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to surgical lung biopsy, and specific combinations of HRCT and 
surgical lung biopsy pattern in patients subjected to surgical lung 
biopsy [5]. The natural course of IPF is unpredictable with periods 
of stability followed by episodes of worsening that can result in 
respiratory failure and death [6].

IPF is unlikely to occur in adults younger than 50, nonetheless 
it arises in approximately 0.2% of those older than 75 years [7,8]. In 
Europe and North America the estimated incidence is 3-9 cases per 
100,000 per year, and is increasing worldwide [9]. It is likely that IPF 
accounts for much of the increased ILD-related mortality reported 
worldwide between 1990 and 2013 [10].

The manifestation of IPF is believed to be linked to one or more 
factors, depending on the patient: age, genetic predisposition, and 
repeated damage to the alveolar epithelium. Cigarette smoking, 
environmental/occupational pollutants, microbial agents, chronic 
micro-aspiration secondary to gastroesophageal reflux have been cited 
as some of the insults that could trigger the fibrotic process [11-13].

Inflammation is involved in the pathogenesis of IPF since several 
cytokines, such as IL-4, IL-5, IL-13, IL-18, and MIP-1α, are at higher 
concentration in cellular cultures and bronchoalveolar lavage of 
patients with IPF, compared to normal individuals [14]. However, 
the leading point of view suggests that persistent micro-injuries to 
alveolar epithelial cells induce a fibrotic environment and that growth 
factors and other mediators secreted by the damaged epithelial cells, 
such as transforming growth factor (TGF)-β, platelet-derived growth 
factor (PDGF), connective-tissue growth factor, tumor necrosis 
factor (TNF)-α, fibroblast growth factor (FGF), insulin-like growth 
factor (IGF)-1 and Wnt-pathway components, among others, 
participate in the pathogenesis/progression of IPF, promoting 
fibroblast recruitment, proliferation, and differentiation to invasive 
myofibroblasts [15]. Consecutively, actively proliferating fibroblasts 
and myofibroblasts organize into fibroblastic foci and are responsible 
for the excessive collagen production that results in scarring of the 
lung and architectural deformation [15,16]. Additionally, matrix 
metalloproteinases (MMPs), such as MMP1, MMP2, MMP3, MMP7, 
MMP8, and MMP9 have also been implicated in IPF [17-19].
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Idiopathic pulmonary fibrosis (IPF) is a rare and very severe 
respiratory disease with high morbidity and mortality. For now, no 
drug-based therapy has been proven unambiguously to reverse the 
fibrotic process, and no lasting treatment is available other than 
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which can be isolated from bone marrow, adipose tissue, umbilical 
cord, amniotic membrane and other tissues, expanded in culture 
and, subsequently, administered by systemic or local routes into 
injured animals or ill patients. As a result of their proliferative 
potential, multipotency, immunomodulatory effects, migratory 
ability and immunoprivileged state (MSC express very low levels 
of histocompatibility complex), interest has accelerated as to their 
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of MSC, the preclinical studies in animal models of bleomycin-
induced lung fibrosis followed by the inoculation of MSC from 
different origins, and the ongoing human clinical trials using these 
cells as a therapeutic alternative for IPF.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with 

high morbidity and mortality with a 5-year survival of approximately 
20% [1-3]. It is the most common of the idiopathic interstitial 
pneumonias and one of the most prevalent interstitial lung diseases 
(ILD). Anatomically it is characterized by scarring of the lung, 
generating a parenchymal fibrosis, which diminishes lung volumes 
causing progressive functional loss [4,5] and is associated with 
the histopathologic and/or radiologic pattern of usual interstitial 
pneumonia (UIP) [5]. The diagnosis requires exclusion of other 
known causes of ILD, the presence of a UIP pattern on high-
resolution computed tomography (HRCT) in patients not subjected 
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Recent clinical trials have been testing new molecules with 
antifibrotic properties (e.g., pirfenidone and nintedanib) instead of 
just using anti-inflammatory and immunosuppressant drugs [20]. 
Nintedanib [21,22], an intracellular inhibitor of several tyrosine 
kinases that targets multiple growth factor receptors and pirfenidone 
[23-26], reduced the rate of forced vital capacity (FVC) decline, and 
are recommended in the treatment of patients with IPF [20]. However, 
no drug-based therapy has been proven unequivocally to reverse the 
fibrotic process, and no lasting option for therapy is available other 
than transplantation merely in a limited number of patients.

