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amputation and heart attack arise as a consequence of the long-term 
damage of tissues, caused by high levels of blood sugar. In both T1D 
and T2D the supply of insulin-producing tissue/cells is inadequate. 
Cell-based therapies are strategies to overcome this and thus reduce 
the dependence on exogenous insulin in diabetic patients. The main 
strategy is thus the development of such cell therapies to treat diabetes 
by the production of sufficient numbers of pancreatic endocrine cells 
that can function as primary islets.

The progress in pancreatic islet transplantation achieved over 
the past decade suggests that diabetes can be improved by replacing 
deficient β cells with new, functional, insulin-producing cells [2-4]. 
These techniques, while effective, are hindered by immune rejection 
as well as by the lack of adequate supplies of primary tissues for such 
transplantation. Generation of functional β cells from other sources 
is needed, therefore, to overcome the islet shortage. Over the past 
several years, stem cell therapy, especially that using mesenchymal 
stem cells (MSCs) [5,6], embryonic stem cells (ESCs) [7,8] and 
induced pluripotent stem cells (iPSCs) [9,10], as sources of engineered 
insulin-producing cells, has provided alternative approaches to islet 
transplantation. Recent findings of the beneficial effects of agonists 
of growth hormone-releasing hormone (GHRH) on the functions of 
β cells may also provide new approaches to their application in T1D 
and T2D diabetes [11-14].

Herein, we outline the progress, in animal studies and in human 
clinical trials, in the generation of β cells from different types of stem 
cells and also in the progress in methodology for infusion of islets 
and stem cell derived β cells intra-corporeally for the treatment of 
diabetes.

Islet Transplantation
One emerging alternative to whole organ pancreatic 

transplantation is transplantation of isolated pancreatic islet cells. 
This process is based on the enzymatic isolation of pancreatic islets 
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Introduction
Diabetes currently affects more than 300 million people 

worldwide; this number is set to rise dramatically [1]. Permanently 
elevated blood glucose levels are the key indicator of this metabolic 
disorder. Type 1 diabetes (T1D) is an autoimmune disease in which 
insulin-producing β cells within the pancreatic islets are irreversibly 
destroyed, resulting in deficient insulin production. Type 2 diabetes 
(T2D) is a disease in which the pancreas produces insufficient 
amounts of insulin, due to progressive loss of β cells; systemic 
tissues may also become resistant to normal or even high levels of 
insulin. Severe complications, such as blindness, kidney failure, limb 
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from pancreata procured from cadaver donors. The islets obtained 
are infused into the liver of the recipient through a percutaneous 
catheterization of the portal venous system. This procedure for islet 
cell transplantation (ICT) is considered to be minimally invasive, 
and allows the selective transplantation of a population of insulin-
producing cells. ICT can be considered an alternate option in the 
restoration of glucose homeostasis in a subset of T1D patients with 
unstable glycemic control and with frequently severe hypoglycemia 
which has failed correction by standard intensive insulin therapy [3].

The ICT method was first developed in the 1970s. These initial 
efforts with ICT showed that the treatment reduced the occurrence 
of diabetic complications, however, the long-term outcome was 
unsatisfactory. The results were improved remarkably, in 2000, by 
the demonstration of Shapiro et al. [15], that the key to success of 
islet transplantation lay in the quality and the mass of the islets used, 
as well as the immunosuppressive regimen. By using an improved, 
“Edmonton Protocol”, the destruction of islets, caused by rejection 
and recurrent autoimmune disease, was reduced. Further, the report 
by the Collaborative Islet Transplant Registry for allogeneic islet 
transplantation performed during the years 1999 to 2010, indicated 
that the rate of recipients achieving insulin-independence for 3 
years showed increasing stability, from only 10% before 1999 to 
44% in the years from 2007-2010 [16,17]. Using potent application 
of immunotherapy, a higher rate of insulin-independence can thus 
be achieved [18,19]. Increased levels of C-peptide and reduction of 
glycated hemoglobin, (Hb-A1c), attested to the increasing durability 
of islet graft function. However, the limitation of transplantable 
pancreatic donor material is still a major hurdle. To meet the demand 
for islet transplantation, a potential alternative is the use of animal 
sourced islets. The use of pancreatic islets obtained from pigs has 
emerged as a practical alternative to the use of human tissues, due 
to their greater availability and physiologic similarities to human 
islets. Long-term graft survival, in non-human primates, of porcine 
islets isolated from adult, neonatal or genetically engineered pigs 
has been reported [20-22]. Infusion of adult porcine islets resulted 
in normoglycemia in immunosuppressed, diabetic, non-human 
primates [23].

