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of human MSCs: i) adherence to plastic in standard culture 
conditions; ii) must express stromal cell associated markers (such as 
CD73+, CD90+, CD105+) and must not express hematopoietic and 
endothelial markers (such as CD34-, CD45-, HLA-DR-, CD14- or 
CD11b-, CD79a- or CD19-) as assessed by flow cytometry analysis; 
and iii) in vitro differentiation capability into adipocytes, osteoblasts 
and chondroblasts in vitro [3]. MSCs have been successfully isolated 
from several species, including humans and mice. While MSCs 
are routinely isolated from bone marrow (BM), it is now evident 
that MSCs can also be isolated from many other tissues, including 
peripheral blood, cord blood, cord wharton’s jelly, adipose tissue, 
amniotic fluid, compact bone, periosteum, synovial membrane and 
synovial fluid, articular cartilage and foetal tissues. Although MSCs 
isolated from different sources share similar surface antigens, and 
exhibit similar classical differentiation potential (bone, fat, and 
cartilage), these cells still exhibit heterogeneity in their phenotype 
and biological properties, which apparently depends on their tissue of 
origin and microenvironmental niche [4]. Therefore, in contemporary 
regenerative medicine, we can split MSCs can be divided according 
to their source into two broad categories, marrow derived and non-
marrow derived. The isolation of MSCs focusing on non marrow-
derived sources has been described, because the repeated isolation of 
bone marrow-derived MSCs can be compromised as a result of viral 
infection, the decline in the number of stem cells with age, or the 
need for a highly invasive procedure [5].

Endothelial cells are currently regarded as an integral part of 
tissue repair and regeneration. However, mature endothelial cells 
have inadequate proliferative capacity in vitro and in vivo; hence there 
is an urgent need to explore alternative sources of cells for autologous 
and allogenic transplantation applications. Recent progress has made 
it possible use stem cells as cell sources for therapeutic angiogenesis, 
as well as in the vascularization of engineered tissue grafts. This 
chapter will present data from the literature documenting successful 
utilization of MSCs for cardiovascular disease under pre-clinical and 
clinical settings.

Endothelial Differentiation of MSCs (in vitro)
One of the criteria utilized to define MSCs is the capability to 

differentiate in vitro into the three classical stromal lineages, namely 
fat, bone and cartilage. Recently, the spectrum of their differentiation 
potential was extended to angiogenesis. MSC sources may also hold 
progenitor cells with angiogenic capability (i.e. to differentiate into 
visceral mesoderm origin such as endothelial cells and to contribute 
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Introduction
The characterization of mesenchymal stemcells (MSCs) relies 

mainly on the study of in vitro culture-developed cell populations. 
Despite years of intense research, the position and function of 
resident MSCs within their origin in vivo are unknown, due to lack 
of specific markers to identify naive MSCs [1]. The probability exists 
that the MSC surface protein expression may fluctuate between in 
vivo and in vitro settings, because of the loss of MSCs from their 
niche and the use of physical and chemical growth environments. 
Phenotypic characteristics of MSCs are not stable during ex vivo 
treatment; as MSC’s can undergo some changes including loss of 
specific markers and acquisition of new markers [2]. To resolve this 
issue, the International Society for Cell Therapy (ISCT) proposed 
in 2006 the following minimal criteria for the minimal definition 
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to blood vessel construction). Identification of the ideal therapeutic 
populations remains an essential aspect in regenerative medicine. In 
vitro aids this aim by selecting populations that are appropriate for 
more exclusive (but time-consuming) in vivo evaluation. Although 
in vitro methods cannot completely mimic the repertoire of cellular 
and molecular actions that occur in vivo. Nonetheless, it is feasible to 
develop approaches that imitate essential basics of the in vivo systems. 
De novo blood vessel formation (neovascularization) is essential for 
the revitalization of ischemic tissue in adults. Formerly, it was assumed 
that the mechanism for developing new vascular arrangements in the 
context of growth or tissue ischemia is angiogenesis (i.e., the sprouting 
of microvessels from a preexisting capillary bed) [6]. However, recent 
data suggests that adult bone marrow derived cells can be involved 
in angiogenesis through the recruitment of endothelial progenitor 
cells in response to signals produced by damaged tissues (postnatal 
vasculogenesis) [7]. Vasculogenesis-mediated blood vessel expansion 
is altered in adults in numerous pathological conditions, such as 
peripheral vascular disease, myocardial ischemia and infarction, 
stroke, wound healing, retinopathy and tumor growth [8]. Endothelial 
progenitor cells hold great promise as potential cell-based therapies 
for such disease conditions [7]. Subsequent studies have shown that 
non-marrow derived sources like peripheral blood, umbilical cord 
blood, cord tissue and adipose tissue derived cell population also have 
neovascularization property in vitro and in vivo [9-14]. Proliferation 
and survival of endothelial cells is an essential aspect of angiogenesis 
whereas adipose stromal cells (ASCs) have the capability to support 
endothelial cell growth by secretion of proangiogenic growth factors, 
particularly VEGF (vascular endothelial growth factor) and HGF 
(hepatocyte growth factor). This event has been investigated in 
hypoxic (1% CO2) and normoxic (1% CO2) conditions, with ASCs 
typically displaying a higher response in hypoxic condition [15]. 
Other than MSCs, progenitors for endothelial cells have been found 
both in bone marrow and peripheral blood. Since bone marrow-
derived circulating endothelial progenitor cells (EPC) are involved in 
postnatal neovascularization, this has suggested that utilization of a 
cell-based therapeutic angiogenesis might be possible [16]. Peripheral 
blood EPCs and bone marrow derived multipotent adult progenitor 
cells (MAPCs) were found to be positive for vascular endothelial 
growth factor (VEGF) receptor 2, also known to as FLK1 or KDR. 
EPCs were positive for CD34 and CD133, and MAPCs were dimly 
positive for CD44 and CD133 [17-19]. EPCs can be mobilized from 
bone marrow either exogenously by cytokine stimulation (i.e. HMG-
CoA reductase inhibitors) or endogenously by tissue ischemia [20,21]. 
However, clinical application of EPC is a cumbersome procedure 
due to their scarcity, essentially in patients who could benefit most 
from such therapeutic angiogenesis [21]. Therefore, MSCs from 
different sources have recently been investigated for their angiogenic 
potential, aside from their well-established mesoderm differentiation 
properties.

