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Abstract
Purpose: We propose a new CT perfusion analysis 
algorithm without deconvolution: Theoretically calculating 
the time-enhancement curve (TEC) under various perfusion 
conditions, finding a theoretical TEC that best fits the 
observed TEC, and using the theoretical TEC’s perfusion 
parameters as the estimations for the observation point 
(FiTT).

Method: The FiTT analysis procedure was as follows: First, 
the TEC of the arterial input function (AIF) was fitted to the 
gamma distribution function. Next, we defined the residual 
functions (R(t)s) that assume various perfusion states of 
brain tissue, and theoretical brain TECs were calculated 
by convolution of the AIF and R(t)s. Finally, we determined 
a theoretical TEC with the least error from the observed 
brain tissue TEC, using the theoretical TEC’s perfusion 
parameters as the estimations for the observation point.

The estimation accuracy of FiTT was comparing an 
academic analyzer (bSVD algorithm) and a commercial 
analyzer (Bayesian algorithm) using a digital phantom. 
The verification items were visual evaluation of parametric 
maps, the relationship between ground truth and estimates, 
the effect of R(t) shape, the effect of AIF type, and the effect 
of source image noise.

Results: Parametric map findings: For the academic 
analyzer, Tmax was affected by mean transit time (MTT); 
for the commercial analyzer, MTT was modulated by delay; 
for FiTT, CBV was slightly affected by MTT. The global 
characteristics and effect of the R(t) shape: The academic 
analyzer underestimated MTT, and tracer delay varied; the 
commercial analyzer had a positive bias for cerebral blood 
volume (CBV); and for FiTT, CBV and tracer delay estimated 
close to ground truth, cerebral blood flow (CBF) and MTT 
were affected by the R(t) shape. The effect of AIF type: The 
academic analyzer was independent; for the commercial

analyzer, CBF, CBV, and tracer-delay were affected; for 
FiTT, CBF and CBV were affected. The effect of source 
image noise on parametric map noise: The academic 
analyzer was affected slightly; the commercial analyzer was 
unaffected; for FiTT, CBF map was affected. The effect of 
source image noise on the estimation bias: All analyzers 
were independent. The effect of the source image noise on 
the correlation coefficients (ground truth and estimates): 
None of the analyzers showed obvious proportional 
relationships.

Discussion and conclusions: The three analyzers 
were affected by one or more of noise, AIF type, and R(t) 
shape. Therefore, the estimates were overestimated, 
underestimated, biased, varied, and interacted. FiTT 
depended on R(t) shape and parametric map noise was 
affected by source image noise; however, estimates were 
close to ground truth and showed good linearity in many 
cases. Because clinical cases were not evaluated, the 
clinical behavior of FiTT is unknown. Within the scope of 
this study, we conclude that the estimation accuracy of FiTT 
is comparable to that of the academic and the commercial 
analyzer.
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Introduction
Knowing the size of the ischemic core and penumbra 

helps determine the appropriate endovascular 
treatment for acute stroke [1,2]. CT perfusion (CTP) 
can be performed following plain CT, and information 
on ischemic core size, penumbra size, cerebrovascular 
stenosis, occlusion, and collateral circulation can be 
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obtained through a series of examinations, which have 
high clinical utility [3].

At present, the tracer-delay independent singular 
value decomposition (bSVD) method is widely used. 
However, because the solution oscillates with image 
noise, this method requires regularization. Several 
methods have been proposed for determining the 
regularization parameters, which are constant or 
case-specific values for each analyzer [4-6]. Therefore, 
when the size of the ischemic core or penumbra is to 
be measured, a threshold value must be set for each 
analyzer [7-9]. Various studies have been conducted to 
reduce source image noise and stabilize deconvolution 
[10-14].

In the 1990s, the rectangular model based “BOX-MTF” 
was put into clinical use [15]. Subsequently, Bennink, et 
al. presented a tracer-independent method of box NLR. 
The model-based approach is robust for scan truncation 
and sparse sampling because it can interpolate and 
extrapolate of the sampling points [16]. However, the 
perfusion parameters cannot be estimated accurately 
unless the analytical model and the subject’s residual 
function match [17,18]. We assume that the gamma 
distribution function model is more physiological than 
the rectangular model. Here, we propose a new CTP 
analysis algorithm without deconvolution: Theoretically 
calculating the TEC under various perfusion conditions, 
finding a theoretical TEC that best fits the observed TEC, 
and using perfusion parameters of the theoretical TEC 

as estimates of the observation point (FiTT).

