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Glioblastoma (GBM) is the most common and deadly primary 
brain malignancy, with an annual incidence of over 10,000 new 
cases in the US and a median survival of 14-16 months [1-3]. The 
current standard of care includes surgical resection followed by 
postoperative radiotherapy and treatment with the alkylating agent 
temozolamide [1]. Sadly, prognosis for GBM patients has increased 
only incrementally and rather marginally over the past half century 
[4]. The fact that GBM has lagged behind other solid malignancies in 
therapeutic advances highlights some of the difficulties that clinicians 
face in treating GBM: the high degree of brain infiltration, which 
limits the efficacy of surgical resection; the presence of the blood-
brain barrier, which precludes most chemotherapeutic agents from 
achieving therapeutic concentrations in brain tissue; and the robust 
radioresistance of GBM tumor cells, which mandates much higher 
radiation doses than other cancer types.

Two additional biological properties of GBM that have emerged 
as critical challenges are: its complex cellular hierarchy, which is 
dominated by stem-like cells (or GBM stem cells – GSCs) [5,6]; and 
its molecular heterogeneity [7-10]. The concept of cellular hierarchy 
in tumors and cancer stem cells was first developed in the context of 
leukemias and later substantiated in solid tumors [11,12].In simple 
terms, cellular hierarchy in biological systems implies that not all cells 
are equal in significance or potency. In hierarchical models, relatively 
undifferentiated stem cells undergo asymmetric cell division to both 
maintain the stem cell pool (self-renewal; Figure 1Ai) and generate 
more differentiated and specialized progeny (multipotency; Figure 
1Aii). Cancer stem cells in GBM were first described over 10 years ago 
[5,6]. These stem-like cells self-renew and generate tumor lineages, 
including endothelium and pericytes of tumor vessels [13-15] 
(Figure 1Aiii). Importantly, GSCs have increased ability to generate 
xenograft tumors in the brain of immunosuppressed mice, indicating 
enhanced tumorigenicity [5]. Finally, GSCs are highly resistant to 
chemoradiotherapy via intrinsic and microenvironment-mediated 
mechanisms [16-18] (Figure 1B). These properties suggest a central 
role for GSCs in tumor growth and recurrence after conventional 
chemoradiotherapy [19]. Since GSCs play a dominant role in GBM’s 
cellular hierarchy, current therapeutic approaches sparing this 
population of cells are destined to fail.

To complicate matters even further,genomic and transcriptomic 
analyses of GBM biospecimens have revealed remarkable inter-
tumoral heterogeneity at the molecular level [7-10]. Based on the 

identification of stereotypical gene expression changes or mutations, 
GBM tumors are classified into 4 broad molecular subtypes: 
proneural, neural, classical and mesenchymal. The implications of 
such molecular diversity are clear: different GBM subtypes may show 
differential responses to the same treatment and future therapeutic 
approaches will likely have to be tailored to each tumor’s unique 
genetic profile.

The astonishing biological complexity of GBM does not end 
there, however. Besides the molecular diversity across tumors, there 
is equally astonishing heterogeneity within any given GBM tumor. At 
the histologic level, GBM tissue is anything but monotonous: areas of 
solid tumor are interspersed with necrotic foci surrounded by densely 

         

Figure 1: Stem-like cells in GBM and their response to 
chemoradiotherapy. A. Cancer stem cells in GBM utilize asymmetric 
cell division to self-renew (i) and generate progenitor cells (ii) that 
differentiate to tumor lineages, including tumor endothelium and 
pericytes (iii). B. Surgical resection and conventional chemoradiotherapy 
result in cytoreduction and decrease in tumor size. However, GBM stem 
cells (GSCs) show remarkable resistance to radiation and chemotherapy 
and generate tumor recurrence.
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packed tumor cells, a phenomenon called pseudopalisading necrosis. 
Furthermore, the tumor cells themselves cover a wide spectrum of 
size, shape and overall morphology. It follows that intra-tumoral 
heterogeneity may lead to lack of therapeutic response of subsets 
of tumor cells, even to treatments tailored to specific molecular 
subtypes. Given this remarkable heterogeneity, how then can we 
study the biological role and therapeutic relevance of each different 
cell type within these tumors?

Cancer stem cell research over the past few years has focused 
on identifying universal markers that identify these cells. However, 
especially within solid tumors like GBM, where extensive cellular 
and molecular diversity is the only common denominator amongst 
the tumor cells, is it meaningful to think that there is only one type 
of cancer stem cell in any given tumor? Our laboratory focuses on 
understanding and dissecting the heterogeneity within the cancer 
stem cell compartment of GBM with the goal of developing novel 
meaningful therapies. The rationale and motivation behind our 
efforts are clear: if these stem-like cells play such an important role 
in tumor growth and recurrence, and if there is extensive molecular 
heterogeneity within these tumors, we propose that it is imperative 
to study and understand whether there is functional and molecular 
diversity within the stem cell compartment. The question is, then, 
how do we unravel such heterogeneity?

The cancer stem cell phenotype in GBM has been linked to 
several cell surface molecular markers, including CD133, SSEA-1 
(CD15) and integrin α6 [5,20,21], as well as signaling cascades that 
promote self-renewal, such as the Notch and TGFβ pathways [22-
26].We therefore asked the simple question: do GBM stem-like cells 
identified by specific cell surface markers coincide with cells in which 
signaling pathways relevant to self-renewal are active? Our findings 
to date indicate that the overlap between cell surface GSC markers 
and such signaling pathways is only partial, suggesting the presence 
of multiple subtypes of GSCs with differential dependence on 
signaling cascades for their self-renewal and differentiation potential. 
Interestingly, our data indicate that these GSC subtypes may not only 
differ at the molecular and developmental level, but also in terms of 
their basic metabolism [27].

The presence of diverse subtypes of cancer stem cells in GBM is 
an important concept that will lead to a better understanding of the 
disease process. We believe that investigating the diversity of cancer 
stem cells and defining the cellular hierarchy in GBM will lead to 
development of informed combinatorial therapies not only in GBM, 
but also in other malignancies that exhibit heterogeneity.
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