Several studies have portrayed the classical multilineage 
differentiation of MSC to adipocyte, osteoblast and chondrocyte in 
vitro by appropriate induction factors [22]. Similarly, to promote 
endothelial differentiation, MSC cultures are incubated in low-
serum conditions supplemented with different factors such as VEGF 
(Vascular endothelial growth factor), basic fibroblast growth factor 
(bFGF/ FGF2), ascorbic acid (vitamin C), epidermal growth factor 
(EGF), heparin, hydrocortisone and Insulin-like growth factor 1 
(IGF-I) [11,22-24]. These agents converted MSCs into endothelial-
like cells without altering their morphology when continuously 
exposed for 7 days. The resulting differentiated MSCs displayed 
several features characteristic of endothelial cells, including the 
expression of a number of endothelial-associated genes. In vitro 
endothelial differentiation is usually assessed by several assays like 
immunofluorescence for PECAM (CD31), von Willebrand factor 
(vWF) in Weibel-Palade bodies, CD34, VEGF receptors (KDR and 
FLT-1), VE-cadherin (CD144), eNOS and VCAM-1(CD106). Other 
assays are matrigel tube formation, Ac-Low-density lipoprotein (LDL) 
uptake, and 6-keto prostacyclin secretion assay (radioimmunoassay) 
[11,23,24]. When cultured with endothelial growth factors, bone 

marrow MSCs displayed a strong expression of endothelial-specific 
markers such as VEGF receptors (VEGFR-1 and VEGFR-2) and 
vWF [23]. It is noteworthy that the endothelial differentiation 
process was found to be reversible because switching MSCs back to a 
routine culture environment led to the disappearance of endothelial 
characteristics, while upon returning to endothelial environment, the 
endothelial features reappeared [24]. Therefore it might be justified 
to speculate that under the aforementioned culture conditions, the 
differentiated cells may have not reached a terminally differentiated 
endothelial state, i.e. the differentiated cells may not have left the 
mesenchymal stem cell compartment. The essential role for vitamin C 
was well described in a human aortic endothelial cells (HAEC) study, 
whereas HAEC cultured in the absence of vitamin C were basically 
scorbutic. However, supplementation with vitamin C reduced the 
oxidative stress significantly and increased the level of GSH, GSH/
GSSG ratio and eNOS activity in human aortic endothelial cell culture 
[25]. Similarly, oxidative stress, low LDL-uptake and morphology 
changes were noticed in human MSC endothelial differentiation 
cultures lacking vitamin C [24]. The omission of other inducible 
factors such as EGF, IGF and VEGF from endothelial differentiation 
culture negligible effect on MSC’s LDL-uptake, expression of 
endothelial markers and endothelial tube formation. In contrast, the 
exclusion of b-FGF significantly impaired MSC’s LDL-uptake [24].

The matrigel system has been used broadly for in vitro angiogenic 
assays, because it provides the necessary extracellular matrix 
molecules and essential growth factors [26]. Matrigel is a soluble and 
sterile extract of basement membrane proteins derived from the EHS 
(Breth-Holm-Swarm) tumor that forms a 3D gel at 37oC and supports 
cell morphogenesis, differentiation, and tumor growth. Mesenchymal 
cells such as MSCs, pericytes, or fibroblasts co-align when cultured 
on matrigel [27]. Matrigel promotes the differentiation of various 
different cell types as well as the outgrowth of differentiated cells; 
however, it does not induce the proliferation of such cells. Both 
the morphology and the gene expression profile of cells grown on 
matrigel revealed a more differentiated phenotype [28]. Cells on or 
in this matrix associate with each other, usually in three dimensions, 
and then generate structures similar to those formed at their origins. 
Endothelial cells begin to attach to each other and align within an 
hour and form capillary-like structures with a lumen within 24 
hours [29]. Primary and immortalized microvascular endothelial 
cells and human umbilical vein endothelial cells (HUVEC) form 
nearly identical capillary-like structures on this substratum [28-30]. 
Similarly, induced MSCs were shown to form a vascular network 
when cultured with endothelial medium on matrigel. Morphological 
changes were observed at different time points, during the first 12h, 
cells spread randomly and started to form seldom interconnected 
clusters, followed by an increase in the cluster size with highly 
connected capillary tube-like structures after 12h and 48h, and 
finally discrete matrigel areas were empty and surrounded by cell 
islets [12,13,23]. Our in vitro and in vivo studies also confirmed the 
endothelial and angiogenic property of the hNSSCs by utilising the 
above-mentioned investigations [31,32].

