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are insufficient for regenerative therapies [6]. However, a potential 
problem with this is heterogeneity, a recognised issue with MSCs and 
one exacerbated by non-selective plastic adherence isolation [7]. Cell 
sorting can reduce heterogeneity by selecting specific cell populations 
but, to achieve this, cell surface markers for hDPSCs are required. 
MSCs from other tissues, such as bone marrow (BM), have been 
studied in greater depth and candidate markers for MSC enrichment 
have been identified such as CD146, CD105 and mesenchymal 
stem cell antigen 1 (MSCA-1) also known as tissue non-specific 
alkaline phosphatase (TNAP) [8-10]. One interesting marker is the 
neutrophin receptor CD271 which has shown specificity for colony 
forming cells from BM [11-13].

CD271 (also known as (L) NGFR, NTR and p75) is important 
for neuronal cell survival but is also found on MSCs from BM and 
both trabecular and cortical bone [11,14]. These studies selected 
multipotent MSCs expressing CD271 and showed standard MSC 
phenotype and trilineage differentiation [5]. Studies of developing 
human teeth have shown that prior to matrix production, CD271 
expression maps to the inner enamel epithelial and the dental follicle 
[15]. Human exfoliated deciduous teeth show continued expression 
[16], as do mature DPs, with increased expression associated with 
dental caries [17,18]. CD271 has been identified within the human 
third molar apical papillae and studies with cultured hDPSCs 
described a subpopulation of cells with neurogenic potential that 
express CD271 [19,20]. Further studies with cultured hDPSCs have 
also shown that expression of CD271 may be induced if the cells are 
grown in non-adhesive culture vessels, allowing for the formation of 
spheroid aggregates [21]. This may be because the aggregates more 
accurately mimic the 3D environment from which the hDPSCs 
come compared to the 2D conditions which are used in standard cell 
culture.

Studies with rat DP have shown CD271 expression in epithelial, 
mesenchymal and nerve structures of developing and adult molar 
pulps, with expression in incisors mapping to polarising odontoblasts 
[22,23]. Further studies using rat incisor DP found that CD271 can 
be used to isolate proliferative DPSCs before expansion [24]. It is for 
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Introduction
Human dental pulp stromal cells (hDPSCs) are plastic adherent 

cells capable of in vitro colony formation, mineralisation and 
demonstrable mesenchymal differentiation potential [1,2]. They 
are of interest for tissue engineering and regenerative medicine 
applications, in particular dental and orthopaedic procedures, due 
to the potential for banking cells from the deciduous dentition [2,3]. 
Within the dental pulp (DP), hDPSCs are present in comparatively 
low numbers, but undergo expansion in vitro and are phenotypically 
similar to mesenchymal stromal cells (MSCs) from other tissues 
[4,5]. Ex vivo expansion is important because native hDPSC numbers 
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these reasons that we have chosen to investigate CD271 as a marker 
for hDPSC isolation.

The aim of this study was to investigate CD271 expression by 
adult human DP and to subsequently determine its utility for hDPSC 
isolation. We hypothesised that hDPSCs would likely be isolated 
using CD271 given that it is an established marker for BMSCs, with 
evidence of utility in isolating rat DPSCs.

Materials and Methods
Cell isolation

Dental pulp: Healthy third molars (n = 14, 10 donors (3 male, 7 
female), 18-33 years), obtained with written informed patient consent 
through the Leeds Dental Institute Research Tissue Bank (ethical 
approval for this study was granted by the Dental Research Ethics 
Committee of the University of Leeds, study number 07/H1306/93+5), 
were washed with 70% (v/v) ethanol before removal of attached tissue 
and fracturing. DPs were excised, mechanically disrupted and digested 
in 3 mg/mL collagenase I (Sigma-Aldrich, UK) and 4 mg/mL dispase 
(Roche, Germany) for 45 minutes at 37°C with agitation. Cell suspensions 
were filtered (70 µm) (BD Biosciences, NJ) and centrifuged at 200 × g 
for 5 minutes. Cells were cultured, sorted or analysed by flow cytometry. 
Cultured cells were resuspended in α-MEM (Life Technologies, UK) 
supplemented with 15% FCS (Biosera, UK), 2 mM L-glutamine (Sigma-
Aldrich) and 100 units/mL penicillin/100 µg/mL streptomycin (Sigma-
Aldrich) before incubation at 37°C in 5% CO2 for 10-14 days. Cells 
for sorting and flow cytometry were resuspended in 80 µL magnetic 
activated cell sorting (MACS) buffer (PBS, 2 mM EDTA (Alfa Aesar, 
UK) and 0.5% BSA (Sigma-Aldrich)).

