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Abstract
Gut microbiota plays an important role in the modulation 
of physiological processes associated with the digestion 
of nutrients, immune system and control of energy homeo-
stasis. Changes in gut microbiota composition have been 
associated notably with obesity, diabetes, and inflammatory 
diseases. Diet is one of the major factors capable of modu-
lating the intestinal microbiota composition. In addition, the 
literature has shown that exercise can affect the gut micro-
biota composition and modulate the balance between the 
interaction of host and beneficial microbiota. Physical exer-
cise improves the diversity and relative amounts of bacterial 
species under different nutritional contexts. However, the 
impact of exercise associated or not with dietary changes 
on the gastrointestinal environment and consequences for 
gut health remain poorly understood. Some proposals re-
garding the biological mechanisms possibly involved high-
light the short chain fatty acid production and alteration in 
intestinal pH as main forms by which exercise may affect 
gut microbiota composition. Thus, the aim of the present 
review is to present an overview of the effects of physical 
exercise associated with diet on the characteristics of the 
intestinal microbiota.
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commensal bacteria have been shown to be able to af-
fect gut metabolism and physiology by several mecha-
nisms, including the production of various bacterial me-
tabolites from dietary and endogenous substrates [2]. 
While carbohydrate fermentation is mainly considered 
beneficial for the host through the production of Short-
Chain Fatty Acids (SCFA) in the intestinal luminal con-
tent, protein fermentation gives rise to a wide variety 
of compounds, some of which could be detrimental for 
gut health when present at excessive concentration [3]. 
Some bacterial metabolites can be transferred through 
the intestinal epithelium from the intestinal luminal con-
tent to the portal bloodstream reaching the liver, and 
then, to the peripheral blood stream [4]. Some of these 
metabolites have been shown to be active on different 
tissues, such as in the liver and adipose tissue, by inter-
fering with metabolism and physiology [5]. In addition, 
high fat diet consumption may be capable of promot-
ing gram-negative bacteria growth and favoring a local 
inflammation, which would be harmful for gut health 
[6]. There are several reports regarding the effects of 
the diet but, recently, exercise was revealed as another 
factor capable of influencing the diversity, composition 
and metabolic activity of gut microbiota, as well as its 
fermentation capacity and diet SCFA production [6,7]. 
The aim of the present review is to present an overview 
of the effects of physical exercise associated with diet on 
the characteristics of the intestinal microbiota.

REVIEW ARTICLE

Introduction

Gut microbiota is now established as a key player 
in various aspects of health and diseases [1]. Recently, 
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Gut Microbiota Composition

The human gastrointestinal tract is colonized by ap-
proximately one trillion microorganisms known as gut 
microbiota. This diversity represents a number much 
larger than human cells [8,9]. Bacterial density varies 
along the gastrointestinal tract due to the specific con-
ditions of each portion, such as differences in the gradi-
ent of pH, antimicrobial peptides (including bile acids), 
and in the amount of oxygen, which limits the growth of 
some bacteria [10].

Human gut microbiota composition varies since the 
birth up to two years of age, when the birth delivery 
by vaginal or cesarean mode and early nutrition by 
breastfeeding or formula milk and the introduction of 
new food modulate initially the microbial populations, 
quantitatively and qualitatively, of the child toward 
adulthood [11,12]. From there, several environmental 
factors, mainly diet, exercise, aging, hygiene, medicine, 
geographic area, pregnancy and the presence or not of 
some disease will influence the microbial composition 
in a host-specific way [13,14]. In this complex commu-
nity of bacteria, two phyla appear to be the most pre-
dominant and common among individuals: Firmicutes 
(60-80%) and Bacteriodetes (15-30%) [15]. The first one 
is the most abundant phylum covering, mainly, Clostrid-
ium, Ruminococcus, Lactobacillus and the butyrate-pro-
ducing bacteria, such as Eubacterium, Faecalibacterium 
and Roseburia, which are known for their abundance in 
healthy individuals. The Bacteroidetes phylum is com-
posed, primarily, by gram-negative bacteria, including 
Bacteroides genus, which is recognized, mostly, for its 
contribution to the degradation of complex glycans [16]. 
Furthermore, there are others phyla, which are part of 
the gut microbiota, but in minor proportion, such as 
Proteobacteria, Verrucomicrobia, Actinobacteria, Fuso-
bacteria and Cianobacteria [17].