Materials and Methods

FiTT
Analysis principle of FiTT: The time-concentration 

curve (TCC) of the indicator in brain tissue is calculated 
by the convolution of the input artery TCC and residue 
function (R(t)), scaled by blood flow (Equation 1). R(t) 
represents the brain tissue’s blood flow character 
[19,20].

( ) ( ) ( )tss artC t FC t R t= ⊗ 			           (1)

where, ⊗  is the convolution operator, Ctss(t) is TCC 
of the brain tissue (g/ml), Cart(t) is the input artery TCC 
(g/ml), and F is blood flow (ml/s). In actual CTP, TCC is 
converted to Hounsfield units (HU) and observed as TEC.

The analysis procedure of FiTT was as follows: The 
input artery TEC was fitted to a gamma distribution 
function and converted to TCC. Next, we defined R(t)s 
for various perfusion conditions of brain tissue, modeled 
by the gamma distribution function. We then convolved 
the input artery TCC and R(t)s to obtain the theoretical 
TECs. Finally, we determined the theoretical TEC that 
best fit the observed TEC and used that theoretical 
TEC’s perfusion parameters as the estimations for 
the observation point. Figure 1 shows the conceptual 
diagram.

Estimation of AIF: The contrast medium was rapidly 

         	

Figure 1: Conceptual diagram of analysis principle of FiTT.
AIF: Arterial Input Function; TEC: Time-Enhancement Curve.
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the AIF (βtss = βart).As the expected value of the gamma 
distribution function is α . β, mean transit time (MTT) 
can be expressed as:

tss tssMTT α β=  				            (4)

and R(t) can be expressed as

( , /( ) 1
( )

tss tss

tss

tR t γ α β
α

= −
Γ

 			             (5)

where γ is the lower incomplete gamma function, Γ is 
the gamma function, and γ(α,t/β)Γ(α)-1 is the cumulative 
distribution function of the gamma distribution.

Theoretical TECs: The TEC of brain tissue Etss(t), 
observed in the dynamic scan, can be expressed by 
Equation 6 by adding a concentration-HU conversion 
factor kHU, a hematocrit correction factor kHT, a CT value 
baseline E0TSS, and a tracer delay (time offset from Eart(t))
t0tss to Equation 2.

{ 0
0

0
0

0( ) ( )
tssHU HT

tss
tsstss

tss tss
t tE t E tk c t t tk

≤− >= +  	         (6)

Note that E0tss is a variable in Equation 6. This allows 
us to estimate the baseline (i.e., the CT value before the 
introduction of the contrast medium).

In this study, kHU was set to 100, and kHt was set to a 
ratio of the large vessel (HLV = 0.45) to the small vessel 
(Hsv = 0.25) [25].

1
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H

−
=
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 				            (7)

Blood flow F, was obtained from cerebral blood 
volume (CBV) and MTT using the central volume 
principle.

/F CBV MTT=  			                            (8)

For the perfusion parameters of brain tissue, we 

injected from the upper extremity vein, gradually 
diluted, and followed the gamma distribution in the 
internal carotid artery [21,22]. In the simulation study 
of CTP, we used an AIF modeled by Equation 2 that is 
used widely [7,16,17].

1(  ) art art

t

art tC t eα β
−

−=
			                           (2)

Where Cart(t) is the TCC of input artery, αart is the 
gamma distribution’s shape parameter, and βart is the 
gamma distribution’s scale parameter.

The TEC of the input artery (Eart(t)) observed 
in a dynamics can be expressed by k by adding a 
concentration-HU conversion factor (kHU), a CT value 
baseline (E0art), and a time offset (t0art) to Equation 2.
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We used the nonlinear least-squares method to 
calculate each term in Equation 3.