Stem cells are considered to represent one of the best hopes for 
regenerating permanently damaged tissue, and because mesenchymal 
stem (stromal) cells (MSC) are known to home to sites of injury, 
inhibit inflammation, and contribute to epithelial tissue repair, their 
use has been suggested as a potential therapy for the treatment of IPF.

Mesenchymal Stromal Cells (MSC)
Stem cells are undifferentiated cells that can continuously self-

renew and also differentiate into multiple cell types [27]. Adult stem 
cells, which are derived from postnatal fully developed tissue, have a 
limited lifespan and a restricted differentiation potential [28].

MSC are adult multipotent cells capable of differentiating 
into a number of different cell lines that can be isolated from bone 

marrow (BM), adipose tissue (AT), umbilical cord (UC), amniotic 
membrane(AM) or other sources and expanded in culture and 
subsequently administered by systemic or local routes into injured 
animals. Because of their combination of proliferative potential, 
multipotency, immunomodulatory effects [29-31], migratory 
ability and immunoprivileged state (MSC do not express major 
histocompatibility factor II) [32], interest has grown regarding their 
potential therapeutic applications [33].

A growing body of preclinical literature supports the efficacy 
of MSC administration in a range of experimentally induced lung 
pathologies, including those used as models of acute lung injury, 
lung infections, asthma, bronchopulmonary dysplasia, bronchiolitis 
obliterans, chronic obstructive pulmonary disease, pulmonary 
ischemia-reperfusion injury, pulmonary hypertension [34], elastase-
induced emphysema [35], asbestos-induced lung injury [36] 
and radiation-induced injury [37]. These studies show that MSC 
administration improves part or all of the model-specific disease 
endpoints.

In the lung, at sites of injury, MSC contribute to tissue regeneration 
and repair [38-42]. Further, using Y chromosome fluorescence in situ 
hybridization, transplanted Y chromosome-positive MSC from male 
donors can be found at sites of lung injury in recipient female mice 
[39,42]. These male MSC appear to adopt epithelial cell morphology, 

Table 1: Studies of animals treated with bleomycin and results after MSC therapy.

Study Model Cell Type Delivery/Dose Safety/Efficacy Results
Jun et al., [54] Mouse Allogeneic LuMSC i.v. 15 - 25 × 104 Reduced induced lung fibrosis
Kumamoto  et al., [71] Mouse BM-MSC i.v. 5 × 105, 3 days after BLM Reduced induced lung fibrosis
Ono  et al., [73] Mouse Xenogeneic cells (human)

BM-MSC

i.v. 5 × 105, Cells were given 24 hours 
after BLM

Normal histopathology, Decreased TGF- β, Decreased 
lung collagen

Gao  et al., [74] Rat Xenogeneic cells (human)

uMSC

i.v. 2.5 × 105, Cells were given 3 days 
after BLM

Increased TNF-α protein level when measured 13 days 
after MSC administration , Better with improvement 
ACE2

Lee  et al., [39] Rat BM-MSC i.v. 1 × 106, 4 days after BLM Decrease inflammation, Decreased TGF- β, 
Decreased BAL IL-6

No effect on lung collagen content, Improve the 
Ashcroft score, BAL total cell count and neutrophil 
count

Ortiz  et al., [42] Mouse AllogeneicBM-MSC i.v. 5 × 105, Cells were given 
immediately after BLM or 7 days later

Decrease inflammation, Decreased MMP-2, MMP-9 
and MMP-13 mRNA levels

Lee  et al., [72] Mouse Xenogeneic cells (human)

AD-MSC

i.p. 3 × 105, Cells were given at weeks 
8, 10, 12, and 14 at the same time 
as BLM

Decrease inflammation, Improved fibrosis, 
improvement in alveolar injury, Decreased TGF- β, 
Decreased IL-1 levels

Garcia  et al., [70] Mouse Xenogeneic cells (human)

AFSC

i.v. 1 × 106, Cells were given two 
hours after BLM or 14 days later

Improved fibrosis, Improvement in alveolar injury, 
Decreased lung collagen

Zhao  et al., [69] Rat BM-MSC i.t. 5 × 106, Cells were given 12 hours 
after BLM

Improved fibrosis, Normal histopathology, 
Improvement in alveolar injury, Decreased TGF-β

Huang  et al., [68] Rat BM-MSC i.v. 2.5 × 106, Cells were given the 
same day as BLM and 7 days later

Improved fibrosis, Improvement in alveolar injury, 
better effects on hydroxyproline content and alveolitis 
and fibrosis scores

