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Short Review
Human induced pluripotent stem cell (hiPSC) technology has 

widely been used for modeling of various genetic diseases, especially 
neurological disorders, in which the target brain tissue is difficult to 
obtain from the patients [1,2]. In the disease-modeling hiPSC studies, 
it is necessary to generate iPSC lines from peripheral tissues of multiple 
patients and of multiple age- and sex-matched control individuals 
in order to minimize the differences in genetic background that can 
affect the results. Recent genome editing technology by ZFN, TALEN 
and CRISPR methods may overcome the issue of genetic background 
difference, because a certain patient-specific mutation can intentionally 
be introduced into the genome of a normal iPSC line and can clarify 
disease-specific nature caused by the mutation [3,4].

In an X-linked dominant disease, patients are all female since 
male patients are embryonic lethal. The female patients with an 
X-linked dominant disease have two types of cells: the cells with X 
chromosome harboring wild type (normal) gene being active and the 
cells with X chromosome harboring mutant gene being active (Figure 
1). This is caused by random X chromosome inactivation (XCI), 
which is a genetic phenomenon that one of two X chromosome in 
females is randomly inactivated for dosage compensation of X-linked 
genes between males and females.

In the study, the two patients (monozygotic twins) with Rett 
syndrome (RTT) characterized by epilepsy, ataxic gait and autism 
shared the same mutation (one base deletion) in X-linked Methyl-
CpG binding protein 2 (MECP2) gene. Random XCI patterns were 
demonstrated in their skin fibroblasts of two RTT patients by a 
DNA methylation based XCI assay [5]. We then generated iPSC 
from the skin fibroblast cell lines from the two patients using 
standard methods and transduction of OCT4-, SOX2-, KLF4- and 
c-MYC- containing retroviruses [6], and found extremely non-
random XCI patterns in the majority of iPSC colonies due to 
monoclonal proliferation of iPSC cells as previously reported [7]. 
Based on such XCI phenomenon, we successfully obtained two 
types of iPSC line from the patients: the line with X chromosome 
harboring the maternally-derived normal MECP2 allele being 
active and the line with X chromosome harboring the paternally-
derived mutant MECP2 allele being active (Figure 1). We then 
compared gene expression patterns between two types of the iPSC-
derived neural cell lines, and found that the genes associated with 
astrocyte development, such as GFAP, were aberrantly expressed 
and thus the proportion of GFAP positive cells were increased in 
the mutant MECP2 active iPSC-derived neural cell line, compared 
with the normal MECP2 active line in both of the two patients [6]. 
These results, together with previous findings [8,9], indicate that 
not only abnormal function of astrocyte due to lack of MeCP2 
but also abnormal proportion of astrocyte-like neural cells may 
contribute to the pathogenesis of RTT.

As mentioned above, we could generate the disease-model 
mutant active iPSC lines and the normal control iPSC lines with the 
same genetic background from patients with X-linked disease. This 
may be an advantage of X-linked diseases to autosomal diseases for 
identification of the disease-specific phenotypes (e.g., cell function, 
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gene expression pattern) and for unnecessariness to analyze hiPSC 
lines from multiple patients’ and normal individuals. Furthermore, 
it may be a straightforward way to identify drug candidates that 
normalize or minimize the abnormal features and gene expression 
patterns by a comparative study between mutant active- and normal 
active-hiPSC lines.

The applicants of the drug-screening hiPSC strategy are not 
only rare X-linked dominant diseases such as RTT but also major 
X-linked recessive disease such as Duchenne muscular dystrophy 
and Fabry disease by generating hiPSC lines from fibroblasts from 
the heterozygous females regardless of having clinical symptoms 
[10,11].

In conclusion, the authors would like to propose that X-linked 
dominant and recessive diseases are efficient targets for drug 
screening using hiPSC derived from the patients’ peripheral tissues, 
since hiPSC-based drug screening studies can be performed faster in 
X-linked diseases, compared with autosomal diseases, by utilizing 
the genetic natures of XCI and the hiPSC nature of monoclonal 
proliferation.
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Figure 1: Two types of iPSC line generated from patients with Rett syndrome (an X-linked dominant genetic disease).

An X chromosome inactivation (XCI) assay showed a random XCI pattern in skin fibroblasts of the patient, indicating that the fibroblast contained the cells with X 
chromosome harboring normal MECP2 being active and the cells with X chromosome harboring mutant MECP2 being active (left). The assay showed two types 
of extremely non-random XCI patterns in iPSC lines: the line with X chromosome harboring normal MECP2 being active (normal MECP2 active) (right above), with 
X chromosome harboring mutant MECP2 being active (mutant MECP2 active) (right below).
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