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Short Review
In common tumor theories, tumor is an abnormal somatic 

cell proliferation caused by accumulation of random mutations in 
essential genes that control cell growth. However, the mutation theory 
have been challenged by various contradictions [1], such as oncogene 
activation appearance in normal cells, a slower growth rate of some 
tumor cells than that of normal cells, normal tissue development 
by injecting malignant teratoma cells into normal blastaea, silent 
metastatic cancers, tumor occurrence via transplanting normal 
tissue into the spleen, and outpouring relapse of cancers [2]. More 
importantly, minor subpopulations of cancer cells have aberrant self-
renewal capacities to differentiate into several lineages of cancer cells. 
These self-renewing cancer cells are called cancer stem cells (CSCs), 
which are supposedly responsible for tumorigenesis, tumor spread, 
tumor resistance and tumor relapse [3].

As so far, CSCs can be identified by some cell surface markers 
such as cluster of differentiation 24 (CD24, or heat stable antigen 
CD24, HSA), cluster of differentiation 44 (CD44, also referred to as 
homing cell adhesion molecule, HCAM), cluster of differentiation 90 
(CD90, also known as THY1), cluster of differentiation 133 (CD133, 
also known as prominin-1, PROM1), cluster of differentiation 200 
(CD200, also called OX-2 membrane glycoprotein, OX2G), epithelial 
specific antigen (ESA, also called epithelial cell adhesion molecule, 
EpCAM), ATP-binding cassette B5 (ABCB5), nestin and so on [4]. 
The CSCs hypothesis provides a reasonable cellular mechanism to 
explain the therapeutic tolerances and dute behaviors exhibited in 
tumors, and CSCs has been suggested to be a significant barrier for 
efficient cancer therapy.

Recently, accumulative evidences showed that epigenetic 
mechanisms were key regulators during the process of differentiation 
from stem cells to specialized cells. In the development of tumors, 
aberrant epigenetic changes may help cancer cells to up or 
downregulate cancer stem cell markers in order to give rise a 
heterogeneous population of tumor cells [5]. Therefore, epigenetic 
regulation in cancer stem cells may provide new therapy for cancer 
treatment. Among them, histone acetylation is an important 
gene transcriptional regulation, which conducted by histone 
acetyltransferases (HATs) and histone deacetylases (HDACs). 
HDACs are grouped into 4 classes including class I, II, III and IV [6].

Class III HDACs, also called sirtuins, are a family of proteins 
composed of 7 members including SIRT1-7 [7]. As shown in figure 
1, they are nicotinamide adenine dinucleotide (NAD+) dependent 
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deacetylases and/or mono-[Adenosine diphosphate (ADP)-ribosyl] 
transferases that contain an N-terminal extension (NTE), a C-terminal 
extension (CTE), an NAD binding domain and a zinc-binding 
domain [8-10]. And they have different localizations: SIRT1/6/7 are 
localized in nucleus; SIRT1/2/3 are localized in cytoplasm; while 
SIRT3/4/5 are localized in mitochondria [10,11]. Sirtuins participated 
in multiple biological functions including chromatin structure and 
gene expression regulation, metabolic homeostasis, programmed cell 
death, aging, telomere activity, DNA repair, and cell differentiation 
[12]. Recently, more and more evidences showed that sirtuins, 
especially SIRT1 and SIRT2, played essential roles in the maintenance 
and differentiation of various cancer stem cells.

As the most important member in sirtuins, SIRT1 regulates 
multiple cellular processes including DNA repair, aging, metabolism, 
cell cycle, and survival [13] and plays an important role in 
maintaining self-renewal and differentiation of embryonic stem cells 
and hematopoietic stem cells (HSCs), especially under conditions of 
outside stress [14]. SIRT1 is a controversial histone deacetylase in 
tumorigenesis as it deacetylates both oncogenes such as β-catenin, 

survivin, and nuclear factor-κB (NF-κB) and tumor suppressors such 
as p53 and fork-head class O (FOXO) transcription factor [15]. But 
recently studies showed that SIRT1 was highly expressed in cancer 
stem cells, including glioma stem cells (GSCs) [16], colorectal cancer 
stem cells (CCSCs) [17], breast cancer stem cells (BCSCs) [18], 
pancreatic cancer stem cells (PCSCs) [19], chronic myeloid leukemia 
(CML) [20] and acute myeloid leukemia (AML) stem cells [21] and 
acted as an important promotors in the maintenance and self-renew 
properties of these CSCs.