Bone marrow: Primary posterior iliac crest BM (n = 4, 2 male, 
2 female, 30-54 years), obtained with written informed consent 
following ethical approval for this study (NHS Health Research 
Authority, Leeds West Research Ethics Committee 06/Q1206/127) 
was diluted 1:1 with PBS, filtered at 70 µm and layered over 10 
mL Biocoll Separating Solution (density 1.077 g/mL) (Biochrom, 
Germany). Cells were centrifuged at 445 × g for 35 minutes at 20°C. 
Mononuclear cells (MNCs) were aspirated and washed in MACS 
buffer before centrifugation at 200 × g for 10 minutes, twice. The 
resulting cell pellet was resuspended in 80 µL MACS buffer/1 mL of 
BM.

Cell culture

Subconfluent cells were passaged by treatment with 0.25% 
trypsin/0.02% EDTA (Sigma-Aldrich) and the resulting suspensions 
were transferred to T75 flasks, designated as passage 1 (p1). Passaged 
cells were subsequently sub-cultured in basal medium with 10% FCS 
until 90% confluency to p5.

CD271 sorting of dental pulp and bone marrow

Digested DP and isolated BM-MNCs, resuspended in 80 µL 
MACS buffer, were labelled with 10 µL anti-CD271-PE and 10 µL FcR 
blocking reagent (both Miltenyi Biotec, Germany) for 10 minutes at 
4°C. Labelled cells were washed with 1 mL MACS buffer, centrifuged 
at 200 × g for 5 minutes and resuspended in 70 µL MACS buffer 
before incubation with 20 µL anti-PE microbeads (Miltenyi Biotec) 
and 10 µL FcR blocker at 4°C for 15 minutes. Cells were then washed, 
resuspended in 500 µL MACS buffer and added to a magnetised MS 
MACS column (1 column / DP or mL BM-MNCs), columns were then 
washed with 500 µL MACS buffer (x3). Eluted unlabelled cells were 
collected and designated the CD271- (negative) fraction. Labelled 
cells, retained on the column, were isolated by demagnetising the 
column and washing with 1 mL of MACS buffer, these cells were 
designated the CD271+ (positive) fraction. Separation efficiency was 
confirmed by the use of BM as a positive control. Depletion efficiency 
from DP was found to be in excess of 90%, i.e., more than 90% of 
CD271+ cells were removed from the CD271- fraction. All sorted cells 
were culture expanded in primary DP medium.

Colony forming unit fibroblast assay

Sorted cells from whole DP were plated into separate T25 flasks at 
the ratio of CD271+ and CD271- cells present within the DP (1 sorted 
DP or 1 mL sorted BM-MNC per flask) with medium changes every 4 
days. After 14 days, flasks were fixed with 10% (v/v) neutral buffered 
formalin (Sigma-Aldrich) and stained with 1% (w/v) methyl violet 
(VWR, UK) for 30 minutes before washing and colony counting.

Flow Cytometry
Primary DP cells and cultured hDPSCs (unsorted and CD271-

sorted) were resuspended in 80 µL MACS buffer and 10 µL FcR 
blocking buffer before antibody incubation (10 µL/1 × 106 cells) for 20 
minutes at room temperature in the dark. MACS buffer (900 µL) was 
added before centrifugation and resuspension in 500 µL MACS buffer. 
Samples were analysed using a BD LSR Fortessa running BD Diva 7 
software and data analysis was performed using Kaluza 1.3 software 
(Beckman Coulter, Pasadena, CA). Antibodies used were CD271-
PE (mouse IgG1 κ monoclonal, clone ME20.4, WM245 melanoma 
cells as antigen), CD29-Alexa Fluor 488 (mouse IgG1 κ monoclonal, 
clone TS2/16), CD44-FITC (mouse IgG1 κ monoclonal, clone VI 
A034, normal human PBL as antigen), CD56-PE (mouse IgG2a κ 
monoclonal, clone VI NK26, KG-1 cell line as antigen), CD73-PE 
(mouse IgG1 κ monoclonal, clone AD2), CD90-APC (mouse IgG1 
κ monoclonal, clone 5E10, HEL cells as antigen), CD105-FITC 
(mouse IgG1 κ monoclonal, clone 43A3, L-cells transfected with 
human CD105 as antigen), CD146-Alexa Fluor 488 (mouse IgG2a 
κ monoclonal, clone SHM-57, HEL cells as antigen) and CD166-
PE (mouse IgG1 κ monoclonal, clone 3A6, cultured human thymic 
epithelial cells as antigen) (all Biolegend, San Diego, CA). Threshold 
values were obtained by measuring non-labelled cell autofluorescence 
and isotype matched control reactivity, colour compensation was 
performed to reduce channel crossover.