Minimization of attack by the host’s immune system is a critical 
issue in achieving efficient islet engraftment. Immunosuppressive 
therapy, however, itself causes undesirable side effects. Despite 
many preclinical and clinical trials, there is still not a single standard 
immunosuppressive regimen that can be used to suppress acute and 
chronic immune reactions, with lower toxicity, to grafted islets.

An islet encapsulation technology to treat diabetes, another 
conceptual option, has been developed. By trapping islets into man-made 
devices, a physical barrier between the islet cells and the immune system 
is created, thus allowing normal physiologic function of encapsulated 
islet cells. The system has been tested in several experimental models [24]. 
A pilot trial for safety and efficacy to treat patients with T1D is in progress 
[3]. A “bioartificial pancreas” has also been developed which consists of 
macrochambers specifically engineered for islet transplantation and 
survival. The subcutaneously implantable device allows for a controlled and 
adequate oxygen supply and is specially designed to afford immunologic 
protection of its contained donor islets against the host’s immune system. 
This has made possible long-term glycemic control in diabetic rats and 
minipigs [12,25]. A breakthrough was reported in that a human patient, 
suffering from TD1, received an implanted bioartificial pancreas and 
experienced persistent graft function, with regulated insulin secretion 
and preservation of islet morphology and function, without the need for 
immunosuppression, for ten months [26]. This system/concept opens 
up an entirely new, fundamental strategy for the therapy of diabetes, by 
providing an avenue for future approaches using xenotransplantation. A 
clinical trial, using a “DIABECELL” device, which incorporates neonatal 
porcine islets encapsulated in alginate microcapsules, is also in progress 
[3]. DIABECELL has been safely transplanted in both healthy and 
diabetic animals. Following DIABECELL transplants, the requirement 
for daily insulin was significantly reduced in diabetic mice, rats, rabbits, 
dogs and non-human primates.

Designing a procedure to specifically isolate islets, with high 
cellular yields and minimal damage, is another critical issue in the 
success of islet transplantation [2]. Strategies to robustly condition 
pancreatic islets, such as promotion of cell growth and metabolic 
function, are particularly important [27,28]. Numerous studies 
have reported efforts to improve the survival of islets by preventing 
the loss of islet cell viability and function during and following the 
transplantation period, in animal diabetic models. To this end 
growth hormone (GH), and various growth factors such as insulin-
like growth factor-1 (IGF-1) and, glucagon-like peptide (GLP-1) 
were studied for their ability to stimulate proliferation and survival 
of pancreatic β cells [29-32]. Pharmaceutical screening to identify 
new drugs that can improve β cell function, survival, proliferation, 
or all of those, is another important possibility for improving the 
maintenance of functional islet cells for transplantation. For example, 
in mouse models of diabetes, the efficacy of islet transplantation can 
be substantially improved by the preconditioning of islets with kinase 
Ce (PKCe) activator [33]. Recently, agonists of growth hormone-
releasing hormone (GHRH) were found to significantly improve 
β cell survival, growth and metabolic function, and to increase 
expression of cellular insulin, IGF-1 and vascular endothelial growth 
factor (VEGF); they also stimulated insulin secretion in response 
to glucose challenge in vitro. Pretreatment of rat islets with GHRH 
agonists also improves the in vivo engraftment and the metabolic 
function of islets following the transplantation into streptozotocin 
(STZ)-induced diabetic mice [11,13,14]. Pretreatment with GHRH 
agonists also significantly enhanced function of rat islets encapsulated 
in bioartificial macrochambers after implantation into diabetic rats 
[12]. The pretreatments led to a reduction of the islet mass necessary 
for normoglycemic metabolic control in diabetic animals [12,14]. 
VEGF has been reported to play a critical role in development of 
β cells, and is itself also associated with the survival of islets in vivo 
following transplantation [34,35]. We can speculate that the beneficial 
effects of GHRH agonists on the functions of β cells may provide an 
improved approach to ICT. Clinical trials of oral caspase inhibitor 
to prevent apoptosis of islets, and Sitagliptin, a drug to increase the 
amount of GLP-1, are already in progress in T1D patients after islet 
transplantation [3].

Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) represent a stem cell population 

that can be isolated from a variety of adult tissues. MSCs exhibit a great 
capacity of self-renewal in culture, and also the potential of multipotent 
differentiation. Human MSCs exhibit low immunogenicity, thereby 
making them important and promising candidates for allogeneic 
cell therapy. MSCs have the potential to supply growth factors and 
cytokines, and the ability to selectively target into those injured tissues 
requiring repair [36,37]. Furthermore, MSCs are an abundantly 
available cell source and can be obtained from patients for use in 
autologous transplantation. MSCs are currently being evaluated in 
various pre-clinical and clinical studies and offer significant potential 
as a novel cellular therapy for tissue regeneration and repair, immune 
disorders, diabetes, and related complications [38].

In vitro differentiation of MSCs into insulin producing cells is 
well documented. Using multistep differentiation protocols, MSC-
derived insulin-producing cells can be obtained from a variety of 
human adult tissues [5,39] including bone marrow [40,41], adipose 
tissue [42,43], umbilical cord or its blood [44,45], endometrium 
[46]. Numerous studies have reported the potential improvement 
of diabetes by transplantation of MSCs in T1D diabetic mice [6,47-
50], rats [51] and miniature pigs [52]. Infusion of MSCs derived from 
bone marrow or umbilical cord improved the hyperglycemia and 
raised blood insulin levels in T2D mice [53]. The infusion of MSCs 
not only promoted β-cell function, but also ameliorated insulin 
resistance in T2D rats [53]. MSCs can also improve the secretion of a 
variety of trophic factors such as IGF-1 and VEGF. VEGF is known to 
play a key role in cell engraftment and MSC-mediated vasculogenesis 
[54,55]. Co-transplanting bone marrow cells concurrent with islet 
transplantation also significantly improves islet engraftment in 
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diabetic mice [56,57]. Transplantation with MSCs also ameliorated 
damages in cardiac dysfunction [54,58,59], renal failure [49,60,61], 
dysfunctional wound healing and limb ischemia [62,63], in diabetic 
animal models.

Preliminary and preclinical studies of infusions, using human 
MSCs derived from bone marrow, umbilical cord, cord blood or 
placenta, to treat patients with T1D and T2D have yielded promising 
data. The treatment is shown to be safe and well tolerated; reduction 
of insulin dependence is observed. Studies have further indicated 
that autologous bone marrow MSCs preserve β cell function in 
patients with recent-onset T1D [64,65]. In the management of T2D, 
they partially restore the function of islet beta-cells, maintaining 
blood glucose homeostasis, increasing levels of C-peptide [66,67] 
and improving wound healing in diabetic patients with critical limb 
ischemia [68]. The infusion of multipotent stem cells, derived from 
umbilical cord blood, remarkably improves C-peptide levels, reduces 
Hb-A1c values, decreases the required median daily doses of insulin 
in patients with T1D [69]; it also ameliorated metabolic control and 
reduced inflammation markers in patients with T2D [70]. Wharton’s 
jelly–derived MSCs (WJ-MSCs, isolated from the umbilical cord with 
a high yield of “young cells”) or MSCs derived from adipose tissue or 
placenta can also be used in the treatment of new-onset T1D [71,72], 
and T2D [73,74].

The abundantly available sources of MSCs for transplantation, 
and their low immunogenicity and immune-modulatory properties, 
give MSCs advantages over islets in cell based therapy. Animal studies 
and pilot clinical trials have demonstrated the effectiveness of MSCs 
in the treatment of T1D and T2D. However, despite the success of 
differentiation of human MSCs in vitro into functional pancreatic 
β cells, the rate of trans-differentiation was considered low [75,76], 
and the duration of functional maintenance in vivo is difficult to 
evaluate. The absence of standardized protocols for the expansion 
and generation of insulin secreting cells still leads to inconsistent 
clinical outcomes. MSCs do not pose the risk of producing teratomas, 
but their substantial expression of chemokines may have hidden 
risks for the promotion of tumor growth and metastasis. Karyotypic 
changes might also appear after long-term continuation in culture 
[37]. Nevertheless, transplantation of MSCs ameliorates the progress 
of diabetes and, perhaps, may have unique potential when used in 
combination with ICT [3,6,56,57]. Recently it has been reported that 
agonists of GHRH promote survival of cardiac myocytes and cardiac 
stem cells in vitro [77-79], reverse remodeling after myocardial 
infarction in vivo [77,78], accelerate wound healing [80] and augment 
the production of VEGF in mouse or human MSCs [55]. These 
interesting finding may provide a new insight into the use of agonists 
of GHRH for the potential tissue repair function of MSCs. The use of 
GHRH agonists may improve the efficacy of MSCs based therapy of 
diabetes.