Moodley  et al., [40] Mouse Xenogeneic cells (human)

uMSC

i.v. 1 × 106, Cells were given 24 hours 
after BLM

Decrease inflammation, Decreased TGF- β & TNF-α  
mRNA levels, No change in lung IL-1, IL-6 mRNA 
levels, Increased MMP-2, No change in MMP-9 or 
MMP-13, Decreased lung collagen

Moodley  et al., [75] Mouse Xenogeneic cells 

AM-MSC [vs BM-MSC]

i.v. 1 × 106, Cells were administered 
after 10 days of the first dose of BLM 

Decreased TGF- β; TNF-α, IL-1 and IL-6 protein levels, 
No change in MMP-2 or MMP-13, Increased MMP-9 
levels, Decreased lung collagen

Aguilar  et al., [76] Mouse BM-MSC i.v. 5 × 105, Cells were administered 
after 8 hours after BLM 

Lung collagen assessed at 14 days was decreased

Min  et al., [77] Mouse Xenogeneic cells (human)

uMSC

No change in TNF-α, IL-1 or IL-6 levels, Increased 
MMP-2, reduced MMP-9, Decreased lung collagen

Ortiz  et al., [78] Mouse AllogeneicBM-MSC i.v. 5 × 105, Cells were given 
immediately after BLM or 7 days later

No significant change in lung TNF-α mRNA level.

Gazdhar  et al., [79] Rat BM-MSC i.t. 3 × 106, Cells were instilled after 7 
days of bleomycin treatment

Reduced induced lung fibrosis

Cargnoni  et al., [41] Mouse Allogeneic & Xenogeneic cells 
(human)

AM-MSC

i.v./i.t. 1 × 106, i.p. 4 × 106 Cells were 
administered after 15 min after BLM 

Reduced induced lung fibrosis, Decrease in neutrophil 
infiltration

Abbreviations: BLM = bleomycin; MSC = mesenchymal stem cells; BM-MSC = bone marrow–derived mesenchymal stem cells; LuMSC = Lung MSC; AD-MSC = 
adipose tissue-derived MSC; AM-MSC = amniotic membrane MSC; uMSC = umbilical cord MSC; AFSC = Amniotic Fluid Stem Cells; BAL = bronchoalveolar lavage; 
TGF- β = transforming growth factor β; TNF-α = tumor necrosis factor-α; IL-1 = interleukin 1; IL-6 = interleukin 6; MMP-2 = matrix metalloproteinase-2; MMP-9 = matrix 
metalloproteinase-9; MMP-13 = matrix metalloproteinase-13; i.v. = intravenous; i.p. = intraperitoneal; i.t. = intratracheal
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suggesting that they can contribute to tissue regeneration, either by 
fusion with resident epithelial cells or by mesenchymal-to-epithelial 
transition [42]. MSC cultured in airway growth media differentially 
express lung-specific epithelial markers, including club cell (Clara 
cell) secretory protein, surfactant protein-C, and thyroid transcription 
factor-1 [43,44].

Also, MSC secrete multiple trophic factors that suppress the 
immune system [45], inhibit apoptosis [46], stimulate mitosis [47] 
and differentiation [29-31], and enhance angiogenesis [46,48]. 
The benefits of MSC trophic factors secretion have been confirmed 
using co-cultures with endothelial cell populations [49], as well as 
conditioned media [50] from MSC. MSC are hypothesized to reduce 
inflammation primarily by release of soluble anti-inflammatory 
mediators and microvesicles without the need for engraftment or 
recapitulation of lung morphogenesis. Other mechanisms may be 
involved, and although significant deficiencies persist regarding 
our understanding of the disease-specific molecular mechanisms by 
which MSC mediate the regenerating outcomes, these studies provide 
a rational basis for the clinical application of MSC in human lung 
diseases.

Additionally, various populations of lung resident progenitor 
cells have been identified. Adult pulmonary tissue resident MSC 
demonstrates a phenotype and function similar to BM-MSC and have 
been identified in the side population of cells from both murine and 
human lung tissue [51,52] as well as bronchoalveolar lavage fluid from 
human lung allografts [53]. Depending on their microenvironment, 
the lung MSC demonstrate properties similar to other tissue MSC 
including multilineage differentiation, paracrine antiinflammatory 
properties, suppression of T cell proliferation as well as the ability 
to differentiate to myofibroblasts [52,54]. Lung MSC exhibit high 
telomerase activity which indicates the capacity for self-renewal 
[51,52,54]. These properties allow a small number of cells to contribute 
substantially to both tissue regeneration and to proliferative diseases 
[54-62]. However, in addition to their reparative properties, several 
studies indicate that MSC may be a critical factor in the development 
of dysfunctional lung remodeling in some diseases [63-67].

