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Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal in-
terstitial lung disease with no current cure. Progression of 
IPF is difficult to predict as the clinical course can be highly 
variable and range from a rapidly deteriorating state to a 
relatively stable state, or may be characterized by a slow 
progressive decline. Therefore, the need for an accurate 
diagnosis and improved tools for monitoring and manag-
ing IPF is of paramount importance, all for understanding 
the mitochondrial structure and the function played in the 
IPF. Mitochondrial DNA copy number (MtDCN) has been 
correlated with mortality in IPF patients and is a source of 
potentially clinically relevant information. We investigated 
the effects of various expiratory variables on MtDCN via 
multiple linear regression models. The models and their the-
oretical framework are presented under a descriptive and 
then analytic approach to investigate the complex and im-
pact causes of IPF. Generalized linear model (GLM) based 
boosting is fitted before and after imputing the missing data. 
The Bayesian Hierarchical logistic models with categorical 
response variables that were created using carefully chosen 
cut-off points to classify the patients. This research provides 
an opportunity for novel patient surveillances.
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The overall incidence of this disease is estimated at 
6.8 to 17.4 cases per 100,000 people, with a 10-fold 
increased incidence in individuals over the age of 65. 
Progression of IPF is difficult to predict as the clinical 
course can be highly variable and range from a rap-
idly deteriorating state to a relatively stable state, or 
may be characterized by a slow progressive decline 
[1]. Until recently there was no pharmacological ther-
apy for IPF. However, in October 2014 the first two 
FDA approved therapies (nintedanib and pirfenidone) 
were introduced into the market. These therapies 
have variable efficacy and may be associated with a 
variety of side effects. Therefore, the need for an ac-
curate diagnosis and improved tools for monitoring 
and managing IPF is of paramount importance. The 
search for blood biomarkers that can aid in the diag-
nosis and monitoring of disease progression remains 
elusive. Mitochondrial DNA copy number (MtDCN) 
has been correlated with mortality in IPF patients 
and is a source of potentially clinically relevant in-
formation for physicians [2-6]. To date, there is lit-
tle literature that explores the correlations between 
MtDCN and IPF factors and disease progression. We 
propose several models that investigate the effects 
of MtDCN on patients with IPF. The objective of this 
study is to build predictive models that correlate 
biomarkers derived from the peripheral blood of IPF 
patients, with clinical lung function data. This paper 

Introduction
Idiopathic pulmonary fibrosis (IPF) is a chronic and 

fatal interstitial lung disease with no current cure. 
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understanding of their medical implementation, remain 
in their infancy. This study includes 67 participants over 
the age of 50 of which 31 have been clinically diagnosed 
with IPF. Each patient donated 10 ml of whole blood 
from which Peripheral blood mononuclear cells (PB-
MCs) were isolated.

The IPF patients who participated were referred 
to the Advanced Lung Disease Program at Inova Fair-
fax and diagnosed with Idiopathic Pulmonary Fibrosis 
based on the current consensus guidelines [11]. The 
study was approved by the Inova Fairfax Hospital In-
ternal Review Board (IRB #06.083) with appropriate 
written informed consent obtained for each patient. 
Normal participants included presented with no clini-
cal history of IPF and a normal chest X-ray. All normal 
subjects provided informed consent to participate in 
protocol 15-H-0017, which was approved by the NHL-
BI IRB.

Mitochondrial DNA copy number was calculated fol-
lowing a previously published protocol [5]. We collated 
clinical data from multiple sources obtained over the 
course of 1-year prior to the blood sampling. Our clin-
ical data includes standard demographic information 
such as: Age, sex, familial status, smoking status, and 
life time smoking volume (Table 1).

More attention will be given to the statistical models 
and their extensions. The power and flexibility to ma-
nipulate data (missing or incomplete) and accommo-
date the error components provide calibration to pa-
tients’ classification and medical researchers in general 
will be provided next.