Embryonic Stem Cells
The most significant aspect of the use of cell therapies to treat 

diabetes is the potential for the production of sufficient numbers 
of pancreatic endocrine cells that can function similarly to primary 
islets. Human embryonic stem cells (ESCs) derived from the inner 
cell mass of a blastocyst can proliferate extensively in vitro, be 
maintained indefinitely as an undifferentiated cell line, and have the 
potential to differentiate into derivatives of any of the three germ 
layers [81,82]. One advantage of applications using ESC-derived cells 
is that ESCs are not as immunologically potent as allogeneic adult 
cells; the use of ESCs therefore provides a promising alternative cell 
source for the cellular treatment of diabetes. Many studies have been 
reported wherein both mouse and human ESCs may differentiate 
into insulin-secreting cells [83-85]. By using strategies mimicking 
embryonic pancreatic organogenesis, human ESCs can be induced 
to differentiate in vitro into endocrine cells capable of synthesizing 
pancreatic hormones [86]. After implantation into diabetic mice, 
these cells efficiently generate glucose-responsive cells, exhibit the 
properties of functional β cells after engraftment, and prevent STZ-
induced hyperglycemia [87]. Furthermore, by using defined cell 

surface markers, enriched populations of pancreatic endoderm cell 
types can be differentially separated, and give rise to all pancreatic 
lineages after transplantation into mice [88]. A scalable system for 
the production of functional pancreatic progenitors from human 
ESCs has been developed; these cells, upon implantation, efficiently 
protect against diabetes in mice [89,90]. This system has provided 
a robust methodology for manufacturing pancreatic progenitors 
for use in clinical trials. The very first-in-human trial using human 
ESC-derived pancreatic precursor cells to treat patients with T1D is 
now under way [7,91]. The cells are encapsulated in a drug delivery 
system developed by the Encaptra Company. The system is placed 
under the patient’s skin to protect from the recipient’s immune cells 
[91]. Recently, two groups independently reported that, by using a 
multiple-stage induction protocol, they efficiently converted human 
ESCs into insulin producing cells in vitro [92,93]. The cells displayed 
glucose-stimulated insulin secretion similar to that of human islets 
[92]. Xenotransplantation of these cells efficiently reverses diabetes in 
mice. In vitro expansion of these cells provides a promising alternative 
to using pancreatic progenitor cells and would overcome donor islet 
shortages. ESCs are a favorable source for cell based therapy, however, 
in addition to ethical issues, safety is a major concern because the 
possible contamination by undifferentiated cells is a hidden risk for the 
formation of teratomas or other tumors [94]. There is now a growing 
recognition that differentiated cells derived from ESCs are mostly 
immature [95]. These cells thus can mimic embryonic development 
and adopt phenotypes that resemble fetal or neonatal cells which, 
with the hidden danger of genetic mutagenesis, could lead to tumor 
formation. More studies, with long-term observation, are required to 
understand the mechanisms involved and their significance.

Induced Pluripotent Stem Cells
The exciting discovery of induced pluripotent stem cells (iPSCs), 

in 2006, opened a new possibility in generating replacement cell based 
therapy for disease treatment [96]. Forced expression of four defined 
key transcription factors can program mouse somatic cells, such 
as fibroblasts, into iPSCs. IPSCs resemble ESCs with their infinite 
self-renewal capacity and great potential to differentiate into a wide 
variety of cell types. Success in generation of iPSCs from human 
somatic cells was soon reported [97,98]. Un-differentiated iPSCs can 
be maintained as cell lines; this, therefore, provides great promise 
for disease modeling and for allowing the generation of personalized 
stem cells for autologous cell therapies [9,99].

Mouse skin fibroblast-derived iPSCs were able to differentiate 
into β-like cells, similar to normal, endogenous insulin-secreting 
cells, and thereby reverse hyperglycemia in diabetic mice [100]. iPSCs 
have been generated from patients suffering from T1D and T2D 
[101-103]. Insulin-producing cells have then been generated in vitro 
from iPSCs by directed differentiation, using small molecules and 
growth factors in culture [104,105]; these produced a nearly 25% yield 
of insulin-positive cells [106]. Recently, a stratagem for large-scale 
production of functional human β cells from human iPSCs in vitro 
has been demonstrated. By using sequential modulation of multiple 
signaling pathways found in the development of the pancreas, in a 
three-dimensional cell culture system, mono-hormonal insulin-
producing and glucose-responsive cells were generated [105,107]; 
with reproducible protocols an approximately 50% yield could be 
obtained [93,108]. These cells also responded to multiple, sequential 
high-glucose challenges and thus functionally protected mice from 
diabetes. Therefore, this technique may allow us to produce large 
numbers of β cells in vitro for therapeutic application.