Utilization of MSCs for Cardiovascular Diseases (Pre-
clinical)

Despite recent progresses in the clinical management of 
cardiovascular disorders, this group of diseases remains the leading 
cause of death worldwide, underscoring the need for exploring novel 
therapeutic strategies. Such novel therapeutic modalities could be 
based on MSCs as they have recently emerged not only as capable 
of immunoregulation and differentiation, but also of tissue repair 
incardiovascular disease. Since the early 2000s, several preclinical 
studies have shown promising efficacy of MSCs for the treatment of 
various cardiovascular diseases in animal models. Orlic and colleagues 
demonstrated that transplantation of Lin c-Kit+ bone marrow (BM) 
cells could regenerate the infarcted myocardium in mice [33]. 
Subsequently, the same group demonstrated that transplantation 
of mobilized (by stem cell factor (SCF) and granulocyte-colony 
stimulating factor (GM-CSF)) blood mononuclear cells (BMC) 
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could regenerate the infarcted myocardium and prolong the survival 
of experimental mice [34]. Whereas these studies do not directly 
implicate MSCs in heart regeneration, Shake et al. demonstrated that 
MSCs can indeed home to and improve the function of infarcted 
myocardium [35]. Later on, a number of other studies showed 
that injection of MSCs could improve cardiac function through 
differentiation into endothelial cells and/or myocytes [36-40]. 
Similarly, Quevedo and colleagues reported that allogeneic MSCs can 
restore cardiac function in chronic ischemic cardiomyopathy through 
differentiation into cardiac, vascular muscle, and endothelial lineages 
[41]. While transplantation of MSCs lead to significant reduction 
in myocardial scar size in rats, Jaquet and colleagues observed no 
evidence of transdifferentiation or neovascularization in those animals 
[42]. Similarly, tracking experiments demonstrated that infused 
MSCs were not present at the scar site at four weeks post-injection, 
despite evident therapeutic benefit [43]. These and other findings 
led to the assumption that MSCs might repair damaged heart via 
other mechanisms rather than transdifferentiation. In concordance 
with this hypothesis, Gnecchi et al reported that functional recovery 
in the hearts of myocardial infarction (MI) rats transplanted with 
AKT-modified MSCs occurred within 72 hrs post implantation, 
suggesting alternative mechanisms by which MSCs might exert their 
effects [44]. The authors suggested a paracrine effect of MSCs wherein 
administration of AKT-MSC conditioned medium significantly 
minimized the infarct size and improved heart function, again 
suggesting a paracrine effect of MSCs (through secretion of VEGF, 
FGF-2, HGF, IGF-I, and TB4) as an alternative mechanism by which 
MSCs can remodel damaged heart and improve its function. Despite 
a number of published reports documenting successful utilization of 
MSCs to treat numerous cardiovascular disease models, one major 
problem was the low survival rate of transplanted MSCs in animals. 
In an attempt to overcome this limitation, Li et al utilized BCL-2-
engineered MSCs and reported better survival of the transplanted 
MSCs, which was associated with better therapeutic benefit compared 
to normal MSCs [45]. In another study, Pons et al reported that co-
injection of MSCs with VEGF led to pro-longed survival of MSCs 
and better outcome in MI animal model [46]. Similarly, Fan and 
colleagues reported that transplantation of survivin-modified MSCs 
in a rat model of MI led to better therapeutic outcome compared to 
MSCs alone, which was associated with increased VEGF expression, 
increased vascular density, and reduction in infarction size [47]. 
Krausgrill et al. utilized MSCs treated with PDGF-BB prior to 
intramyocardial injection into MI rats, which was associated with 
prolonged survival of transplanted cells in the infracted hearts [48]. 
As an alternative strategy, a number of other studies have looked at 
using genetically-modified MSCs to enhance vasculogenesis. Sun 
et al. utilized angiopoietin-1-engineered MSCs and reported an 
enhanced therapeutic efficacy of those cells, which was associated 
with increased angio- and arteriogenesis [49]. In another study, 
Zang et al. reported successful utilization of MSCs co-injected with 
erythropoietin in a rat model of myocardial infarction [50]. Deuse 
and colleagues successfully utilized HGF or VEGF-expressing MSCs 
in a mouse model of acute myocardial infarction (AMI) [51]. Tang 
et al. reported that MSCs genetically modified to express SDF-1 and 
VEGF were highly efficient in enhancing cardiac function after MI, 
associated with increased vascular density, thicker left ventricle, 
and improved cardiac function [52]. A number of other studies 
reported that injection of SDF-1-expressing MSCs or MSCs plus 
SDF-1 led to enhanced efficacy and an increase in vascular density, 
and in one study, was associated with endothelial differentiation of 
transplanted MSCs [53,54]. Aside from these studies, Du et al. have 
reported immune-modulation as an alternative mechanism by which 
MSCs could repair the damaged heart. Injected MSCs were found 
to inhibit NF-kB activity, reduce TNF-α and IL-6 production, and 
to increase the production of IL-10 in the myocardium, collectively 
leading to lower inflammation and better outcome [55]. In an attempt 
to enhance the homing of MSCs to the ischemic heart, Schenk et al 
reported that over-expression of MCP-3 in heart cells led to better 
recruitment of infused MSCs to the infarcted heart, which was 
associated with improved function [56]. In another study, Mias 

et al. reported that the improved heart function in a MI rat model 
was associated with enhanced MMP2/MMP9 secretion by cardiac 
fibroblasts [57]. Recently, it was shown that secreted frizzled-related 
protein 2 (sFRP2) prolonged the survival of infused MSCs through 
inhibition of both Wnt and bone morphogenic protein (BMP) 
signaling pathways, collectively leading to better therapeutic efficacy 
[58]. While most of the aforementioned work focused on the ability 
of MSCs to differentiate into vascular and cardiac cells or through a 
paracrine effect, Hatzistergos et al. reported that the effect of MSCs in 
MI is mainly through the expansion of endogenous c-kit(+) cardiac 
stem cells (CSCs) [59]. Nonetheless, Song et al. recently reported that 
Cardiomyocytes derived from phorbol myristate acetate-activated 
MSCs had the capacity to restore electromechanical function in the 
hearts of MI rats [60]. Therefore it would appear from these data that 
MSCs can exert their therapeutic function in cardiovascular disease 
animals through multiple mechanisms including differentiation, 
secretion of pro-angiogenic factors, mediating anti-inflammatory 
response, or by stimulating the expansion and differentiation of 
endogenous stem cells.