Perfusion model: The gamma distribution function 
has the mathematical property of reproducibility, which 
means that the convolution of gamma distributions 
with the same scale parameter will result in the same 
distribution family [23,24]. Although the true R(t) of the 
brain has not been clarified [16,19], the indicator dilution 
curve observed in various regions of the human body 
can be explained by the gamma distribution. Therefore, 
we assumed that gamma distribution’s reproducibility 
applied to the diluting process of brain tissue and used 
the gamma distribution function for the perfusion 
model of FiTT. The gamma distribution function was 
determined by the shape parameter, α, and the scale 
parameter, β. For simplicity, the scale parameter of the 
perfusion model is the same as the scale parameter of 

Table 1: Parameters of the theoretical time-enhancement curves (TECs) for brain tissue.
There were 653310 combinations of each perfusion parameter, although combinations of high flow (CBF > 120 ml∙(100 g) ^ 
(-1)∙min ^ (-1)) and low flow (CBF < 5 ml∙(100 g) ^ (-1)∙min ^ (-1)) parameters were excluded, which resulted in 540582 theoretical 
TECs for brain tissue.

Parameter Unit Min Max Step Number of items
MTT s 0.5 15 0.5 30
CBV ml/100 g 0.5 8.5 0.5 17
Tracer delay s 0 10 0.5 21
Base line HU -10 50 1 61

Table 2: Parameters of the theoretical time-enhancement curves (TECs) for capillaries.
Parameters of the theoretical TECs for highly perfuse areas. If the TEC of a region matched this, the region was considered a 
vessel, and the estimates of each perfusion parameter were set to 0 during the vessel elimination process. A hematocrit correction 
factor of 1 was used.

Parameter Unit Min Max Step Number of items
MTT s 0.5 4.5 1 5
CBV ml/100 g 20 100 20 5
Tracer delay s 0 5 0.5 11
Base line HU -10 50 1 61

https://doi.org/10.23937/2572-3235.1510077
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estimated CBV was > 8 ml·100 g-1, it was considered 
a vessel [26], whereas if the estimated cerebral blood 
flow (CBF) was < 5 ml·100 g-1·min-1, it was considered as 
a non-perfuse region, and all estimates were set to 0.

Evaluation of the accuracy of the FiTT analysis
Control analyzers: We compared the following 

two software to investigate the accuracy of FiTT: The 
bSVD method of PMA v5.0.5358.55864 (Kudo, et al. 
ASIST-Japan) [27], which is an academic research 
software (Acute Stroke Imaging Standardization 
Group, Japan). The accuracy of this software has been 
clinically and numerically verified, and compared with 
many analyzers [6,7,28,29]. This is no longer a publicly 
accessible software; and the Bayesian method in the 
Brain Perfusion 4D application of Vitrea v7.11.0.596 

defined that FiTT can be estimated for 1.5-2 times the 
normal or abnormal ranges and calculated 540582 
theoretical TECs based on the above equations (Table 
1). For the perfusion parameters of capillaries, we 
calculated 16775 theoretical TECs. Tissues that matched 
this template had each perfusion parameter set to zero 
during the vessel elimination process (Table 2).

Estimation of perfusion parameters: The source 
images were down-sampled from 512 × 512 pixels to 
256 × 256 pixels. A Gaussian filter (σ = 0.75) was applied 
to the source images to reduce noise. For each pixel, the 
sum of squared errors between the observed and the 
557357 theoretical TECs was calculated to determine 
the theoretical TEC that had the least error. Perfusion 
parameters of the theoretical TEC were used as the 
estimated perfusion parameters of the pixel. If the 

         	

Figure 2: In-plane configuration of the extended digital phantom.
The digital phantom based on a plain CT of the human head, which included patches, an artery and a vein that changed in 
intensity over time.

         	

Figure 3: Slice direction configuration of the extended digital phantom.
The first slice had the artery and vein embedded, and subsequent slices had the patches embedded. The R(t) shapes of 
the patches were exponential, linear, box, and gamma distribution. Each R(t) shape contained patches with CBV = 1-5 
ml/100 g.

https://doi.org/10.23937/2572-3235.1510077
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without changing injection volume; “C,” decreased 
injection volume by 30% and increased injection rate so 
that the maximum CT value equals the “standard” AIF; 
and “D”, 1.5 times increase in injection volume (Figure 
5 and Table 3).

To investigate the effect of noise, we created 
datasets with Gaussian noise (standard deviation of 0 to 
15 in intervals of 2.5). The noise level of the phantom of 
Kudo, et al. was determined using the average clinical 
CTP, which has a signal-to-noise ratio of 5; this was 
approximately 7.2 standard deviations. The standard 
noise level of the extended digital phantom was set 
to 7.5. The commercial analyzer showed a strong 
smoothing process in the z-direction. To reduce the 
effect of smoothing, five slices of patches with the same 
intensity and noise were stacked. The parametric image 
of the central slice (the third slice) was used for data 
analysis.