The complexity between diet-related gut microbi-
ota and intestinal health

Diet influences gut microbiota composition since it 
provides senergy, nutrients and oligoelements/micro-
nutrients, which will be used by both the host and in-
testinal bacteria. The gut microbiota produces several 
vitamins and a range of enzymes, which will ferment 
the nutrients that are not digested by human digestive 
enzymes [18]. The most abundant SCFAs produced by 
fermentation of carbohydrates are acetate, propionate 
and butyrate (which constitute > 95% of the SCFA con-
tent). It has been shown that butyrate acts locally on 
intestine by affecting metabolism and gene expression 
in the colonic epithelium [19,20] while acetate and pro-
pionate reach systemic circulation and are utilized by 
other organs, such as adipose tissue and liver, and con-
tribute up to 10% of the energy required by the host 
[21]. Moreover, as weak acids, they also help to main-
tain a slightly acidic pH in the proximal colon.

Nondigested proteins or peptides might also be 
substrates for microbial production of SCFA [2]. How-
ever, microbial protein fermentation by proteolytic 
bacteria (for example some bacteria of Clostridium’s 
group) yields a diverse range of metabolites, including 
Branched-Chain Fatty Acids (BCFA), lactate, and aromat-
ic components, and amines sulfides, phenols and in-
doles [22]. Many of these protein fermentation-derived 
metabolites might have negative consequences on ep-
ithelial cell metabolism and barrier function, affecting 
the host’s gut health [23]. Moreover, high protein diets 
are usually accompanied by a reduction in carbohydrate 
intake, which may not be beneficial for host health [24]. 
Currently, little is known about the effects of protein 
supplementation, associated (or not) with exercise.

Animal fat-rich diets quickly increase the abundance 
of bacteria resistant to bile acids in humans, such as 
Bacteroides and Bilophila, which can metabolize differ-
ent types of bile acids and promote the development 
of inflammatory bowel disease [25]. Furthermore, con-
sumption of a high fat diet is capable of unbalancing the 
proportions of Firmicutes/Bacteroidetes, raising Lipo-
polysaccharide (LPS) circulation and the concentration 
of inflammatory cytokines, favoring systemic inflamma-
tion [25,26].

The Effect of Physical Exercise on the Gut Mi-
crobiota

Studies in humans reporting the effects of physical 
exercise on gut microbiota composition, diversity and 
metabolic activity are limited. Clarke, et al. [27] accom-
plished the sole study performed with healthy individu-
als. In this pioneering work, elite rugby players were re-
cruited, and, in agreement with several animal studies, 
this study reported that athletes displayed an increase 
of the gut microbiota richness and diversity (22 distinct 
phyla), and also a decrease of systemic pro-inflammato-
ry cytokines [27] (Table 1). The authors reported this bi-
ota profile in individuals with exercise training program 
in athletes as compared to sedentary controls group.

However, the most relevant insight on the effect of 
exercise on gut composition was provided by exper-
imental models. Matsumoto, et al. [28] were the first 
authors to demonstrate that chronic voluntary physical 
exercise is able to change the composition of rat gut mi-
crobiota [28]. Some studies performed afterwards asso-
ciated physical exercise with some pathological states 
or dietary intervention (Table 1).

A study performed with polychlorinated biphenyls 
(pollutant model) demonstrated that voluntary physical 
exercise is able to cause changes in the biodiversity and 
composition of microbiota in mice, and attenuated the 
effects of the pollutant contamination of the microbiota 
[29]. Furthermore, under different dietary conditions, 
voluntary exercise appears to reshape the gut microbi-
ota. Evans, et al. [25] proposed that physical exercise 
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Table 1: Exercise and microbiota studies.

Reference Exercise 
training

Subjects Groups Analyses of gut 
microbiota

Results

Matsumoto, et 
al. [28]

Voluntary 
exercise; 5 
weeks

Animals Exercised and 
sedentary 
group

PCR-TGGE and a 
sequencing analysis 
for bacterial DNA and 
HPLC for organic 
acids

Increase of n-butyrate 
concentrations and butyrate-
producing bacteria in exercise 
group.