Statistical Methods
Model specification and assumption can elucidate 

the data. Exploratory analysis is performed and covari-
ates selected. Generalized linear models [12] with low 
Akaike information criteria (AIC) will be deemed satis-
factory and the covariates used in the further analyses. 
Markov Chain Monte Carlo methods will be used to as-
sess variational inference and follow them up with clas-
sification and predictive accuracy.

First, we may transform the data of the latent vari-
ables in our model to the real coordinate space and en-

studies the differences between the values of MtDCN 
of normal subjects and IPF patients. We describe fur-
ther factors that might impact the values of MtDCN 
in IPF patients.

We first investigated the effects of various expira-
tory variables on MtDCN via multiple linear regression 
models after performing variables selection. Data ad-
justments were made to satisfy the normality assump-
tion of the ordinary regression model and imputation of 
the missing data was done using the Bayesian bootstrap 
method [7]. To validate the analysis, Generalized linear 
model (GLM) based boosting was fit before and after 
imputing the missing data. The results show consistency 
in estimating the effects of the chosen predictors. Next, 
to avoid the normality assumption, we fit Bayesian Hier-
archical logistic models with categorical response vari-
ables that were created using carefully chosen cut-off 
points to classify the patients.

The remaining paper presents the models and 
their theoretical framework in construct and hypoth-
esis building, under a descriptive and then analytic 
(epidemiology) approach to investigate the complex 
and impact causes of IPF.

Background
The aims of this research is to understand how clini-

cians can internally compute and communicate quanti-
tative variables-such as changes in mitochondrial DNA 
copy counts-and use such information to guide clinical 
management. The observation that mitochondrial DNA 
copy counts decrease with both age and disease is well 
validated [8-10]. However, the link between disease se-
verity and changes in this marker have yet to be fully 
elucidated. By comparing this marker to clinical and de-
mographic data in 30 IPF patients we expect to identify 
a small number of quantitative variables that can be ex-
panded to a larger cohort and used to establish mean-
ingful clinical indicators.

IPF is a highly heterogeneous disease that has a 
variable and unpredictable clinical course in individu-
al patients. Clinical factors such as age, sex, lung func-
tion, and smoking history have an association with the 
progression and severity of disease. Yet, conceptual 
frameworks for thinking about such processes, and our 

Table 1: List of clinical and molecular markers meausre collected from the patient cohort.

Summary of abbreviated data terms
Clinical measure Notation Delta at 3, 6, 12 months

Predicted forced vital capacity (FVC%) dp_d1 dp_3, dp_6, dp_12

Predicted forced expiratory volume (FEV1%) d1p_d1 d1p_3, d1p_6, d1p_12

Diffusing capacity of the lung for carbon dioxide (DLCO%) DLCO DLCO_3, DLCO_6, DLCO_12

Gender, age, lung physiology index (GAP) GAP

Body mass index (BMI) BMI_d1 BMI_3, BMI_6, BMI_12

Six minute walk test (6MW) w6MW_d1 wp_3, wp_6, wp_12

Mitochondrial DNA/genomic DNA ratio (Mt DCN) Y1

https://doi.org/10.23937/2378-3516/1410131
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For all patients, the box plots show that there is a 
huge variation among the oxygen users from their 
smoking status. As the effect of smoking as a risk fac-
tor or indicator in IPF is under debate, for the purpose 
of this investigation, we assumed that former smok-
ers have greater severity in the MtDCN markers than 
non-smokers (Figure 2).

To have a better understanding of the estimates of 
the variances, and use the answers to guide better in-
ferential questions, a table of analysis of variance for-
mally called ANOVA is presented to summarize the data 
at first.

One-way ANOVA test (F-test) of Y (MtDCN) based on 
whether the subject is sick or not, we find the following:

model is: Yij = µ + τi + eij’

where µ is the overall mean of Y1,

	 τi is the effect of group and

	 eij is the error term for each observation 

with i = 0 or 1 and j = 1,2,… , 36 for normal subject = 0

and j = 1,2…, 30 for IPF patient = 1.