A CT image of a human head was downloaded 
from the DICOM Library [30]. The head CT image was 
deformed to place patches in the skull. With other minor 
changes, the phantom of Kudo, et al. had an artery 
and vein embedded only in the first slice, whereas our 
extended phantom had them embedded in all slices.

Data analysis
We created CBF, CBV, MTT, and tracer delay maps 

for all the analyzers. For quantitative evaluation, a 28 

(Canon Medical Systems, Tochigi, Japan), a commercial 
general-purpose image processor. Both analyzers were 
used with default settings.

Digital phantom: We created a digital phantom with 
some extensions that faithfully reproduced the main 
characteristics of the phantom of Kudo, et al. [7]. The 
original phantom of Kudo, et al. consisted of patches 
with seven MTTs (24, 12, 8, 6, 4.8, 4, and 3.4s) and seven 
delays (0, 0.5, 1, 1.5, 2, 2.5, and 3s), placed on a human 
head CT. The artery, vein, five CBVs (1, 2, 3, 4, and 5 
ml/100 g), and three R(t) shapes (exponential, linear, 
and box) were stacked in the slice direction. Gaussian 
noise was added to the image (signal-to-noise ratio = 
5). The time phase was from 0 to 58 s in 2 s intervals. 
We added an R(t) shape, four AIF types, and six noise 
levels to the original phantom of Kudo, et al. (Figure 2 
and Figure 3).

The additional R(t) shape had a gamma distribution 
(Equation 5) that perfectly matched the analysis model 
of FiTT. This gamma-distributed R(t) was used solely 
to check whether FiTT could be calculated accurately 
according to the algorithm. The above four R(t) shapes 
are shown in Figure 4.

We defined the AIF of the phantom of Kudo, et al. as 
“standard” and added the following four AIFs based on 
the “standard” AIF:“A,” decreased injection rate without 
changing injection volume; “B,” increased injection rate 

         	

Figure 4: Example of the residual function R(t) of the extended digital phantom (MTT = 4s, CBV = 4 ml/100 g, β = 1.5).

Table 3: All the AIFs parameters in the extended digital phantom. MTTbolus is the MTT of the contrast bolus, which is the expected 
value of the gamma distribution function (α·β). Area under the curve (AUC) is proportional to the contrast dose.

Parameter A B C D Standard
αart 2.98450 7.29630 5.36543 4.23924 4.00000
βart 2.50 0.60 0.88 1.50 1.50
Peak CT value [HU] 370 834 493 696 494
MTTbolus [s] 7.5 4.4 4.7 6.4 6.0
AUC 3037.3 3037.6 2126.3 4556.2 3037.5

https://doi.org/10.23937/2572-3235.1510077
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of the AIF type, similar tests were performed for each 
AIF type. Estimation bias was calculated using the 
following equation:

estimates ground truthbias
ground truth

−
=  		          (9)

Results

Confirmation of FiTT
To ensure that FiTT can estimate the perfusion 

parameters as designed, we estimated for a portion 
of the extended digital phantom (noise = 0, gamma-
distributed R(t), standard AIF). Figure 6 shows the 
relationship between the ground truth and the 
estimates. The CBF pulsated slightly, but all perfusion 
parameters were in good agreement. The correlation 
coefficient was close to 1, the slope of the linear 
regression was close to 1, and its intercept was close 
to 0 (Table 4). FiTT conformed to the analysis principle.

Qualitative evaluation of parametric maps
Examples of parametric maps are shown in Figure 7. 

The tracer delay of the academic analyzer was affected 
by MTT. MTT of the commercial analyzer was modulated 
by delay. FiTT was slightly affected by MTT for CBV, and 
it was inaccurate for MTT = 24 s (leftmost column of the 
patches) because MTT could only be measured up to 15 s.

Global characteristics and R(t) shape effects of 
each analyzer

Figure 8 shows the relationship between the ground 
truth and estimates of each R(t) shape. The ANCOVA 
showed that the CBV of the commercial analyzer was 
not significant (p = 0.07), whereas all others were 
significant (p < 0.01).

The trends common to all analyzers were as follows: 
CBV had little variation; CBF, MTT, and tracer delay were 
affected by R(t) shape; for MTT, exponential R(t) was 

× 28-pixelregion of interest was placed in the center of 
each patch. The mean value of the region of interest 
was used as the estimation value of the perfusion 
parameter, and the standard deviation was used as the 
noise of the perfusion parameter.