High expression of SIRT1 was found in CD133-positive glioma 
cells, which played an important role in tumor recovery and 
radiotherapy resistance. Knockdown of SIRT1 expression in these 
cells enhanced radiosensitivity and radiation-induced apoptosis in 
vitro and the mean survival rate of radiotherapy-treated mice bearing 
glioblastoma-CD133-positive tumors was significantly improved by 
SIRT1 knockdown as well [22]. Further study showed that SIRT1 
increased expression in GSCs (CD133, sex determining region 
Y-box 2 (Sox2), and nestin positive) and cancerous neural stem cells 
(CNSCs) and played an important role in escaping p53-dependent 
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Figure 1: Schematic overview of Homo. Sapiens sirtuins family members SIRT1–7, NAD-binding poket (green), zinc-binding domain (red), and their size and 
intracellular locations.
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tumor surveillance, thus induced oncogenic transformation and 
retained the neural cancer stemness of the cells [16]. In addition, 
SIRT1 expression was decreased in cells of glial type (glial fibrillary 
acidic protein (GFAP)-positive) after differentiation from GSCs [16]. 
Besides, another study also showed that translation of SIRT1 in nestin 
and notch intracellular domain (NICD)-positive GSCs was suppressed 
by cytoplasmic polyadenylation element binding protein 1 (CPEB1), a 
key modulator that induced differentiation at the post-transcriptional 
level [23]. These evidences indicated that SIRT1 played an essential 
role in GCSs and could be a therapeutic target of GSCs.

SIRT1 is overexpressed in human leukemia stem cells (LSC) and 
its inhibition increased apoptosis in LSC and suppressed proliferation 
of CML stem cells or primitive progenitor cells. Besides, inhibition 
SIRT1 in CML stem cells facilitated to eliminate CSCs by Imatinib, 
a breakpoint cluster region-c-Abl oncogene 1 (BCR-ABL) tyrosine 
kinase inhibitor (TKI), in part via p53 activation [20]. In SIRT1 
homozygous knockout BALB/c mice models, CD150-negtive side 
population (SP) CML stem cells was also reduced and the maintenance 
of these cells was compromised. It seemed that SIRT1 knockout 
reduced cyclin-dependent kinase 6 (CDK6) expression and activated 
p53 through deacetylation instead of increasing its expression [24]. 
Except for CML stem cells, in primary human fms-like tyrosine 
kinase 3 internal tandem duplicated (FLT3-ITD) AML stem cells, 
SIRT1 was also selectively expressed in a high level and was enhanced 
by proto-oncogene c-MYC-induced high expression of ubiquitin 
specific peptidase 22 (USP22), a deubiquitinase (Figure 2). Besides, 
SIRT1 inhibition combined with FLT3 inhibitors promoted reduction 
of FLT3-ITD AML stem cells [21]. These evidences indicated that 
inhibition of SIRT1 network combined with TKIs or FLT3 inhibitors 
could be an attractive approach for BCR-ABL CML and FLT3-ITD 
AML treatment.

In addition, low level of miR-34a and high level of its target 
SIRT1 were found in CD44 positive and CD24-negtive BCSCs, and 
further study showed that miR-34a inhibited proliferative potential of 
BCSCs and downregulated the expression of CSC markers aldehyde 
dehydrogenase 1 (ALDH1), polycomb ring finger proto-oncogene 
Bmi1 and homeobox transcription factor Nanog partially by 
downregulating SIRT1 (Figure 2) [18]. Such mechanism might also 
occur in PCSCs [19]. In addition, many colorectal cancer specimens 
had strong SIRT1 expression, which had an obvious correlation with 
poor prognosis of colorectal cancer patients. Besides, SIRT1 was highly 
expressed in colorectal CSC-like cells and its expression had a co-
localization with CD133, a current common used marker of CCSCs. 
Further study showed that SIRT1 knockdown reduced proportion of 
CD133-positive cells, dampened colony and sphere formation in vitro, 
and restrained tumorigenicity in vivo. Importantly, the expressions 
of Oct4, Cripto, Nanog, telomerase reverse transcriptase (TERT) and 
Lin28, which are stemness-associated genes, were decreased by SIRT1 
deficiency [17]. These evidence indicated that SIRT1 played a crucial 
role in keeping the characteristics of stemness in colorectal cancer 
cells and SIRT1 may act as a potential prognostic factor of tumor 
recovery risk for cancer patients, and will contribute to providing a 
new therapeutic method for cancer treatment.