The outputs of the ANOVA table are given in Table 
2. It shows that the two groups of study participants IPF 
(IPF patients and normal subjects) are significantly dif-
ferent, with a p-value of 0.0155.

The mean sum of square errors that accounts for 
the variance that is unexplained after accounting for 
the linear effect of the patients’ group is of 5.83. The 
Table 2 result shows that the test distinguishes be-
tween the IPF disease and non-disease individuals 

sure normality. For example, the logarithm transforms 
a positively constrained variable, with a standard devi-
ation, to the real line. Then, we plan to posit a Gauss-
ian variational distribution. This induces a non-Gaussian 
approximation in the original variable space. Last, we 
combine automatic differentiation with stochastic opti-
mization to maximize the variational objective. We be-
gin by defining the class of models we support. Bayesian 
bootstrap imputation procedure will be used as it is an 
efficient method to handle missing data in a multilevel 
setting.

Comparison between normal participants and IPF 
patients

We are interested in finding a predictive model of 
the response MtDCN, say Z. To fit linear regression 
model, the response has to be distributed as normal 
distribution. Running the Shaprio’s Test of normality, 
with the null hypothesis as H0: Z is normally distrib-
uted, we get W = 0.88144 and small p - value < 0.05. 
That suggests Z is not normally distributed. There-
fore, Box-Cox transformation method was considered 
to obtain normally distributed variables that repre-
sent MtDCN (Figure 1).

The new variables are given as:

0 1 1
ˆ ˆˆ  =  Y Xβ β+

Where λ is estimated using MLE method that is of 
value 0.164576. Now, that the assumption of normali-
ty of the response Z after transformation denoted as Y, 
has met normality, we fit linear regression and ANOVA 
without violated the important normality assumption of 
the data.

  	

Figure 1: Normality plots of mitochondria.

https://doi.org/10.23937/2378-3516/1410131
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0 1 1
ˆ ˆˆ  =  Y Xβ β+

where Y is the transformed MtDCN, and X1 is the 
6MW (m) predictor. The estimates are reported in Ta-
ble 3. The results indicate that the 6MW significantly 
affects MtDCN.

Since the two groups of participants (IPF patients 
and normal subjects are significantly different), we pro-
pose to compute their individual linear regression mod-
els. The outputs of the models are described in Table 4.

Here the dependent variable w6MW_d1 is more 
desirable in predicting the MtDCN for normal subjects 
than for IPF patients. Note that the variance for the 
w6MW_d1 is quite high for normal patients.

and that the subject status of whether being sick or 
not is significant with p-value of the ANOVA equals 
0.0155. This shows that there is significant difference 
between the two groups of IPF patients and normal 
subjects/participants. The means for each group 
turns out to be 1Y  = 16.57038 and 2Y  = 15.10032 are 
the means of MtDCN for normal and IPF patients, re-
spectively. However, it is not clear that the biomarker 
variables will guide in the prediction of the disease 
status.

A formal straight line is then considered under the 
linear regression models of MtDCN against the predic-
tors available for both normal and IPF groups. We found 
the following:

  	

Figure 2: Bar graphs of Mitochondria vs. Smoking status and oxygen use.

Table 2: Analysis of variance table for Mitochondria vs. IPF patient groups.

df SS MS F value P-value
IPF Status 1 36.0 36.0 6.179 0.0155

Residuals 65 378.7 5.83

Table 3: Regression line of Mt DNCN vs. 6MW.

Estimate Std. Error t value P-value
Intercept 12.909 1.298 1.298 < 0.0001

w6MW_d1 0.006 0.002 0.003 0.0214

Table 4: Individual linear regression models of MtDNC and IFP patient groups.