Choi, et al. [29] Voluntary 
exercise; 5 
weeks

Animals Model of 
Polychlorinated 
Biphenyls 
(PCB) 
administration 
in exercise 
and sedentary 
groups

PhyloChip Array Exercise attenuates the decrease 
of the abundance of bacterial taxa 
and the phylum Proteobacteria after 
PCB-treatment in both groups.
Exercise was capable to attenuate 
PCB-induced changes on gut 
microbiota. Activity level was 
positively correlated with a shift in 
abundance of the microbiota.

Queipo-Ortuño, 
et al. [30]

Voluntary 
exercise; 6 
days

Animals Model of caloric 
restriction in 
exercise and 
sedentary 
groups

V2-V3 regions 16S 
rRNA, PCR-DGGE 
and qPCR

Increase of the phylum 
Proteobacteria, decrease of 
phyla richness and of the genus 
Bifidobacteria was observed in 
exercise plus CR group. Moreover, 
this group showed increase in 
Clostridium and Enterococcus 
and decrease of B. coccoides-E. 
rectal and Lactobacillus unlike the 
changes in exercise group without 
CR.

Evans, et al. 
[25]

Voluntary 
exercise; 12 
weeks

Animals Model of LFD 
and HFD in 
exercise and 
sedentary 
groups

V4 region 16S rRNA,
TRFLP and qPCR

Exercise increased Bacteroidetes 
and decreased Firmicutes in 
both LFD and HFD groups and 
displayed a trend toward to 
increase Bacteroidetes/Firmicutes 
ratio. Actinobacteria levels were 
lower in LFD-e than LFD-s. Also, 
exercise increased the content of 
the families Lachnospiraceae and 
Ruminococcaceae and decreased 
Lactobacillaceae in both diets.

Kang, et al. [45] Controlled 
exercise; 60 
min/d; 5 d/
week;
16 weeks

Animals Model of ND 
and HFD in 
exercise and 
sedentary 
groups

V3-V5 regions 16S 
rRNA, Illumina MiSeq 
and qPCR

Exercise was capable to reduce 
the levels of Streptococcus genus 
in HFD group. Also, there was a 
significant increase in Firmicutes 
and decrease in Bacteroidetes 
phyla in HFD-e compared to HFD-s.

Petriz, et al. 
[32]

Controlled 
exercise; 30 
min/d; 5 d/
week; 4 weeks

Animals Control, 
hypertensive 
and obese 
groups

V5-V6 regions 
16S rRNA, 454 
GS FLX Titanium 
sequencer platform 
(pyrosequecing)

Exercise reduced Streptococcus 
genus in control rats, increased of 
Allobaculum genus and reduced 
Aggregatibacter and Suturella in 
hypertensive rats and increased 
Lactobacillus levels in obese rats. 
At post exercise, only obese rats 
showed more abundance of some 
bacteria species.

Lambert, et al. 
[35]

Controlled 
exercise; LIT; 
5 d/week; 6 
weeks

Animals Diabetic type 
II and control 
groups

qPCR Exercise increased the abundance of 
Firmicutes species (Lactobacillus spp. 
and Clostridium leptum cluster IV) 
and reduced Bacteroides/Prevotella 
spp. and Methanobrevibacter spp. 
in both control and diabetic groups. 
Bifidobacterium spp. was greater 
in exercised control but not diabetic 
group.
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only in the group submitted to exercise, as we observe 
on Evans, et al. [25] research, hence supporting the hy-
pothesis that exercise causes changes in gut microbiota 
independent of changes in diet [26].

Short term (6 days) voluntary exercise showed that 
nutritional status and physical activity alter gut micro-
biota diversity in different manners. When exercise is 
combinated with food restriction protocol (restricting 
access for 23 hours per day and confined to running 
wheels except during a 60 min meal), a negative impact 
on bacterial richness is reported with respect to the Lac-
tobacillus and Bifidobacterium genera [30]. The caloric 
restriction was also able to modify the phyla, even in 
the presence of exercise [30] (Table 1). It seems that ex-