MSC for the Treatment of IPF: Preclinical Studies
MSC may support the restoration of the alveolar epithelium 

and reduce fibrosis through their anti-apoptotic and anti-scarring 
effects even in the absence of a substantial and sustained structural 
engraftment. The MSC effects on lung fibrosis have been investigated 
with syngeneic, allogeneic, or xenogeneic MSC administration in 
mouse or rat models of bleomycin-induced lung fibrosis, suggesting 
that MSC may be efficacious in the treatment of IPF (Table 1).

Of all bleomycin-induced lung fibrosis, improvement in 
fibrosis was reported in several studies [54,68-72], and a decrease in 

inflammation was reported in some others [39,40,42,72]. In addition, 
3 studies reported near normalization of histopathological change 
[42,69,73] and four more showed an improvement in alveolar injury 
[68-70,72]. Moreover, one study reported less improvement with 
MSC alone than with MSC transfected with ACE2 [74].

On lung collagen, Moodley et al. [40] noted that the effect of MSC 
was significant 14 and 28 days after bleomycin injury (13 and 27 days 
after cell administration), but not after 7 days. Ortiz et al. [42] showed 
that the effect was meaningful when cells were given immediately, but 
not 7 days after bleomycin administration. In Moodley et al. [75], a 
significant decrease was seen when human amniotic membrane MSC 
(AM-MSC) were used, but not with human BM-MSC. Lung collagen 
content was not decreased by repeated AT-MSC administration at 8, 
10, 12, and 14 weeks in a chronic injury model in which bleomycin 
was given every 2 weeks for 16 weeks [72]. Lung collagen assessed 
at 14 days was also not decreased by MSC administration twice, at 8 
hours and 3 days after bleomycin injury [76].

MSC therapy decreased lung TGF-β levels [39,40,69,72,73,75], 
including the lung TGF-β protein [39,40,72,73,75] and lung TGF-β 
mRNA level [40,69]. Lung TNF-α protein level was decreased by 
amnion MSC but not by BM-MSC. Lung TNF-α mRNA level was 
also decreased by UC-MSC in [40]. In another study, MSC therapy 
increased TNF-α protein level when measured 13 days after MSC 
administration but not at earlier time points [74]. There was no 
change in TNF-α protein level in [77]. There was no significant change 
in lung TNF-α mRNA level with MSC therapy in [78]. By contrast, 
IL-1 levels were significantly decreased by stem cell therapy at all time 
points, up to 28 days [39]. In a study of Moodley et al. the effect was 
significant when using amnion MSC but not with BM-MSC [75]. 
There was no significant effect on lung IL-1 level in [77]. In another 
study [40], lung IL-1 mRNA level was assessed and was not affected by 
UC-MSC. Lung IL-6 protein level was decreased by MSC therapy in 
[75], but lung IL-6 mRNA level was not decreased in [40]. There was 
no significant change in lung IL-6 protein level with MSC therapy in 
[77] whereas BAL IL-6 was decreased in [39].

Lung MMP-2 and MMP-9 levels were also assessed [40,42,75,77]. 
In the study of Min et al. [77], MMP-2 was increased while MMP-9 
was reduced. In one of the Moodley et al. studies [40] but not in the 
other [75], MMP-2 was increased. However, MMP-9 was increased 
by AM-MSC but not by BM-MSC in [75], but was not significantly 
affected by MSC therapy in [40]. Lung MMP-2 and MMP-9 mRNA 
level was decreased by immediate administration of MSC in [42]. 
Lung MMP-13 was not significantly affected in [40,75], but was 
significantly decreased by MSC in [42].