MSCs in Tissue Engineering for Cardiovascular 
Therapy

As the predominance and prevalence of vascular disease 
continues to increase, the need for a suitable arterial replacement 
has encouraged scientists to explore the field of tissue engineering. 
Hence the number of studies related to vascular tissue engineering 
has grown dramatically. For decades, tissue engineering approaches 
have been used to induce vessel formation through expression of 
angiogenic factors and revascularization. The cells responsible for 
new vessel formation are endothelial cells, which offer significant 
potential in cell therapy for vascular diseases and ischemic tissues, 
and in many tissue engineering applications such as vascular grafts 
and pre-vascularized tissue beds [61]. Due to the ability of MSCs to 
differentiate into numerous types of tissues including bone, cartilage, 
muscle, tendon, fat, endothelial tissue, and smooth muscle, there has 
been great interest in utilizing these cells to engineer a fully functional 
blood vessel for vascular applications [23,62]. In 1993, Galmiche et al. 
demonstrated that MSCs isolated from human peripheral blood can 
adhere to plastic-surface culture and express smooth muscle α-actin 
positive microfilaments as well as other smooth muscle-specific 
proteins such as metavinculin, hcaldesmon, smooth muscle myosin 
heavy chain, and calponin at 3 to 7 weeks of culture [63].

In 1986, Weinberg and Bell constructed the first vascular tissue 
engineered in vitro which represented a multilayered artery with the 
lumen lined by endothelial cells (to prevent thrombogenicity and 
intimal proliferation), while the rest of the vessel consisted of multiple 
layers of collagen integrated within a Dacron mesh [64]. Even though 
the mechanical properties of this engineered vessel were insufficient 
for in vivo use, this model proved to be a milestone in vascular 
surgery and science. In 1999, Niklason and colleagues developed 
a vascular graft material from smooth muscle and endothelial cells 
that were derived from a biopsy of vascular tissue produced in vitro 
under pulsatile conditions before implantation. These engineered 
vessels were then implanted in miniature swine animal models, where 
they remained completely patent for up to 2 weeks with patency 
documented by digital angiography [65]. This idea was then taken to 
the next level by Hoerstrup et al., who used an in vitro pulse duplicator 
system (bioreactor) to provide a “biomimetic” environment during 
tissue formation to yield more mature, implantable vascular grafts. 
In this system, a bioabsorbable polymer (polyglycolic-acid/poly-
4-hydroxybutyrate) scaffold was seeded with bovine vascular 
myofibroblasts and endothelial cells and was then exposed to the static 
culture conditions of pulsatile flow to measure the burst pressure and 
the suture retention strength [66]. Such biomimetic system involves 
seeding bovine aortic smooth muscle cells into hollow tubular 
polyglycolic acid (PGA) scaffolds, followed by injection of bovine 
aortic endothelial cells into the lumen [67]. Nieponice and his group 
developed and in vivo-tested stem cell-based tissue engineered vascular 
graft for arterial applications by using poly (ester urethane) urea 
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compound scaffolds created by thermally induced phase separation 
(TIPS) with an outer electrospun layer of the same biomaterial (ES-
TIPS). Some smooth muscle like layer of cells were observed near the 
luminal surface that stained positive for smooth muscle α–actin and 
calponin [68]. In 2008, Mettler and colleagues successfully created 
an autologous tissue-engineered pulmonary artery using progenitor 
cells co-seeded with stem cells, which was shown to be functional 
in vivo [69]. Stem cells are considered an invaluable cell source for 
regenerative medicine, given of their differentiation potential and 
proliferative capability. The innovative use of stem cells for vascular 
tissue engineering has opened new possibility for a fully engineered 
blood vessel. The endothelial progenitor cells (EPCs) were isolated 
from peripheral blood mononuclear cells and were shown to integrate 
into neovascularization and to differentiate into new endothelial cells 
and to generate hematopoietic stem cells [70,71]. Pre-clinical studies 
indicated that (EPCs) residue in the marrow and circulate in the blood 
at very low levels (<0.01% of all cells) [72]. Their prevalence in the 
blood can change in response to various stimuli. Ischemia increases 
VEGF expression, which in turn activates matrix metalloproteinases, 
which releases the EPCs (CD34+/c-Kit+ cells) from the vascular niche 
by cleaving Kit-ligand. Subsequently the mobilized EPCs enter the 
circulation and home to the site of ischemia [17,71,73]. Engineered 
tissues, theoretically, have the ability to grow and remodel, and have 
less chance for rejection, thrombosis, and infection compared with 
synthetic tissues. Rezai et al. has raised the therapeutic possibility of 
using bone marrow-derived stem cells as a source of cells for tissue 
repair and regeneration which provides a less invasive source of cells 
applicable in tissue engineering applications, including cardiovascular 
tissues such as heart valves, blood vessels, and myocardium [74]. In 
2010, Phelps and colleagues engineered polyethylene glycol-based 
bioartificial hydrogel matrices presenting protease-degradable sites 
and cell-adhesion motifs. To induce the growth of vasculature in vivo, 
the authors delivered sustained in vivo levels of VEGF over 2 weeks 
as the matrix degraded. When implanted subcutaneously in rats, 
VEGF induced a significant number of vessels to grow, as assessed by 
increasing vessel density at 4 weeks post-implantation [75]. Dargaville 
et al. reported the utilization of a series of copolymers of trimethylene 
carbonate (TMC) and l-lactide (LLA) as scaffold to grow human 