Statistical Analysis
All measurements were performed in at least triplicate and all 

graphs are displayed as the mean ± SEM. The data were subsequently 
analysed using a two sample t test. P values of less than 0.05 (*) were 
considered significant and 0.01 (**) very significant.

Results
CD271 expression in DP and hDPSCs

Analysis of uncultured DP by flow cytometry confirmed CD271+ 
cells were present at 1.24% ± 0.46 of total cells (Figure 1a). However, 
analysis of cultured hDPSCs, derived from plastic adherence, revealed 
that CD271 expression decreased to very low levels upon induction 
into 2 dimensional culture with an average expression of 0.2% across 
passages 2 to 4 (Figure 1b).

Sorting hDPSCs using the CD271 surface marker

Cells from whole digested DP were sorted for expression of CD271, 
isolated cells were used in colony formation unit fibroblast (CFU-F) 
assays, CD271+ and CD271- cells were plated at the ratio of cells found 
within the DP. The results showed that the mean number of colonies 
forming from the CD271+ fraction was 5 ± 2 per pulp compared 
to 55 ± 17 colonies per pulp from the CD271- fraction (Figure 2). 
These results show that significantly more colony forming cells were 
present in the CD271- fraction compared to the CD271+ cells (p = 
0.027). Positive control experiments with BM showed the opposite 
relationship between CD271 expression and colony formation, with 
an average of 18 ± 5 colonies per mL of CD271+ sorted BM and 1 ± 1 
colonies in the corresponding CD271- fraction, which was statistically 
significant (p = 0.039). These data are summarised in figure 2.

Having shown the relative colony forming capacities of CD271+ 
and CD271- DP cells, we next determined whether cells derived from 
the CD271- fraction were phenotypically similar to cells expanded 
from unsorted DP. To achieve this hDPSCs from both unsorted 
and CD271- sorted DP were compared for the expression of various 
hDPSC and MSC markers [5,25]. The results of these analyses failed 
to show any significant differences in the expression patterns of the 
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markers analysed, CD29 (p = 0.43), CD44 (p = 0.38), CD56 (p = 0.9), 
CD73 (p = 0.29), CD90 (p = 0.15), CD105 (p = 0.34), CD146 (p = 0.57) 
and CD166 (p = 0.21) (Table 1). These data showed that based upon 
the markers examined, the CD271- cells derived from primary DP are 
phenotypically identical to hDPSCs isolated by plastic adherence.

Discussion
We have studied the presence of the human ‘in vivo’ BMSC 

marker CD271 by adult human DP and in vitro expanded hDPSCs. 
We showed that CD271 is weakly expressed in DP and cultured 
hDPSCs show no upregulation in expression. These results confirm 
previous studies whereby CD271 was found within adult human DP 
and also showed similar in vitro expression to BM [12,18].

Following confirmation of CD271 expression in adult DP, and 

         

Figure 1:  Expression of CD271 by primary DP cells.  (a) Flow cytometry plot demonstrating low-level CD271 expression by a small population of cells from 
digested DP (quadrant B+- for viable CD271+ cells); (b) CD271 expression by adherent hDPSCs: Histograms of flow cytometric analyses of CD271 expression 
by cultured hDPSCs (red) and isotype controls (black) showing that this marker is not expressed by early (p2) to mid-passage (p4) cells.

         

Bone Marrow Dental Pulp

CD271+

CD271-

CD271+

CD271-

Bone MarrowDental Pulp

80

70

60

50

40

30

20

10

0

C
ol

on
ie

s 
Fo

rm
ed

*

*

Figure 2:  Averaged results of CFU-F assays performed with CD271+ and CD271- sorted digested DP compared with BM-MNCs isolated by density gradient 
centrifugation, white = CD271+ and dark grey = CD271-; photographs show representative colony counts for each condition, * = p < 0.05, n=10 for dental pulp 
and n = 4 for bone marrow, data shown ± SEM.