As the tracer delay parameter, the academic analyzer 
outputs “Tmax” and the commercial analyzer and FiTT 
output “Delay.” In this study, we consider “Tmax” and 
“Delay” to be equivalent and use the term “Tracer 
delay” [31]. We excluded MTT = 24 s (leftmost column 
of the patches embedded for the extended digital 
phantom) for all analyzers’ quantitative evaluations. 
This was because FiTT is not able to estimate MTTs > 
15 s. We also excluded the gamma-distributed R(t) in 
the analyzer comparison experiments. This was to avoid 
bias in favor of FiTT because the gamma-distributed 
R(t) was in perfect agreement with the FiTT analytical 
model.

The correlation between the ground truth and each 
perfusion parameter’s estimates was determined using 
Pearson’s correlation coefficient and linear regression. 
We set r > 0.9 to represent a strong correlation. In the 
investigation of the effect of the R(t) shape, differences 
between the estimates for each R(t) shape were tested 
by analysis of covariance (ANCOVA) and Turkey’s 
multiple comparisons. In the investigation of the effect 

         	

Figure 5: All the AIFs in the extended digital phantom.

Table 4: The correlation coefficients and regression equations 
between the ground truth and perfusion parameter estimates 
for FiTT. The R(t) shape was the gamma distribution, AIF was 
the standard type, and the source image noise had a standard 
deviation of zero. Those marked with * are ρ > 0.9, which was 
considered a strong correlation.

Parameter Pearson ρ Regression formula
CBF 1.00* y = 0.98x + 0.03
CBV 1.00* y = 1.00x + 0.00
MTT 0.99* y = 0.97x + 0.29
Tracer delay 0.98* y = 0.98x + 0.00

https://doi.org/10.23937/2572-3235.1510077
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Figure 6: The relationship between the ground truth and the perfusion parameter estimates for FiTT. The R(t) shape is the 
gamma distribution, AIF is the standard type, source image noise has a standard deviation of 0. Solid lines represent the 
medians of the estimates. Shaded areas represent the interquartile ranges (IQR), and the gray solid lines are y = x.

         	

Figure 7: Examples of parametric maps. AIF was the standard type, source image noise was at the standard level, CBV 
= 5 ml/100 g, and R(t) shape was exponential. The horizontal direction of the map is MTT (24 to 3.4 s, left to right) and the 
vertical direction is tracer delay (0 to 3 s, top to bottom).

https://doi.org/10.23937/2572-3235.1510077
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results of Turkey’s multiple comparisons.

Effects of AIF
The five AIF types were examined for their effects on 

estimates. Figure 9 shows the relationship between the 
ground truth and estimates for each AIF type (see #3-7 
of the Supplimentary File for figures). The ANCOVA for 
the AIF type was p < 0.02 for all perfusion parameters.

The academic analyzer was independent, but the 
tracer delay showed considerable variability (the 
correlation coefficient was 0.63-0.71). The commercial 
analyzer was affected for CBF, CBV and tracer delay. 
FiTT was affected for both CBF and CBV. For “A” the 
low CBF region was particularly overestimated. The 
linear and box shape R(t) were also overestimated 
(not represented in figures).For most of the perfusion 
parameter estimates for all analyzers, “standard” 
and “D” were close together, and “A” and “B” were 
divergent. See #8 and #9 of the Supplimentary File for 

overestimated, and boxed R(t) was underestimated, 
and vice versa for CBF and the linear R(t) was similar 
across perfusion parameters.

The characteristics of each analyzer were as follows: 
The academic analyzer underestimated MTT (the slope 
of the linear regression for a mixture of R(t) was 0.74) 
and consequently overestimated CBF, tracer delay 
showed large variation, and correlation coefficients 
were low (0.54-0.76); the commercial analyzer had a 
positive bias for CBV (the linear regression intercept 
for a mixture of R(t) was 0.991 ml·100 g-1); For CBF of 
FiTT, the correlation coefficients of each R(t) shape 
was strong, and those linear regression slopes varied 
(0.5-1.46), although the correlation coefficients for a 
mixture of R(t) was decreased (0.75), MTT had the same 
tendency; For CBV and tracer delay of FiTT, estimates 
were close to ground truth and had excellent linearity. 
See #1 and #2 of the Supplimentary File for details about 
the correlation coefficients, regression equations, and 