An advantage of using iPSCs is the absence of ethical concerns. 
The technology allows the generation of autologous cells for cell-
replacement therapy. The somatic origin of iPSCs has minimized, but 
however, not eliminated, some of the challenges that have hampered 
the development of human ESC-based therapies. As with ESCs, a 
major obstacle to the use of iPSCs is the safety issue; the risk of teratoma 
formation can be substantial [109,110]. An improved understanding 
of the molecular mechanisms of cellular reprogramming is necessary 
in order to overcome these barriers before the so-called “next-
generation stem cells” can be safely applied in patients with diabetes.
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Transdifferentiation
Several studies have shown that β cells can be generated from 

other cell types of endodermal origin, without requiring transit 
though a pluripotent stage. Introduction of pancreatic transcription 
factor in vivo induced liver cells to express pancreatic endocrine-
related genes including those for insulin production, without affecting 
normal hepatic function, and resulted in prevention of chemically 
induced hyperglycemia in mice [111,112]. A strategy of re-expressing 
key developmental regulators in vivo can reprogram differentiated 
pancreatic exocrine cells into cells resembling β cells in respect in size, 
shape, ultrastructure and expression of those genes essential for β cell 
functions [113-115]. Pancreatic ductal structures may also contain 
precursor cells that can yield insulin-producing cells. Ductal tissue 
from human pancreas can be isolated in large scale, expanded and 
directed to differentiate into glucose responsive islet tissue in vitro 
[116,117]. The expression of a single transcription factor in mouse 
pancreatic α cells induced them to re-differentiate towards a β cell 
fate; α cell-mediated regeneration of the β cell mass ameliorated 
hyperglycemia and extended lifespan [118]. These studies presented 
additional concepts and protocols for production of pancreatic β cells.

The application of the GHRH agonists in the Treatment 
of Diabetes

Hypothalamic GHRH stimulates production and release of 
growth hormone (GH) from the pituitary gland, exerts some of its 
effects through the GH/IGF-1 axis, and also directly affects extra-
pituitary cells expressing GHRH receptors by activating them. GHRH 
receptor(s) have been detected in pancreatic β cells, cardiac stem 
cells and MSCs from different species [11-14,55,77-80]. It has been 
proposed that the activation of signal pathways (such as MAPK/ERK, 
PI3K/AKT, and cAMP/PKA), triggered by the interaction between 
GHRH agonists and the receptors on β cells, plays an important role 
in the stimulation of metabolic function of pancreatic β cells [14]. 
The GHRH-GHRH receptor complex may enable signal transduction 
independently or in cooperation with other pathways, likely the IGF-
1 signaling pathway, in the regulation of development and function 
of pancreatic β cells. The beneficial effects of GHRH agonists on the 
metabolic function of pancreatic β cells may provide approaches to 
cell based therapy for treatment of diabetes.

Conclusion
In conclusion, strategies to supply the body with cells producing 

insulin are considered as the most important alternative approaches 
to the treatment of diabetes. The progress in the transplantation of 
pancreatic islets that has been achieved suggests that clinical diabetes 
can be improved by the replacement of deficient beta cells with new, 
functional cells. Generation of functional β cells from stem cells offers 
an attractive method of restoring islet cell mass. The use of MSCs, 
ESCs and iPSCs as sources for engineered insulin secreting cells, has 
provided an alternative approach to the use of islet transplants. Recent 
success in the generation of mono-hormonal, insulin-producing and 
glucose-responsive cells from human ESCs and iPSCs provides an 
enormous potential source of β cells for therapeutic usage. Beneficial 
effects of GHRH agonists and other hormonal and growth agents on 
the proliferation and function of β cells and on the engraftment of 
islets after transplantation, suggest that these classes of compounds 
might also improve the function of the insulin-producing-cells 
derived from ESCs, iPSCs and other cell types of endodermal origin, 
but further studies are required. The development and application 
of encapsulation technology to circumvent immune rejection by 
recipients may enable us to reduce or eliminate the necessity of 
immunosuppressive drugs. Progress in these areas opens up new 
avenues for the treatment of both T1D and T2D.
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