Estimate Std. Error t value P-value
Normal Intercept 11.4286 2.356 4.851 < 0.0001

w6MW_d1 0.00929 0.0042 2.201 0.0346

IPF patient Intercept 14.1985 1.8343 7.740 < 0.0001

w6MW_d1 0.00203 0.0039 0.513 0.6120

https://doi.org/10.23937/2378-3516/1410131
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where X1 is the dp_12 e.g. delta FVC% at the 12th 
month,

X2 is dp_3 e.g. delta FVC% at is the at the 3rd month,

X3 is the sm_status

X4 is the DLC

The output is displayed in the Table 7. Note that 
DLCO is not significant with p-value of 0.1822. Other 
statistics that are used as measures of goodness of fit 
are usually 2σ̂  = 6.75 and AIC = 153.7.

The multiple linear model seems reasonable. How-
ever, as most patients do not continue smoking af-
ter disease diagnosis, it seems reasonable to consider 
smoking i.e. sm_status as a weight instead of a variable 
itself. Looking at an ANOVA test (t-test) of Y1 based on 
smoking, we find the following:

model is: Yij = µ + τi + eij’

where µ is the overall mean of Y1,

	 τi is the effect of smoking level and

	 eij is the error term for each observation 

with i = 2 or 3 and j = 1,2,…, 11 for never smoker = 2

and j = 1,2,…, 14 for former smoker = 3.

The outputs of the ANOVA test are displayed in Table 
8.

The Table 7 result showed that the sm_status is not 
significant with p-value of the ANOVA equals 0.0649, 
and is confirmed in Table 8. This evidences that there 
is no significant difference between the two levels of 
sm_status. The means for each group turns out to be 

1Y  = 3.89 and 2Y  = 3.98 are the means of MtDCN for 

This is to point out that the reasonable accuracy 
from knowledge can lead to suspicious disturbance in 
the quest for model procedure, strategy and simplicity.

Another added variable DLCO may add better fit to 
the MtDCN response variable. It is tested next.

0 1 2
ˆ ˆˆ  =  Y Xβ β+

where Y is the transformed MtDCN, and X2 is the 
DCLO predictor.

As it turns out, the estimated variance of the model 
has decreased, while model significance has been main-
tained (Table 5).

As earlier, a break down by participants is also sug-
gested, and the results are described in Table 6. Sur-
prisingly, the results indicate that the DLCO variable 
does not significantly affect MtDCN within each of the 
grouping. Also, other variables were not significant. 
This shows the complexity behind modelling such data 
phenomena, and a simple model may not be accurately 
describing the patients’ information. We will consider 
more extensive modelling techniques.

Multiple linear model approach
Since we are interested in MtDCN, and since sys-

tematic difference is neither obvious nor predictive, 
multiple linear model approach may help address dis-
crepancies and variable selection.

We start the analysis of Y (transformed MtDCN) be-
ing regressed on the full set of explanatory variables. 
Under stepwise regression method, the following vari-
ables were selected, and they are described by this 
model:

0 1 1 2 2 3 3 4 4
ˆ ˆ ˆ ˆ ˆˆ  =   +  +  + Y X X X Xβ β β β β+

Table 5: Estimates parameters of simple regression of Mt DCN vs. DLCO.

Estimate Std. Error t value P-value
Intercept 13.60768 0.86115 15.802 < 0.0001

DLCO 0.03590 0.01275 2.817 0.00642

Table 6: Individual linear regression models of Mt DCN and DLCO based on IFP patient groups.

Estimate Std. Error t value P-value
Normal Intercept 15.56318 2.12070 7.339 < 0.0001

DLCO 0.01235 0.02569 0.481 0.634

IPF patient Intercept 12.64840 1.98104 6.385 < 0.0001

DLCO 0.05747 0.04485 1.281 0.21

Table 7: Multiple linear regression of Mt DCN vs selected predictors’outputs.