         	

Figure 8: The relationship between the ground truth and estimates for each R (t) shape. AIF was the standard type; source 
image noise was at the standard level. The various dashed lines are the medians of each R(t) shape. The shaded areas 
represent the interquartile ranges, and the gray solid line is y = x.

https://doi.org/10.23937/2572-3235.1510077
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Figure 9: The relationship between the ground truth and estimates of perfusion parameters for each AIF type. “Standard,” 
the AIF of the phantom of Kudo, et al. “A,” decreased injection rate without changing injection volume; “B,” increased injection 
rate without changing injection maximum CT value equals the “standard” AIF; “C,” decreased injection volume by 30% and 
increased injection rate so that the maximum CT value equals the “standard” AIF; and “D,” 1.5 times increase in injection 
volume. The source image noise was at the standard level; and R(t) shape was a mixture of exponential, linear, and box. 
Lines are the medians, shaded areas are interquartile ranges, and gray solid lines represent y = x.

https://doi.org/10.23937/2572-3235.1510077
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Figure 10: Relationship between source image noise and parametric map noise. The lines represent the medians of 
parametric map noise, and the shaded areas are interquartile ranges. AIF type was “standard” and the R(t) shape was a 
mixture of exponential, linear, and box.

         	

Figure 11: Relationship between source image noise and estimation bias. The lines represent medians of estimation bias, 
and shaded areas are interquartile ranges. AIF type was “standard” and the R(t) shape was a mixture of exponential, linear 
and box.

https://doi.org/10.23937/2572-3235.1510077
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Figure 12: Relationship between source image noise (standard deviation (SD)) and Pearson’s correlation coefficient (ground 
truth and estimates of perfusion parameters). AIF type was “standard” and the R(t) shape was a mixture of exponential, 
linear and box.

source image noise was favorable (i.e., < 5). For FiTT, the 
correlation coefficient was low when the source image 
noise was > 10, except for that of CBV.

Discussion

FiTT as the proposed analysis algorithm
Each analyzer was affected by one or more of noise, 

AIF type, and R(t) shape. As a result, the estimates were 
overestimated, underestimated, biased, and varied and 
there were interactions among perfusion parameters. 
FiTT was also more or less affected by these factors, 
and the estimates varied. However, the variation was 
less than that of the other analyzers. The estimates 
were also close to the ground truth and showed good 
linearity. Therefore, the estimation accuracy of FiTT 
in the numerical comparison tests was considered 
comparable with the academic and the commercial 
analyzer.

Effects of R(t) shape
FiTT was affected by the R(t) shape for CBF and MTT. 

For each R(t) shape in CBF and MTT, the correlation 
coefficients were strong. The linear regression slopes 
were varied, but the correlation coefficient for a 
mixture of R(t) was decreased. This phenomenon 
indicates dependence on the R(t) shape. Because FiTT is 

details about the correlation coefficients, regression 
equations, and Turkey’s multiple comparison results.

Effect of source image noise
Figure 10 shows the relationship between source 

image noise and parametric map noise.

When the standard deviation of source image noise 
was > 0.25, the academic analyzer’s parametric map 
noise was affected slightly, whereas the commercial 
analyzer was almost unaffected. FiTT was more strongly 
affected than the other analyzers, especially for CBF.

Figure 11 shows the relationship between source 
image noise and estimation bias. Overall, each analyzer 
had a constant estimation bias that was independent. 
The academic analyzer had a large estimation bias for 
tracer delay.

Figure 12 shows the relationship between source 
image noise and correlation coefficients (ground truth 
and estimates). For each perfusion parameter, the graph 
lines were slightly sloped or fluctuated erratically, and 
there was no obvious proportional relationship between 
source image noise and the correlation coefficient. For 
tracer delay of the academic analyzer, the correlation 
coefficient was low and fluctuated. For the commercial 
analyzer, the correlation coefficient was low when the 

https://doi.org/10.23937/2572-3235.1510077
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Conclusion
We have proposed FiTT as a new CTP analysis 

algorithm without deconvolution. The effects of R(t) 
shape, AIF type, and source image noise on estimates 
were investigated using a digital phantom. We conclude 
that the estimation accuracy of FiTT is comparable to 
that of academic and commercial analyzers in numerical 
simulation studies.
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