modifies the bacterial balance in the gut, with alteration 
of the major phyla levels, and increase of the relative 
proportion of butyrate-producing bacteria (Clostridia-
ceae, Lachnospiraceae and Ruminococcaceae). The au-
thors appoint that the exercise practice would be able 
to prevent the effects of a High Fat Diet (HFD) [25]. In 
fact, Campbell, et al. [26] showed that exercise is able 
to modify not only the specific populations of commen-
sal bacteria in the gut, but also cause morphological 
changes in gut microenvironment. In the Campbell et al. 
study [26], the exercised group showed reduced intes-
tinal inflammation due to a high-fat diet and morpho-
logical characteristics similar to the control. Likewise, in 
a previous study, Faecalibacterium prausnitzi and Lach-
nospiraceae group (a Clostridia-cluster) were detected 

Liu, et al. [31] Voluntary 
exercise; 11 
weeks

Animals 
(Ovariectomized 
female rats)

Model of LCR 
and HCR in 
exercise and 
sedentary 
groups; all 
groups with 
HFD

V4 region 16S rRNA, 
Illumina MiSeq

Exercise decreased the abundance 
of Firmicutes in LCR and increased 
in HCR group. Also, it was capable 
to increase Proteobacteria and 
Cyanobacteria phyla in LCR, but 
decreased in HCR group. At family 
level, exercise decreased the 
abundance of Ruminococcaceae 
and Lachnospiraceae in LCR, 
but increased in HCR. Exercise 
increased Clostridiaceae and, 
mainly, Clostridium genus, in both 
exercise groups.

Mika, et al. [34] Voluntary 
exercise; 6 
weeks

Animals Healthy 
juveniles and 
adults with 
exercise and 
sedentary 
groups

V4 region 16S rRNA, 
qPCR

The juvenile runners, although 
less diverse and richness than 
their adults counterparts, showed 
more changes as an increase in 
Bacteroidetes and a decrease in 
Firmicutes and Proteobacteria 
phyla, which remains over 25 days 
even without exercise.

Campbell, et al. 
[26]

Voluntary 
exercise; 12 
weeks

Animals Model of ND 
and HFD in 
exercise and 
sedentary 
groups

TRFLP and 454 GS 
FLX 454 Genome 
Sequencer platform 
(pyrosequencing)

Allobaculum spp. and Clostridiales 
were enriched within the exercise 
group in ND. Faecalibacterium 
prausnitzi was detected only in 
exercise groups in both ND and 
HFD and Lachnospiraceae was 
not present in the HFD-e or HFD-s 
groups.

Denou, et al. 
[33]

Controlled 
exercise; HIIT; 
3 d/week; 6 
weeks

Animals Model of ND 
and obesity-
inducing HFD 
in exercise 
and sedentary 
groups

V3 region 16S rRNA, 
Illumina MiSeq and 
qPCR

HIIT increased the overall 
richness of the microbiota in the 
colon of obese mice, mainly, 
within Bacteroidetes phylum and 
Bacteroidales order unlike to the gut 
microbiota composition in HFD-s 
group.

Clarke, et al. 
[27]

No intervention Humans Athletes 
(rugby players) 
and healthy 
untrained 
controls

V4 region 16S 
rRNA, 454 Genome 
Sequencer 
FLX platform 
(pyrosequencing)

Athletes showed a higher 
richness with less abundance of 
Bacteroidetes phylum. The family 
Akkermansiaceae and the genus 
Akkermansia showed higher 
levels in athletes when compared 
to control group with high BMI 
and lower levels of Bacteroides, 
Lactobacillaceae and Lactobacillus 
when compared to control group 
with low BMI.

d: day; LIT: Low Intensity Training; HIIT: High Intensity Interval Training; LFD: Low Fat Diet; ND: Normal Diet; HFD: High Fat Diet; 
LFD-e: Low Fat Diet plus exercise; LFD-s: Low Fat Diet within sedentary group; HFD-e: High Fat Diet plus exercise; HFD-s: High 
Fat Diet within sedentary group; LCR: Low Capacity Running; HCR: High Capacity Running.
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more plastic and sensitive to environmental changes 
during early life. Then, exercise initiated during the ju-
venile period may show a more robust impact on the 
gut microbiota than exercise initiated in adulthood [34]. 
In other words, the changes that occur in childhood may 
last longer even with the absence of exercise than the 
changes occurring later. The authors show that exer-
cise-induced alterations in microbiota during early life 
contribute to metabolic consequences such as increased 
SCFA production, increased energy expenditure and re-
duced fat accumulation in the adipose tissue. Indeed, 
increased Bacteroidetes phyla along with decreased Fir-
micutes phyla within the gut have been associated with 
these metabolic consequences. The results obtained by 
Denou, et al. [33] reinforce this proposition [33-35].