Estimate Std. Error t value P-value
Intercept 7.1030 4.10442 1.731 0.0954

dp_12 -0.2014 0.07636 -2.637 0.0139

dp_3 0.2534 0.1034 2.450 0.0213

Sm Status 2.0194 1.0475 1.928 0.0649

DLCO 0.0751 0.0548 1.371 0.1822

https://doi.org/10.23937/2378-3516/1410131
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later section, as it reveals a circular concentration. In 
the meantime, we explore further and add more pre-
dictors at hand. Dropping DLCO, we get the following 
model

1 0 1 1 2 2
ˆ ˆ ˆˆ  =   + Y X Xβ β β+

where X1 is the dp_12 e.g. delta FVC% at the 12th 
month and 

X2 dp_3 e.g. delta FVC% at is the at the 3rd month.

The output of the model is displayed in Table 9.

From plots in Figure 4, we can see that the nev-
er smoker group is surrounded by the former smoker 
group. In fact, when we model each group separately 
we get different results in term of significance.

1 0 1 1 2 2
ˆ ˆ ˆˆ  =   + Y X Xβ β β+

Similarly, we consider the variable oxygen, which 
takes the value 1 if a patient takes oxygen, and 0 oth-
erwise. Although including the variable oxygen in the 
model does not lead to a good model, dividing the data 
into two groups based on the oxygen status shows 

sm_status = 2 and sm_status = 3, respectively.

The plots in Figure 3 show the linear relationship be-
tween the response Y1 and each one of the predictors 
to further understand the difference between the two 
smoking groups based on oxygen usage. It also shows 
that MtDCN is higher among oxygen users than among 
non-oxygen users for patients who never smoke. How-
ever, the MtDCN for oxygen users is lower for former 
smokers than for non-oxygen users. The problem is that 
a patient assigned to oxygen would be quite random, 
counterfactual sometimes. To determine causal effects 
for these patients is counterproductive, as the predic-
tion is purely observational. Rather, we will try to cap-
ture indirect effects.

We then consider different predictors and try to 
understand their impacts. The effects of dp_12 and 
dp_3 on MtDCN are displayed in the next graphs, 
while keeping the smoking status in mind. It is ob-
servable that MtDCN values of non-smokers seem 
to be enclosed within the MtDCN values of former 
smokers when estimated with dp_3 and dp_12. This 
fact will be review as a doughnut or torus case in the 

  	

Figure 3: Bar graphs of Mitochondria vs. Smoking status and oxygen use for IPF patients only.

Table 8: Analysis of variance table for Mitochondria vs. smoking status.

df SS MS F value P-value
Sm status 1 0.0492 0.04921 1.413 0.247

Residuals 23 0.8012 0.03484

Table 9: Multiple linear regression of Mt DCN vs. dp_12 and dp 3’ outputs.

Variable Estimate Std. Error t value P-value
Intercept 15.23549 0.51435 29.621 < 0.0001

dp_12 -0.18907 0.07863 -2.405 0.0231

dp_3 0.21915 0.10482 2.091 0.0457

https://doi.org/10.23937/2378-3516/1410131
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Boosting approach
Parameter estimations comparison between stan-

dard GLM and GLM-based boosting before and after es-
timating the missing values using multiple imputations 
under Bayesian bootstrap (BB):

Consider the linear model

1 0 1 1 2 2
ˆ ˆ ˆˆ  =   + Y X Xβ β β+

where Y1 is the transformed value of MtDCN,

X1 is the dp_12 e.g. delta FVC% at the 12th month and 

X2 dp_3 e.g. delta FVC% at is the at the 3rd month.

Before handling the missing data, the parameter es-
timates are given in Table 11.

After handling the missing data using multiple impu-
tations under Bayesian bootstrap, the parameter esti-
mates are provided in Table 12.

From the results, the estimates from the GLM 

that predictors dp12 and dp3 significantly affect MtDCN 
among those who take oxygen, which is not true with 
those who do not take it. The model indicates that there 
are other confounding factors besides oxygen and the 
dp_3 and dp_12.