MSCs. Interestingly, when these scaffolds were implanted into the 
rat peritoneal cavity, it stimulated the formation of tissue capsules, 
containing myofibroblasts [76]. Recently, Rustad et al. reported 
successful utilization of a biomimetic pullulan-collagen hydrogel 
scaffold in an excisonal wound healing model, which enhanced the 
angiogenic capability of bone marrow-derived murine MSCs. It 
is noteworthy that growing MSCs on this scaffold led to enhanced 
angiogenicity of the MSCs, which was associated with the secretion 
of several angiogenic factors and the transcription of genes associated 
with pluripotency [77]. Similarly, Godier-Furnémont et al reported 
successful growth of human mesenchymal progenitor cells (MPCs) 
on a cell-matrix composite scaffold. When implanted onto the infarct 
bed in a nude rat model of cardiac infarction, MPCs greatly enhanced 
vascular formation in the infarct bed through the secretion of 
paracrine factors, including SDF-1, and the migration of MPCs into 
ischemic myocardium [78].Nanofabrication techniques are currently 
under way to engineer artificial network structures that will mimic 
the capillary network expanding from a main vessel and merging back 
to a single vessel-like vein, with the ultimate goal of being utilized in 
tissue engineering applications [79].

Apart from the differentiation potential, MSCs has anti-
inflammatory properties with paracrine actions. Previous works has 
revealed that MSCs release extracellular vesicles (EVs) differently 
depending on external motivation proposing that this process are 
regulated by cross talk between MSCs and their microenvironment 
[80,81]. EVs are able to affect cell characteristics such as phenotype, 
enrolment, proliferation, and differentiation in a paracrine action. 
EVs are mainly released from the endosomal compartment and their 
paracrine effects have a potential advantage in regenerative medicine 
particularly in cell viability, immune responses, ECM interaction, 
senescence and angiogenesis. EVc has been combined in various 
regenerative therapies, for example mixing with hydrogels, co-
injection, coating scaffolds with specific linkers [82]. The therapeutic 
application of MSCs derived EVs have been studied in various models 
such as various heart conditions, liver injury, kidney injury, lung 
injury and wound healing [83]. Particularly, the conditioned media 
obtained from hMSCs have the potential of cardio protective effects 

Table 1: Clinical Trials of Stem Cells in Cardio-Vascular Diseases 

Sample Size Cell Type Study Design Delivery Route Outcome Ref
Acute Myocardial Infarction/Heart Failure
0 Autologous mononuclear bone 

marrow  cells
Catheter placed into the 
infarct-related artery

Intracoronary transplantation myocardial regeneration and neovascularisation [87]

69 Autologous bone marrow 
mesenchymal stem cell

  Intracoronary injection Improvement in left ventricular  function [88]

18 Autologous mononuclear bone 
marrow  cells

  Intracoronary transplantation Functional and metabolic regeneration of infracted 
and chronically vital tissue 

[89]

25 BM-MNC   Intramyocardial Injection Sustained beneficial effect on anginal symptoms, 
myocardial perfusion, and left ventricular function

[90]

46 Autologous of BMCs   Intracoronary transplantation Improves heart rate  variability [91]
15 Autologous Bone Marrow 

mononuclear cells
   Injection into the infarction 

border zone
Decrease in heart failure symptoms and an 
improved  left ventricular (LV) function.

[93]

Sample Size Cell Type Study Design Delivery Route Outcome Ref
Acute Myocardial Infarction/Heart Failure
5 Autologous bone marrow 

derived MSC
  Intracoronary transplantation Slight improvement in myocardial function in 3 

patients
[92]

32 Administration of BMCs   Intracoronary infusion No change in LV ejection fraction could be 
demonstrated after repeated 

[104]

30 Autologous bone marrow cells   Direct intramyocardial injection Improvement in symptoms achieved in 
approximately 50% of patients

[94]

30 Autologous mesenchymal SCs 
(MSCs) and (BMCs)

Randomized, double-
blind 

Intramyocardial Injection Safety and efficacy (determined primarily by 
cardiac magnetic resonance imaging)

[105]

53 Bone marrow-derived 
allogeneic hMSCs

Randomized, double-
blind, placebo-
controlled, dose-
escalation study

Intravenous  injection Intravenous allogeneic hMSCs are safe in patients 
after acute MI

[106]

20 Autologous bone marrow 
mononuclear cell (ABMMNC)

randomized study transendocardial injection ABMMNC therapy is safe and improves symptoms, 
quality of life in patients with chronic HF

[107]

17 Bone marrow stem cells 
(BMSCs) have been used to 
treat 

Randomized Intracoronary route The left ventricular end-systolic volume (LVESV) 
and wall motion score index (WMSI),left ventricular 
end-diastolic volume (LVEDV), LVESV, and WMSI 
were significantly reduced in BMSC group

[108]
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to reduce myocardial infarct size by 60% in a porcine model of cardiac 
ischemia/reperfusion (IR) injury [84]. Moreover, it has been studied in 
mouse model and confirmed the active, cardio-protective component 
of MSC-derived CM is, in fact, the EVs [85]. In an in vitro angiogenesis 
assay, Isolated EVs from MSCs cultured under hypoxic conditions, 
MSC-EVs had promoted HUVEC cell migration and tube formation 
that was comparable to that induced by VEGF. Furthermore, In vivo 
studies confirmed that hypoxia-conditioned MSC-EVs significantly 
improved cardiac function with similar effectiveness to that observed 
in a control group (whole-cell MSC) [86].

Clinical Application of Human Mesenchymal Stem 
Cells (Hmsc) in Cardiovascular Disease

Pre-clinical data has demonstrated successful utilization of MSCs 
to treat a number of cardiovascular diseases in various pre-clinical 
animal models. There are currently more than 40 registered clinical 
trials using human MSCs in patients with cardiovascular diseases 
(www.clinicaltrials.gov). Table 1 provides, at the time of working, an 
up-to-date list of published literature on the clinical trials utilizing 
hMSCs for cardiovascular diseases, several of which will be discussed 
in the following section.