  CD271- Sorted Unsorted p value
CD29 99.40% 99.00% 0.43
CD44 99.50% 98.70% 0.38
CD56 88.20% 87.20% 0.9
CD73 99.40% 98.80% 0.29
CD90 99.20% 97.30% 0.15
CD105 36.40% 27.40% 0.34
CD146 53.70% 45.40% 0.57
CD166 99.40% 98.70% 0.21

Table 1:  Comparative flow cytometry data showing average percentage 
expression of hDPSC markers expressed by expanded hDPSCs from both 
unsorted and CD271- cultures.  No statistically significant differences were 
observed in the marker expression profiles, n = 3.
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given that CD271 has been used to isolate BMSCs [11,13,26], we 
attempted to use it to selectively isolate hDPSCs. These studies showed 
that while CD271 was expressed in DP, the CD271+ fraction contained 
significantly fewer colony forming cells than the CD271- fraction (p = 
0.027). To validate these findings, we utilised the same experimental 
regimen to isolate BMSCs from BM-MNCs. The results of these 
experiments were in stark contrast to those for DP with significantly 
more colony forming cells found in the CD271+ fraction (p = 0.039) 
and are consistent with previously published BM data [11,13,14,26]. 
These previous studies also showed that collagenase digestion does 
not impair CD271 based selection [11,14].

Finally, we compared the expression of a range of common hDPSC 
markers by CD271- hDPSCs and unsorted hDPSCs, isolated by plastic 
adherence. These results showed near identical expression profiles, 
confirming that CD271- derived cells are the same as those isolated 
by plastic adherence and are in keeping with previously published 
data [27-29]. We can therefore conclude that cells from the CD271- 
fraction are indeed the cells commonly described as hDPSCs. This 
does not preclude the possibility that CD271+ cells also form colonies 
with similar profiles, but in smaller numbers. In this respect, it is 
important to mention that previous reports have shown that multiple 
proliferative cell populations exist within the human DP, including 
Oct-4 and Nanog expressing immature DP stem cells [24,30,31]. 
Recent reports have shown that cultured hDPSCs contain some cells 
of neural crest origin and it has been proposed in rats that CD271 
is a marker for neural crest derived populations [24,32]. From our 
data, it is possible to say that CD271 identifies a small subpopulation 
of cells within dental pulp and these may be the neural crest derived 
cells. However, in our experimental conditions, selection based on 
its expression produces significantly fewer colonies than the CD271- 
fraction.

It is interesting to note that previous studies have identified CD271 
in the apical papilla as well as the continuously erupting rat incisor 
[19,24]. It can therefore be postulated that CD271 may mark for early 
stage proliferating DP cells, and potentially prevents differentiation in 
deciduous teeth, but upon tissue maturation its expression is lost [16].

Our data also provide further evidence for differences in stromal 
cell biology between hDPSCs and BMSCs. These cell types are 
ostensibly similar with many commonalities [25,33]; however it is 
clear from our data that a key ‘in vivo’ marker of BMSCs –CD271– 
is lacking in the majority, if not all of colony forming hDPSCs. The 
rationale for this finding is likely related to the developmental origin of 
these tissues, with DP being a neural crest ectomesenchymal derivative 
and BM originating from, in the most part, the mesodermal germ 
layer [34-36]. It is therefore likely that despite the many phenotypic 
similarities following culture, the differences in embryonic origin 
mean that each cell type is likely to have fundamental differences 
in terms of ‘in vivo’ marker expression and inherent differentiation 
potentials [33]. Indeed this difference in differentiation potential is 
well known with hDPSCs producing globular dentin following in vivo 
transplantation whereas BMSCs produce lamellar bone [1]. We also 
note from our data that colonies formed from DP appear smaller in 
size than those from BM.

Conclusion
We conclude that CD271 is expressed within adult DP but that a 

significant majority of colony forming DP cells do not show CD271 
expression. Following in vitro expansion these cells possess sufficiently 
similar expression profiles to conventionally isolated hDPSCs so as 
to be indistinguishable. CD271+ cells showed limited colony forming 
potential and may be a distinct neural crest subpopulation within 
the DP. Overall, we conclude that CD271 is not a specific marker 
for hDPSCs and that it should not be used to isolate these cells from 
mature DP.
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