Finally, we fit the model for each group based on 
antifibrotic status (Pirfenidone and Nintenadib). The 
results are shown in Table 10. The model shows a sig-
nificant effect of dp_12 on the MtDCN for Pirfenidone. 
However, the model does not dissuade from adding the 
dp_3, and the idea that there are disturbances and vari-
ational errors within the patients, and thus further anal-
ysis should be considered.

Plot in Figure 5 allows to assess how well the fitted 
multiple regression model describes the IPF prediction 
based on smoking and also based on oxygen use. Al-
though the predictive model is capturing the MtDCN, 
the classification is not at all clear. Hence, we use the 
techniques of boosting and Bayesian models.

  	

Figure 4: Plots of MtDCN vs. dp_12 and dp_3.

Table 10: Individual linear regression models of Mt DCN and DLCO based on selected predictors.

Variable Estimate Std. Error t value P-value
Sm status = Never Intercept 14.40782 0.59652 24.153 < 0.0001

dp_12 -0.15683 0.11116 -1.411 0.186

dp_3 0.09695 0.20854 0.465 0.651

Sm status = Former Intercept 16.0223 0.8359 19.167 < 0.0001

dp_12 -0.2381 0.1137 -2.094 0.0549

dp_3 0.3000 0.1471 2.040 0.0607

Oxygen = 0 Intercept 15.4821 0.7390 20.950 < 0.0001

dp_12 -0.2388 0.1523 -1.569 0.136

dp_3 0.2415 0.1574 1.534 0.145

Oxygen = 1 Intercept 14.96505 0.75444 19.836 < 0.0001

dp_12 -0.19056 0.09215 -2.068 0.0686

dp_3 0.36663 0.21889 1.675 0.1283

Pirfenidone = 1 Intercept 14.4578 0.7815 18.501 < 0.0001

dp_12 -0.2359 0.0986 -2.392 0.0404

dp_3 0.2024 0.1869 1.083 0.3068

Nintenadib = 2 Intercept 15.2714 0.6652 22.956 < 0.0001

dp_12 -0.1903 0.1131 -1.682 0.113

dp_3 0.2278 0.1355 1.681 0.114

https://doi.org/10.23937/2378-3516/1410131
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Several works have proposed strategies for compu-
tations of under optimal designs [13,14], and stopping 
criteria in a missing data context. Examples are present-
ed in both [15,16], Such technique will be applied to the 
features tracking and classification. That is, we will rep-
resent MtDCN by an indicator variable associated with 
DLCO that significantly affects the MtDCN values of both 
IFB and normal subjects.

Although we transformed the response variable 
(i.e. MtDCN) to satisfy the normality assumption of 
the linear model, the assumption is not quite satis-
fied (refer to the Q-Q plots). Thus, another technique 
in modeling the IFP of both patient and normal par-
ticipants is considered to model MtDCN indirectly to 
avoid strong distributional assumption. Analysis on 
the threshold of the biomarkers is further performed 
on the IPF patients. The idea behind introducing an 
indicator, which classify the subjects into two groups, 
as it appears that a removal of DLCO as an effect on 
the MtDCN, may lead to overfitting, or confounding 
due to dp_12 or dp_3.

This indicator we defined here is as follow:

z = 
1,    
0,    

if  DLCO < median (DLCO),
otherwise,





The idea behind introducing this indicator, which 
classify the subjects into two groups, comes from the 
following plots where we can see when we plot MtDCN 
against DLCO, we can easily distinguish between the 
two groups of subjects. It appears that a decreased level 
of DLCO has an effect on the MtDCN.

Now we will fit a Bayesian Hierarchical logistic model 
with Z as a response and MtDCN and DLCO or 6mw as 

based with missing data boosting algorithm are close 
to the estimates from the standard GLM, hence show-
ing that our method is robust.

Bayesian hierarchical logistic regression model with 
mixed effect

To obtain and challenge the formulation above and 
have a reduced form equation of the variables, we con-
sider the Bayesian hierarchical regression model, from 
the conditional indirect effects. The GLM used is extend-
ed to include a Bayesian setting. We start by classifying 
the patients into groups determined by their MtDCN 
levels. Then, we build predictive model by asking if the 
patients can be classified as sick or very sick based on 
their dp_3 and dp_12, adding MtDCN levels, Bayesian.