Intracoronary Injection of Bone Marrow Stem Cells
In Acute Myocardial Infarction (AMI)

In a groundbreaking clinical trial in 2002, Strauer et al. 
demonstrated marked improvement in the left ventricular function of 
10 patients infused with autologous mononuclear bone marrow cells 
(BMCs) 5–9 days following MI, compared to that in the control group 
receiving standard care [87]. After standard therapy for AMI, the bone 
marrow from 10 patients was aspirated from the ilium, and BMCs 
purified using ficoll density gradient. The BMCs were transplanted 

through a balloon catheter in the infarct-related artery during balloon 
dilation. A control group of 10 AMI patients was treated with standard 
therapy alone. The authors found at three months post-infusion 
that, the infarct region in the cell transplant group had significantly 
decreased and was significantly smaller than that in the control group. 
Wall movement velocity over the infarct region increased significantly 
only in the transplant group. Further examinations of the transplant 
group resulted in marked improvement in stroke volume index, left 
ventricular end-systolic volume and contractility, and myocardial 
perfusion. Hence, this study demonstrated that transplantation of 
autologous BMCs was both safe and effective in reducing the impact 
of MI through myocardial regeneration and neovascularization. In 
another bone marrow mesenchymal stem cell (BMSC) trial for AMI 
reported by Chen et al. [88], 69 patients received angioplasty, followed 
by stent deployment within 8 ± 3.7 hours of MI. Eight days after the 
initial intervention, autologous bone marrow was aspirated from the 
ilium of each patient and cultured for 10 days to expand the cells. The 
BMSCs were transplanted through an inflated balloon catheter into 
34 patients, while the control group (35 patients) received saline. All 
patients were measured for myocardial viability and cardiac function 
on the day of transplant, and follow up tests were performed at 3 and 6 
months post-transplant. Fifteen patients in the BMSC group and eight 
in the saline group were interrogated by electromechanical mapping 
(EMM) one day prior to and three months post transplantation. The 
study found a significant decrease in the percentages of hypokinetic, 
akinetic, and dyskinetic segments of the left ventricle in the transplant 
group. Wall movement velocity over the infarct region increased 
significantly after transplantation. The left ventricular function 
fraction increased significantly in the BMSC-treated group at the 
3-month mark with no change at 6 months. Perfusion defects 
decreased significantly for transplantation group at 3 months as 
demonstrated by positron emission tomography, while end-diastolic 

Sample Size Cell Type Study Design Delivery Route Outcome Ref
Peripheral arterial disease
45 Bone marrow-mononuclear cells   Injection into the gastrocnemius of the 

ischaemic limb
Significantly improved in legs [97]

7 Autologous bone-marrow 
mononuclear cell

  Transplantation Improvement in endothelial dysfunction [98]

28 G-CSF with  mobilized PBMNCs Randomized study Subcutaneous injections of diabetic 
patients

Lower limb pain and ulcers were 
significantly improved 

[109]

1 Bone marrow mononuclear cells   Intramuscular and intraarterial injection Improvement chronic limb ischemia 
attributed to increased neo angiogenesis

[110]

7 Autologous bone-marrow 
mononuclear cell

  Transplantation Improvement in endothelial dysfunction [98]

28 G-CSF with  mobilized PBMNCs Randomized study Subcutaneous injections of diabetic 
patients

Lower limb pain and ulcers were 
significantly improved 

[109]

1 Bone marrow mononuclear cells   Intramuscular, intraarterial injection Improvement chronic limb ischemia 
attributed to increased neo angiogenesis

[110]

Sample Size Cell Type Study Design Delivery Route Outcome Ref
Peripheral arterial disease
12 Autologous bone-marrow 

mononuclear cell
  Transplantation Significant improvements in rest pain and 

pain-free walking time 
[99]

140 BMCs with  mobilized PBMNCs Randomized study Transplantation in the  ischemic necrosis Significant improvement, reduction in 
edema and increased colaateral vessels 
formation 

[111]

32 Autologous bone-marrow 
mononuclear cell

  Intraarterial and intramuscular injection Significant improvement in the lower limb 
ischemia

[112]

184 Bone marrow mononuclear cells   local injections Significantly enhanced endothelial colony-
forming cell  adhesion

[113]

40 Autologous (BM-MNC) Randomized study Injection Accelerates wound healing [101]
527 Autologous (BM-MNC) Randomized study Injection Significant improvement in the amputation 

rate, ulcer healing,
[114]

Sample Size Cell Type Study Design Delivery Route Outcome Ref
Patient with Breast cancer
30 HGigh dose- (HDCT) with  

(PBPCT) 
    Immune function improved with a 

statistically significant increase of 
lymphocyte count

[105]

  Bone-marrow derived stem and 
progenitor cells  

Randomized, 
double-blind studies

  Improvement of ankle-brachial index 
(ABI), reduction of pain, and decreased 
need for amputation 

[102]

Abbreviations: BMCs: Mononuclear bone marrow cells, G-CS: Granulocyte colony–stimulating factor, PBMNCs: Peripheral blood mononuclear cells, BM-MNC: Bone 
marrow-derived mononuclear cells, HDCT: Chemotherapy, PBPCT: Peripheral progenitor cell transplantation
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volume decreased significantly as well. EMM results showed that the 
BMSCs infiltrated quickly into the infarct zone and remodeled the left 
ventricle. In addition, the study demonstrated that the transplantation 
of BMSC could survive well beyond the 7–14 day window previously 
postulated by Strauer and colleagues [87].