It is important to observe that only one study regard-
ing gut microbiota and exercise science was carried out 
with athletes [27], a population in which the amount of 
exercise training is very large and intense, and its out-
comes are different when compared with voluntary ex-
ercise performed in some animals’ protocols or short 
session of moderate exercise performed by active indi-
viduals, as shown in Table 1.

Possible Mechanisms Connecting Physical Ex-
ercise and Gut Microbiota

The effect of exercise on microbiota is still largely un-
known. They are likely to be mediated, at least in part, 
by altering parameters that influence the intestinal mi-
croenvironment.

Short chain fat acids

Exercise may increase butyrate-producing bacteria 
species [25,28]. Matsumoto, et al. [28] were the first to 
show that chronic voluntary physical exercise in animals 
is able to change SCFA production (n-butyrate) in the ce-
cum with modifications in butyrate-producing bacteria 
species. In addition, this study reported alteration in the 
cecal microbiota profile after exercise. These authors 
explain that part of the beneficial effects of exercise re-
lated to microbiota and subsequent variations in intesti-
nal health may be related to changes in the SCFA profile, 
especially for butyrate concentrations [28]. This shift in 
butyrate bacteria production in exercise group was also 
shown by Evans, et al. [25].

The influence of physical exercise on the composi-
tion of the microbial environment has been linked to a 
decreased pH in the gut from SCFA production. Specifi-
cally butyrate promotes cell differentiation and cell cy-
cle arrest, inhibits the enzyme histone deacetylase, and 
decreases the transformation of primary to secondary 
bile acids promoting colonic acidification [36]. Changes 
in intestinal luminal pH may modify the environment in 
such way that it becomes more favorable for the prolif-
eration of some bacterial species [37].

ercise cannot attenuate the effect of caloric restriction, 
whereas it would be able to cause improvements on gut 
microbiota composition even under high fat diets.

Voluntary exercise with different aerobic capacities, 
intensity, volume and frequency may present differ-
ent outcomes. Evans, et al. [25] showed a significant 
increase in the abundance of Bacteroidetes, while the 
evidence provided by Liu, et al. [31] showed a reduc-
tion in the abundance of Firmicutes and Proteobacteria 
phylum. Apart from both studies exposing the animals 
to the same diet (HFD), these differences observed be-
tween these two studies may originate from the differ-
ent experimental models used. Liu, et al. [31] study was 
performed with ovariectomized female rats fed with 
HFD, divided in High Capacity Running (HCR) and Low 
Capacity Running (LCR), performed 11 weeks of volun-
tary exercise whereas Evans, et al. [25] performed 12 
weeks voluntary exercise in male rats [25,31].

Petriz, et al. [32] proposed that training status and 
intensity may be favorable to the proliferation of spe-
cific families of bacteria [32]. The authors reported an 
inverse correlation between exercise and Clostridiace-
ae/Bacteroideae families and Ruminococus genera, and 
a positive correlation between Oscillospira in exercise 
intensity. Aerobic training may be associated with a 
favorable environment for Clostridiaceae, Bacteroide-
ae and Ruminococus, but an unfavorable environment 
for Oscillospira due to acidification of the intestinal 
environment. The proposition by Petriz, et al. [32] is in 
agreement with modification of the gut environment 
following high intensity or long period exercise. Exer-
cise should modify the environment in a favorable way 
in terms of anaerobic bacteria population, or acidic en-
vironment since a decrease splanchnic blood flow and 
oxygen supply occurs [32].