  	

Figure 5: 3d plots of MtDCN with smoking (2 levels, but one patient was deceased) and oxygen use (2 levels).

Table 11: Estimates from two models.

Parameter Standard GLM GLM-based boosting

0 β̂ 4.678712 4.67696129

1 β̂ -0.020076 -0.016893103

2 β̂ 0.023374 0.019063909

Table 12: Estimates from two models with imputed data.

Parameter Standard GLM GLM-based boosting

0 β̂ 4.656684 4.654382

1 β̂ -0.01914114 -0.01642997

2 β̂ 0.0226934 0.01894534

https://doi.org/10.23937/2378-3516/1410131
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including the random component is useful as the clinical 
course among patients is unpredictable and with high 
variability (Table 13).

Classification table of the predicted normal and IFB 
patients versus the true one is provided in Table 14.

The classification, count and misclassification based 
on the Hierarchical Bayesian logistic regression analysis 
of the w6MW_d1 and DLCO with added random compo-
nent of smoking status is shown in Table 14, and match-
es the results from Figure 6. It shows a high proportion 
of correct classification, with four subjects that are clas-
sified as patients when in fact they are supposed to be 
normal patients. The low level of DLCO significantly de-
pict IPF patients, and therefore alter the lung functions.

The statistical models describe the useful first steps 
in making inferences about the data. While character-
ization of the IPF with most associated explanatory 
variables is best done in a designed study, the variables 
selected, even if non-significant at first, were now to 
be included in the suitable model. Overfitting may be 
a concern, mainly because of the sample size, although 
Bayesian method here can be considered as a compara-
tive justifiable model [17,18].

Conclusion
Although the methods are complementary, this re-

search has shown that the MtDCN level is linked to the 
oxygen, smoking, and the Forced Vital Capacity and 
forced Expiratory Volume. Moreover, we have pro-
posed a risk cohort model for patients with IPF. The 
model enables the practitioner to monitor the patients 
according to key characteristics such as the oxygen use 
and smoking status, and assess the evolution of the pa-

predictors. The model is given by 

Pr (Zi = 1) = logit-1 ( 'Xiβ  + αj), i = 1,…,80, j = 1,2

where statussm
jα  ~ ( )20,  ,

statussmN σ
β ~ N (0, Σ).

For the first model, X = (1, x1 = Mitochondria, x2 = 
6MW)

and 
0

 = 1

2

β

β

β

 
 
 
 
 

 ~ 
10 0 0

= 0 10 0  
0 0 10

N
  
  
  

  

0,∑ 

The model expression in such that whether or not 
the participant has an overexpressed level of DLCO with 
covariates as MtDCN and 6mw. The model expression 

  	

Figure 6: Classification comparison.

Table 13: Estimates of model classification parameters based 
on Mt DCN and DLCO.

Mean Std. Error Rhat

0 β̂ 1046.889 1546.947 1.027

1 β̂ -0.001 0.014 1.015

2 β̂ -15.433 22.412 1.027

2
statussmσ 22.743 41.963 1.012

Table 14: Classification outcomes.

Predicted
0 1

True 0 32 4

1 0 31
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3.	 Alder JK, Hanumanthu VS, Strong MA, DeZern AE, Stan-
ley SE, et al. (2018) Diagnostic utility of telomere length 
testing in a hospital-based setting. Proc Natl Acad Sci 115: 
E2358-E2365.

4.	 Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, et al. 
(2008) Telomere shortening in familial and sporadic pulmo-
nary fibrosis. Am J Respir Crit Care Med 178: 729-737.

5.	 Stuart BD, Lee JS, Kozlitina J, Noth I, Devine MS, et al. 
(2014) Effect of telomere length on survival in patients with 
idiopathic pulmonary fibrosis: An observational cohort study 
with independent validation. Lancet Respir Med 2: 557-565.