In Chronic Myocardial Infarction (CMI)

In 2005, Strauer and colleagues published their ongoing study 
providing intracoronary autologous mononuclear BMCs transplants 
in patients with CMI that led to marked metabolic and functional 
improvements [89]. The Strauer team treated 18 consecutive patients 
with CMI (for 5 months to 8.5 years) with BMCs, and compared 
them to a representative untreated control group. A 3-month follow-
up showed significant reduction in infarct size. Both left ventricular 
ejection and wall movement velocity were significantly increased, 
while no marked changes were seen in the control group. The authors 
reported an increase in oxygen and glucose uptake in the infarct 
tissue, demonstrating the beneficial therapeutic effect of BMC therapy 
on cardiac performance in CMI.

In refractory angina

Other clinical studies have examined other symptoms associated 
with CMI. Beeres et al. reported in 2006 that myocardial injection 
of BMCs into patients with refractory angina pectoris and CMI 
significantly reduced angina, and increased myocardial perfusion 
and left ventricular function [90]. In this study, bone marrow was 
aspirated from the ilium of 25 refractory angina patients and BMCs 
were isolated using ficoll density gradient. BMCs were then injected 
by balloon catheter into areas of the myocardium with stress-induced 
ischemia. Gated single-photon emission computed tomography 
was administered at baseline, 3, and 12 months for left ventricular 
function and myocardial perfusion evaluations. One death, which was 
due to intracranial hemorrhage and appeared to be unrelated to BMC 
transplant, was reported in the study. At 3, 6, and 12 months angina 
symptoms and quality of life were compared to baseline values, and 
the results showed a significant decrease (P < 0.01) in daily angina 
episodes and the use of sublingual nitrates. The transplant group also 
demonstrated a significant increase in myocardial perfusion and left 
ventricular function.

In heart rate modulation

In 2007, Schueller et al. reported that the transplant of autologous 
BMCs after MI significantly improved autonomic heart rate 
modulation over the 12-month follow-up [91]. In this study, 23 
patients post-MI were treated with intracoronary BMCs and the 23 
patients in the control group received standard care. Each patient was 
evaluated by Holter monitoring for 24 hours at baseline, 3 months, 
and 12 months. The study found that heart rate variability (HRV) 
measures increased significantly compared to the control group, 
which was unchanged. The increase in HRV measures correlated to 
a decrease in arrhythmia and sudden death. A second study in 2007 
by Katritsis et al. addressed the concern that BMSCs transplant could 
increase arrhythmia. Katritsis and colleagues aspirated bone marrow 
from 5 patients who, due to a prior anteroseptal MI, were implanted 
with a cardioverter-defibulator (ICD) to control ventricular 
arrhythmias [92]. Mononuclear cells were isolated on ficoll density 
gradient and the cells were expanded for one week in culture before 
intracoronary transplantation into the descending coronary artery. 
Stress echocardiography evidenced myocardial repair. Although 
each patient experienced arrhythmias prior to transplantation, none 
showed any signs of ventricular arrhythmias post-transplant. While 
the study was small, the data indicated that treatment with BMSCs 
and endothelial progenitors do not appear to be pro-arrhythmic.

Intramyocardial injection of bone marrow stem cells in 
severe chronic myocardial infarction

New imaging and catheter technologies are moving studies 
towards direct implantation into the myocardium. In a small pilot 
study of 15 patients with CMI and severe ventricular dysfunction 

in 2007, Beeres and colleagues investigated the safety, feasibility, 
and efficacy of direct injection of BMCs into the myocardium [93]. 
Bone marrow was aspirated from the iliac crest on the morning of 
injection. The team used the NOGA® cardiac navigation system to 
electro-mechanically map the ischemic areas of the left ventricle. 
After mapping, a NOGA® catheter was used to inject BMCs into 
the viable myocardium bordering ischemic areas. The study results 
demonstrated that even in a severely cardio-compromised population 
direct implantation of BMCs using the NOGA® system, was well-
tolerated and showed a positive outcome. At two and half months 
post treatment, one patient died of heart failure, which was not 
unexpected in a population with such advanced disease. At three 
months post treatment, the authors found a decrease in heart failure 
symptoms and improved left ventricular function. There was also 
significant wall thickness and myocardial perfusion improvements 
in the injected segments that did not change in the non-injected 
myocardial segments. Preliminary results published in 2011 from a 
study by Godino et al. reported that direct intramyocardial injection 
of autologous BMSC into patients with CMI resulted in improved 
symptoms in approximately 50% of patients in the first 6 months [94]. 
There was a corresponding improvement in quantitative scintigraphic 
stress test imaging as well. The therapy appeared to be safe and well 
tolerated; however, the study needs to be completed before final 
conclusions can be made.

MSCs in the Treatment of Peripheral Arterial Disease 
(PAD)
Intramuscular injection

