of time spent exercising, the lack of significant number of evaluations hindered the assessment of whether participation in Next Steps Fitness Programs™ enables the continuation of exercise following the 8-week program. A future evaluation of Next Steps Fitness Programs™ will seek to mitigate these issues through a prospective, controlled study.

Conclusion

The cost of chronic disease management in the United States continues on an upward trajectory and is estimated to be the largest percentage of the nation’s healthcare budget. Published conservative percentages have been shown to be as high as 86% and growing [1]. The benefits of fitness programs are widely accepted as one of the main avenues by which anyone with chronic diseases can manage their disease and prevent costly hospital admissions. Individually, each chronic disease indication reviewed can be shown to have direct cost savings in the long-term. Currently, the initial cost of allowing older adults to participate in prescriptive fitness is nominal compared to the annual cost of heart disease, diabetes management and osteoarthritis combined annually.

While there is a growing body of evidence on exercise programming and exercise prescription, there is a dearth of structured programs which hinders practitioners to translate the evidence to clinical practice. Participants of the six chronic disease pathways were associated with improvements in various health measures. These findings suggest that this structured and personalized fitness program is effective and holds much promise to improve general health and slow disease progression among older adults with one or more chronic conditions. As the program is prevalent among 22 wellness centers across 11 states, it also demonstrates that a structured and personalized fitness program can be replicated and effective in diverse populations. The findings from this evaluation will serve as a model for reproducibility to implement medically integrated fitness and enhance physician-led exercise prescription in chronic conditions and provide insight into the realized benefits of supervised structured exercise adapted and implemented for specialized populations.

Conflict of Interest

The authors declare no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Acknowledgements

The results of this study do not constitute endorsement by the American College of Sports Medicine. The
authors hereby declare the results of the study are presented clearly, honest, and without fabrication, falsification, or inappropriate data manipulation.

References

34. Meyerhardt, JA, Heseltine D, Niedziewski D, Hollis D, Saltz