6.	 Carpagnano G, Lacedonia D, Cotugno G, Malerba M, Patri-
celli G, et al. (2017) Changes of mitochondria copy number 
in association with idiopathic pulmonary fibrosis. Clin Res 
Pulm 5: 1039.

7.	 Efron B (1994) Missing data, imputation, and the bootstrap. 
J Am Stat Assoc 89: 463-475.

8.	 Foote K, Reinhold J, Yu EPK, Figg NL, Finigan A, et al. 
(2018) Restoring mitochondrial DNA copy number pre-
serves mitochondrial function and delays vascular aging in 
mice. Aging Cell 17: e12773.

9.	 Kim JH, Kim HK, Ko JH, Bang H, Lee DC (2013) The re-
lationship between leukocyte mitochondrial DNA copy 
number and telomere length in community-dwelling elderly 
women. PLoS One 8: e67227.

10.	Szklarczyk R, Nooteboom M, Osiewacz HD (2014) Con-
trol of mitochondrial integrity in ageing and disease. Philos 
Trans R Soc Lond B Biol Sci 369.

11.	Raghu G, Richeldi L (2017) Current approaches to the 
management of idiopathic pulmonary fibrosis. Respir Med 
129: 24-30.

12.	McCullagh P, Nelder JA (1989) Generalized linear models. 
CRC press, 37.

13.	Carlin BP, Kadane JB, Gelfand AE (1998) Approaches for 
optimal sequential decision analysis in clinical trials. Bio-
metrics 54: 964-975.

14.	Müller P, Berry DA, Grieve AP, Smith M, Krams M (2007) 
Simulation-based sequential bayesian design. JSPI 137: 
3140-3150.

15.	Rossell D, Müller P (2013) Sequential stopping for 
high-throughput experiments. Biostatistics 14: 75-86.

16.	Goldstein H, Carpenter JR, Browne WJ (2014) Fitting mul-
tilevel multivariate models with missing data in responses 
and covariates that may include interactions and non-linear 
terms. J R Stat Soc Ser A Stat Soc 177: 553-564.

17.	Samara KD, Margaritopoulos G, Wells AU, Siafakas NM, 
Antoniou KM (2011) Smoking and pulmonary fibrosis: Nov-
el insights. Pulm Med.

18.	King TE, Tooze JA, Schwarz MI, Brown KR, Cherniack RM 
(2001) Predicting survival in idiopathic pulmonary fibrosis: 
Scoring system and survival model. Am J Respir Crit Care 
Med 164: 1171-1181.

tients. We have proposed critical thresholds that may 
reflect disease severity/progression, and determine the 
clinical pathway of IPF with the diffusing Capacity of the 
lung for Carbone Dioxide (DLCO) and the MtDCN levels, 
under multiple regression and under Bayesian hierarchi-
cal models. In our predictive model that have suggest-
ed high predictive accuracy, surveillance can be raised 
when the patients’ DLCO or MtDCN level reach a certain 
level. These findings show that the factors such as the 
six minute Walk Test (w6MW_d1), DLCO and smoking 
status are valuable indicators in predicting IPF progres-
sion, and without ignoring the FVC% at the 3rd and 12th 
months. All these predictors define a clinical subset of 
patients with and without IPF whose information can 
be used to tailor most appropriate surveillance cohort 
and medical treatments. We propose that any newly 
created medicine or treatments and their combinations 
should be developed while accounting for the influence 
of these factors. We have shown the statistical strength 
that can guide practitioners in the counselling and man-
agement of these patients.

Our study has some limitations as the number of 
patients is relatively small and our results should be 
validated in a larger independent population of IPF pa-
tients. Nonetheless, the development of our statistical 
models present a framework for how to incorporate 
factors that might influence the course and outcome of 
patients with this deadly, yet unpredictable disease.
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