Regarding the timing of stem cell administration and chronicity 
of lung injury, most studies administered MSC within hours to a few 
days after bleomycin injury. Few studies administered MSC after 7 

Table 2: Human Clinical Trials using MSC in IPF (https://clinicaltrials.gov)

Study name Method of administration and type of 
transplanted cells  

Phase Status

Study of Autologous Mesenchymal Stem Cells to Treat Idiopathic 
Pulmonary Fibrosis

(NCT01919827)

Endobronchial infusion of autologous MSC 
derived from bone marrow

1 Recruiting participants

Evaluate Safety and Efficacy of Intravenous Autologous AD-MSC for 
Treatment of Idiopathic Pulmonary Fibrosis  (NCT02135380)

Intravenous autologous Stromal Vascular 
Fraction

Intravenous autologous adipose-derived MSC

1

2

Recruiting participants

A Phase I Study to Evaluate the Potential Role of Mesenchymal Stem 
Cells in the Treatment of Idiopathic Pulmonary Fibrosis (NCT01385644) 
[94]

Intravenous infusion of allogenic placental MSC 1 Completed

Safety and Efficacy of Allogeneic Mesenchymal Stem Cells in Patients 
With Rapidly Progressive Interstitial Lung Disease

(NCT02594839)

Intravenous infusion of allogenic bone marrow 
MSC

1 Recruiting participants

Allogeneic Human Cells (hMSC) in Patients With Idiopathic Pulmonary 
Fibrosis Via Intravenous Delivery (AETHER) 

(NCT02013700)

Intravenous allogeneic adult human MSC 1 Ongoing, but not recruiting 
participants
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[68,79] or 10 [75] days, and 1 study, Lee et al. examined chronic lung 
injury with bleomycin injection twice weekly for 16 weeks and MSC 
administration at weeks 8, 10, 12, and 14 [72]. In this latter study 
MSC administration had no effect on lung collagen content, but 
interestingly it improved the Ashcroft score, BAL total cell count and 
neutrophil count, and lung TGF-β levels. In the study of Huang et 
al., immediate administration of MSC resulted in significantly better 
effects on hydroxyproline content and alveolitis and fibrosis scores 
[68].

Considering the origin of the cells, Ortiz et al. [42,78] used 
allogeneic BALB/c mice BM-MSC in C57BL/6 mice. In [42], 
allogeneic cell administration reduced the extent of inflammation and 
lung collagen deposition when administered immediately after lung 
injury, but not after 7 days. However, MSC were unable to decrease 
totalBAL cell count or lung TNF-αmRNA levels [42]. There were 
no studies comparing allogeneic and syngeneic cells. Xenogeneic 
cells, human cells in mice or rats, were used in vivo in many studies 
[40,41,70,72-75,77], and were able to improve lung collagen content 
in some of them [40,70,73,75,77]. In summary, improvement in 
severity and extent of fibrosis 14 days after bleomycin injury and MSC 
administration was observed with allogeneic cells, whereas treatment 
with xenogeneic cells resulted in improvement in severity but not 
extent of fibrosis.

Finally, although the precise mechanism of action of MSC 
remains elusive [80], in several successful clinical trials [81,82], 
paracrine factors secretion has been proposed as a mechanism of 
action. Several paracrine factors released by MSC may alter the 
microenvironment and may contribute to a beneficial effect in IPF 
[78,81]. In addition to paracrine signaling, MSC may initiate an 
effect via cell fusion, cell to cell interactions [83], differentiation, and 
promotion of neovascularization. Each of these mechanisms alone or 
in combination may contribute to beneficial effects [84].

MSC for the Treatment of IPF: Human Clinical Data
As of March 2016, there are 5 recruiting, active or completed clinical 

trials registered on https://clinicaltrials.gov/ (U.S. National Institutes of 
Health) trying to evaluate the safety and efficacy of MSC therapy in IPF 
(Table 2). For the time being, the only completed is a small open-label, 
single center, non-randomized study with 8 patients with moderately 
severe IPF (FVC ≥ 50% and DLCO ≥ 25%) [85]. These IPF patients 
received either 1 × 106 (n = 4) or 2 × 106 (n = 4) unrelated-donor, 
placenta-derived MSC/kg via a large peripheral vein and were followed 
for 6 months with lung function (FVC and DLCO), 6-min walk distance 
(6MWD) and CT scan of the chest. Eight patients with median FVC 
60% and DLCO 34.5% predicted, were treated. Both dose schedules were 
well tolerated with only minor and transient acute adverse effects. MSC 
infusion was associated with a transient (1% (0-2%)) fall in SaO2 after 
15 min. At 6 months FVC, DLCO, 6MWD and CT fibrosis score were 
unchanged compared with baseline, supporting a good safety profile after 
6 months follow-up [85].