SIRT2 was another deacetylase that is increasingly identified as 
a essential regulator of cell cycle, cellular necrosis and cytoskeleton 
reorganization [25]. It’s recently reported to play an important role 
in carcinogenesis [26] and early lineage commitment of embryonic 
stem cell [27]. Recent research showed that SIRT2 could be induced 
by Notch signaling, thus leading to aldehyde dehydrogenase 1A1 
(ALDH1A1) deacetylation and enzymatic activation to promote 
BCSCs (Figure 2) [28]. SIRT2 was also highly expressed in CSCs 
and its activity is required for CSCs proliferation arrest induced by 
resveratrol, a potent SIRT1 inhibitor [29]. However, in skin tumors 
but not normal skin, SIRT2 deletion up-regulates the stem cell marker 
CD34 [30]. No doubt, much more exploration should be conducted to 
make sure the exactly role of SIRT2 in CSCs.

Other members of sirtuins also have been demonstrated to play 
an important role in tumorigenesis and cancer development [31]. For 

example, SIRT3 limits reactive oxygen species (ROS) levels in cancer 
cell, thus induces the degradation of hypoxia inducible factor 1α (HIF-
1α) and high level of SIRT3 may suppress intracellular acidification, 
inhibit Bcl2-associated X protein (BAX) activation and subsequent 
mitochondrial permeability transition (MPT) induction [32]. 
SIRT4 inhibits mitochondrial glutamine metabolism and responses 
to deoxyribonucleic acid (DNA) damage in cancer cells [33]. 
SIRT6 regulates glucose metabolism in tumors and acts as a tumor 
suppressor [34]. SIRT7 deacetylates H3K18 and maintains oncogenic 
transformation [35]. In addition, these sirtuins, especially SIRT6 
[36,37], SIRT7 [38] and SIRT3 [39], also have been demonstrated to 
play important roles in the maintenance and differentiation of normal 
stem cells. They might also act as key regulators in CSCs, but their 
roles are remained to be further explored.

CSCs are a small subset of cells that are responsible for initiation, 
development, and recurrence of tumors. Therefore, it is important 
to understand the molecular mechanism of CSCs for translational 
applications using CSCs in the treatment of patients with cancer. 
Sirtuins are an important family of HDACs and have been shown to 
tightly relate to CSCs and play essential roles in the maintenance and 
self-renew properties of CSCs. These evidences indicated that sirtuins 
must be important pharmaceutical targets for cancer therapy.

During past several years, some sirtuins inhibitors were 
indentified and developed to anti-cancer drug candidates, including 
splitomicin analogs, the indole derivative EX-527 (selisistat), sirtinol, 
cambinol, salermide, tenovins, toxoflavin, and AGK2 [40] (Figure 
3). Several splitomicin derivatives were shown to inhibit SIRT2 and 
exerted antiproliferative properties in MCF7 breast cancer cells [41]. 
Another small molecular compound, EX-527 is a cell-permeable, 
specific inhibitor of SIRT1 and shown to increase acetylation at 
Lys382 of p53 and activate it [42]. Above all, a potent human 
SIRT1/2 inhibitor, sirtinol [43] was shown to induce senescence-
like growth arrest in breast cancer cells, lung cancer cells [44], and 
enhance chemosensitivity to cisplatin and camptothecin in prostate 
cancer cells [45]. Besides, Cambinol and salermide are also SIRT1/2 
inhibitors and showed anticancer properties [46,47]. Recently, some 
studies also explored salermide derivatives as sirtuins inhibitors 
and tested its efficient in cancer stem cells [48,49]. Tenovin-6 was 
identified as SIRT1/2/3 inhibitor [50] and antitumor was showed 
in acute lymphoblastic leukemia (ALL) [51], chronic lymphocytic 
leukemia (CLL) [52], gastric cancer [53] and colon cancer [54]. 
Besides, a SIRT1 specific inhibitor toxoflavin was also screened out 
and showed good anticancer effect [55]. Another SIRT2 potent and 
selective inhibitor AGK2 was also shown to induce apoptosis in 
glioma [56]. These studies indicated that sirtuins inhibitor may be 
efficient drug candidates for cancer therapy, but their effects on CSCs 
are remained to be explored.

         

Figure 3: Schematic overview of sirtuins inhibitors.
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In conclusion, sirtuins play essential roles in CSCs regulation and 
could be candidate molecular target in cancer treatment. However, 
the exactly function and mechanism of sirtuins have not been fully 
elucidated, much more work should be carried out.
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