A recent study performed using High Intensity In-
terval Training (HIIT), demonstrated that HIIT exerts 
opposed changes to the gut microbiota compared to 
those imposed by obesity profile. Indeed, HIIT reduces 
the predicted metabolic genetic capacity of the fecal 
microbiota, alters microbiota metabolic pathways, and 
raises the possibility that this type of exercise training 
may elicit some of its beneficial effects on metabolism 
through alterations in the gut microbiome [33]. Howev-
er, this same study did not compare the different types 
of exercise, such as continuous versus intermittent, or 
voluntary versus controlled exercise. These parameters 
should be taken into consideration in future investiga-
tions, since it remains unclear if the different types of 
exercise can cause similar beneficial effects regarding 
gut microbiota, and intestinal health as suggested by 
Liu, et al. and Petriz, et al. [31,32].

Related to the beneficial impact of exercise on the 
microbiota composition and diversity in the early life, 
Mika, et al. [34] propose, “The sooner, the better”. This 
proposition is related with the fact that microbiota is 
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stantial changes in the cecal microbiome composition 
by stimulating the growth of Firmicutes at the expense 
of Bacteroidetes; and provoked outgrowth of several 
bacteria in the Clostridia and Erysipelotrichi classes [44]. 
Antimicrobial activity of the bile acids may elicit selec-
tive pressure on the bacterial communities in exercised 
mice, leading to a shift of the gut microbiota composi-
tion [11].

Conclusion and Perspectives

Exercise and diet are considered as possible factors 
capable of modulating the intestinal balance between 
the hosts by independent manners. Exercise has been 
shown to improve the diversity of bacterial species and 
richness under different nutritional strategies thus al-
lowing for instance to reduce the negative effects of 
high fat diet. The modification in short chain fatty acids 
production and alteration in intestinal pH appear to be 
the main forms by which exercise may affect gut micro-
biota composition.

It is important to note that, the studies performed up 
to now, used solely the voluntary exercise as model. The 
influence of specific features related to exercise train-
ing, such as volume, intensity, types of exercise (aerobic 
or anaerobic or combination) may impact gut microbio-
ta in different ways. Likewise, changes in the diet and/
or different pathological conditions in the experimen-
tal design raise some difficulties in evaluating only the 
exercise effect on the gut microbiota composition and 
metabolic activity, as well as in comparing the results 

Studies also have shown that butyrate may induce 
mucin synthesis [38], and improve gut integrity by in-
creasing tight junction assembly [34,39,40]. Mucins are 
the protective layer consisting of glycoproteins that help 
forming the mucosal barrier lining of gastrointestinal 
tract. This mucin layer has been recognized to play an 
important role for the interaction with gut microbiota, 
and may serve as a substrate for intestinal bacteria, as 
Akkermansia muciniphila, and may alter the microbial 
community composition [41].

Butyrate production in the large intestine is associ-
ated with production of Heat shock protein 70 (Hsp70). 
Hsp70 maintains the functional and structural proper-
ties of intestinal epithelial cells in response to intense 
exercise [42]. Since physical exercise and butyrate stim-
ulate epithelial cell Hsp70 production, this may provide 
structural and functional stability to intestinal epithelial 
cells undergoing unfavorable conditions [25] ( Figure 1).

Bile acids

Physical activity has been reported to increase excre-
tion of primary bile acids in the gastrointestinal tract. 
Since butyrate (that has been reported to be increased 
by physical activity) diminishes the conversion of bile ac-
ids into secondary bile acids, physical activity may con-
sequently favor the rising of primary bile acids concen-
trations in the intestinal luminal content [23].

The primary bile acids have established anti-micro-
bial activity. In agreement with this hypothesis, Islam, 
et al. [43] demonstrated that cholic acid induced sub-

Figure 1: Schematic view representing the possible ways by which physical exercise may impact the gut microbiota. This 
includes Short-Chain Fatty Acid (SCFA) production by the microbiota, and bile acid production, as well as related alteration 
of the luminal pH. Exercise may also impact gut transit time and intestinal immune response, which in turn may modify the 
microbiota composition and metabolic activity.
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obtained in different studies and this may hinder our 
understanding.

Further experiments, including molecular biology 
studies, are obviously required in order to delineate the 
precise mechanisms by which exercise impacts the in-
testinal microbiota. Studies involving human volunteers 
are also necessary to better elucidate the exercise-mi-
crobiota relationships and involved mechanisms.

This represents an important research area given the 
evident impact of physical exercise on gut microbiota 
composition and possible benefit on gut health.
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