There are other studies supposedly not registered in this 
database, like the one published by Tzouvelekis et al. [86], a phase 
Ib, prospective, non-randomized clinical trial, designed to study 
the safety of 3 endobronchial infusions, at monthly intervals, of 0.5 
million autologous adipose derived stromal cells-stromal vascular 
fraction (ADSC-SVF) per kg/body weight per infusion (40 million 
cells per infusion) in 14 IPF patients of mild to moderate disease 
severity (FVC > 50% predicted value and DLCO > 35% of predicted 
value). The incidence of treatment emergent adverse events within 
12 months was the primary end-point and alterations of functional, 
exercise capacity and quality of life parameters at serial time points 
(baseline, 6 and 12 months after first infusion) were exploratory 
secondary end-points. No cases of serious or clinically meaningful 
adverse events including short-term infusion toxicities as well as 
long-term ectopic tissue formation were recorded in all patients. Also, 
detailed safety monitoring through several time-points indicated that 
cell-treated patients did not deteriorate in both functional parameters 
and indicators of quality of life [86].

For the time being, these studies demonstrate a precious safety 
profile, but nevertheless lack the requirements of a double-blind 
prospective randomized controlled trial to scientifically and clinically 
assess the efficacy of a treatment.

Conclusions and Considerations for Future
In conclusion, MSC are a promising alternative for the therapy of 

IPF, particularly for their suitability to easily be isolated, expanded to 
big numbers in culture and their immunomodulatory and regenerative 
properties. However, a number of questions have still no answers: 
what is the most efficacious source of MSC? Are allogeneic cells as 
safe and efficacious as autologous MSC? Do MSC retain efficacy after 
passage? Are MSC most effective in the lung when administered intra-
tracheally, intravenously or by some other method? [87].

In this sense, some authors argue that the somehow contradictory 
results found in the preclinical studies are probably dependent on the 
native tissue from which these cells are derived. Tissue-specific MSC 
may retain characteristics of their original tissue source in terms of 
their differentiation capability and specific cytokine gene expression 
profile [88]. According to Li et al. [89], AD-MSC as compared to BM-
MSC have biological benefits in the proliferative capacity, secreted 
proteins (FGF, interferon-γ, and IGF-1) and immunomodulatory 
effects. On the other hand BM-MSC seem to have advantages in 
osteogenic and chondrogenic differentiation potential and other 
secreted proteins (stem cell-derived factor-1 and hepatocyte growth 
factor [HGF]) [89].

Profiles of paracrine factor secretion and gene expression of BM-
MSC and MSC derived from perinatal tissues (UC-MSC and AM-
MSC), have revealed that UC and AM are noticeably different from 
BM. Although MSC from all sources were found to express similar 
surface markers, UC-MSC and AM-MSC revealed higher potential of 
immunomodulatory capacity than BM-MSC (higher levels of HGF, 
MCP-1, and M-CSF in supernatants). Cytokine IL-1ra was the only 
factor associated with anti-inflammatory and anti-fibrotic effects of 
MSC which was secreted significantly higher by BM-MSC compared 
to perinatal MSC [90]. Perinatal MSC may also be of meaningful value 
in view of the fact that the treatment of aged patients, as it the case of 
IPF, may require an alternative source of stem cells, other than their 
own autologous MSC [91].

Regarding the administration route, in an animal model of 
neonatal hyperoxic lung injury that induces up-regulation of genes 
associated with the inflammatory and fibrosis response and cell death, 
the local intra-tracheal transplantation of human UC-MSC was 
more effective than the systemic intravenous infusion, with respect 
to delivery efficiency and therapeutic efficacy [92]. In any case, both 
of these inoculation routes seem to be better than the intraperitoneal 
route [93].

There are many alternatives when talking about the “timing” 
of MSC administration in animal models. Most of the bleomycin 
preclinicial protocols discussed above are actually testing the 
prophylactic or preventive effect of these cells, since they are 
administered at the same time as, or soon after, the damage is caused. 
In contrast, IPF in humans is most of the times diagnosed when the 
disease is already in the advanced stage, consequently the genuine 
regenerative potential of these cells could be at stake unless we are 
very stringent during the patient selection process, mostly defining 
very well the magnitude or grade of the disease in order to be counted 
in the clinical study.

Hence, biological variations between MSC from different 
pedigrees (BM-MSC, AD-MSC, UC-MSC, AM-MSC, etc.), 
inoculation routes (intravenous, intra-tracheal, etc.) and extent of the 
disease (“timing”) should be thoroughly considered when choosing 
a specific clinical application for these cells. And, either way, is still 
early to draw conclusions on the best source of MSC and the best way 
to administer, although, possibly, intra-tracheal instillation of MSC 
obtained from perinatal tissues may have some advantages.
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