Murohara and colleagues [95] and Kalka & colleagues [96] 
demonstrated in animal studies that human mononuclear cells from 
peripheral blood or cord blood increased the number of capillaries 
in hindlimbs in animal studies, which supported the premise that 
bone-marrow-mononuclear cell implantation into ischemic limbs 
could promote angiogenesis. In a pilot study, Tateishi-Yuyama and 
colleagues recruited 25 patients with unilateral critical limb ischemia 
[97]. Bone marrow was aspirated from the ilium, and mononuclear 
cells were separated using a blood-cell separator. The BMSCs were 
injected into the gastrocnemius muscle of the ischemic leg, and saline 
was injected into the healthy limb. A second group of 22 patients 
with bilateral ischemia were recruited in the same study. Twenty-
two legs received BMSC, while the other 22 legs received peripheral 
blood mononuclear cells (PBMC) as a control. Legs injected with 
BMSCs showed improvements in resting ankle-brachial pressure 
index (ABI), transcutaneous oxygen pressure (TcO2), and rest pain, 
which established safety and efficacy of the protocol. Ischemic 
ulcers and gangrene improved in nearly half of all limbs. There was 
minimal improvement in ischemic limbs injected with PBMCs. 
Tateishi-Yuyama and colleagues concluded that the successful 
BMSC implantations were the direct result of increased EPCs, part 
of the CD34+ fraction, and angiogenic factors released from the 
CD34- fraction. In a small 7-patient study in 2004, using the methods 
of Tatieshi-Yuyama [97], Higashi et al. [98] tested the premise 
that BMSC implantation would improve endothelium-dependent 
vasodilation in patients with limb ischemia [98]. They assessed the 
primary outcome by vasodilation response to Ach and SNP before and 
after implantation. Their results indicated that BMSC implantation 
increased the ankle-brachial pressure index, transcutaneous oxygen 
pressure, and basal leg blood flow. The BM-MNC implantation was 
composed of the CD34+ fraction, which included EPCs and angiogenic 
growth factors such as VEGF. Thus EPCs augment new vascularization 
of ischemic tissue and repair fully differentiated endothelial cells 
that release nitric oxide, with increased endogenous angiogenesis. 
The authors propose that BM-MNC implantation could prevent the 
development of atherosclerosis via increasing endothelial function. 
Hernandez and colleagues [99] also examined BMSC implantation in 
severe unilateral lower limb ischemia patients. The authors recruited 
12 patients to evaluate the efficacy and safety of autologous BMSC 
purified either by an automated method or by a manual procedure. 
Bone marrow was aspirated from the iliac crest and the BMSCs were 
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isolated by either a Fresenius AS 240 blood cell separator (Fresenius 
AG, Schweinfurt, Germany) or by Ficoll density gradient. The 
patients were monitored with ABI and arterial oxygen saturation 
(SaO2), pain-free walking time, and resting pain scale evaluation. 
The two methods used for mononuclear cell separation gave results 
that were not significantly different (P > 0.05), though both groups 
showed significant improvements in resting pain as well as pain-free 
walking. The ABI and TaO2 increased gradually following treatment. 
Nonetheless, limb salvage was achieved in 5 patients who had been 
advised to amputate. In 2008, Duong Van Huyen et al. reported a 
pathology study performed on four limbs amputated from patients 
transplanted with BMSCs to treat critical leg ischemia (CLI) [100]. 
The study reported for the first time active angiogenesis in BMSC-
treated patients as compared to untreated patients. Angiogenesis 
was primarily located in the walls of distal arteries and veins. No 
angiogenesis was observed in tissues taken from the transplantation 
site. The authors note that since the proliferation lasted more than two 
months after the BMSC injection, that the stem cells could trigger a 
host self-sustained angiogenic response.

Intra-arterial injection

In 2011, Walter and colleagues reported a phase II, double-blind, 
randomized trial to treat 40 patients with BMCs or placebo delivered 
by intra-arterial injection [101]. At three months post transplant, 
there was no significant increase in the ankle-brachial index, thus 
the trial missed its primary endpoint. The authors reported; however, 
that there was significant improvement in ulcer healing and resting 
pain compared to the placebo group. There was no difference between 
limb salvage and amputation-free survival rates between the two 
groups. Interestingly, repeated BMC administration and higher BMC 
numbers and functionality were the only independent predictors of 
improved ulcer healing. The authors found that intraarterial injection 
of BMCs to be safe and feasible, and that for patients without extensive 
gangrene and impending amputation, the procedure accelerated 
wound healing. Concordant with those findings, Lawall et al. assessed 
the use of BMSC for the treatment of PAD and found autologous stem 
cell therapy to be promising for treating ischemic peripheral disease 
[102]. The authors reviewed clinical trials for outcome, and found that 
despite the small numbers of study subjects, different methods of cell 
isolation, variable dosages, and differences in degree of ischemia, that 
the results were markedly positive. Additionally, the treatments were 
well tolerated with few side effects. They cite a 2010 meta-analysis by 
Fadini et al., which found 108 PAD cell therapy trials, 37 of which 
were suitable for analysis [103]. The overall meta-analysis found 
BMSC therapy significantly improved ABI, TcO2, rest pain, pain-free 
walking distance, ulcer healing, and limb salvage. Nonetheless, the 
authors argued that large randomized, placebo-controlled, double-
blind studies are necessary and currently ongoing to provide stronger 
safety and efficacy data on cell-based therapy for cardiovascular 
disease.

Conclusion
Until recently, the differentiation capacity of MSCs was generally 

believed to be restricted to the three classical mesodermal lineages. 
However, recent data indicated that MSCs, when provided with 
the proper environment, can differentiate into additional cell types 
such as endothelial, pericytes, and smooth muscle cells, collectively 
contributing to vasculogenesis. Several per-clinical animal model 
studies demonstrated considerable therapeutic efficacy of infused 
MSCs in animals with various cardiovascular diseases. While the exact 
mechanism by which MSCs exert their function in tissue remodeling 
is not fully understood, several mechanisms have been implicated in 
this process including i) direct differentiation into endothelial cells, 
pericytes, and smooth muscles; ii) secretion of pro-angiogenic factors; 
iii) suppression of the inflammatory response and; iv) the expansion of 
endogenous CSCs. Inline of those pre-clinical studies, several clinical 
trials are currently underway to evaluate the therapeutic potential 
of human MSCs (hMSCs) in patients with various cardiovascular 
diseases. Published data from these clinical trials are very encouraging 
(Table 1). However, some of the remaining challenges in the field 

are how to isolate and expand hMSCs in vitro to obtain sufficient 
therapeutic number of cells, while maintaining their multipotency. 
Hence, more work is warranted in the area of characterizing novel 
surface markers for hMSCs, which might facilitate better expansion of 
those cells in vitro and lead to better therapeutic efficacy. Nonetheless, 
since there is increasing interest in the utilization of MSCs for 
regenerative medicine applications, the safety of administering MSCs 
to humans remains to be carefully evaluated, given the potential role 
of MSCs in driving tumorigenicity.
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