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Abstract
Despite improvements in the morphological quality of 
lung images in recent years, using ultra-short echo time 
sequences [1], the low signal-to-noise ratio caused by the 
low proton density of lung tissue (~0.1 g/ml) and cardiac 
and respiratory motions that cause artifacts have been 
the cause of limitations in magnetic resonance imaging 
(MRI) [2]. Spatial resolution and diagnostic quality are then 
reduced. This is mainly evident in emergency situations 
of pulmonary embolism or in chronic bronchopulmonary 
diseases. To improve the BOLD signal, this study proposes 
a method using artificial intelligence techniques, particularly 
artificial neural networks, as a tool for modeling these 
disruptive factors, thus improving the reliability of lung MRI 
images. The proposed ANN system supports disruptive 
input variables in correspondence with the output variables 
that express image quality and reliability. Input variables 
are taken from clinical data. This tool is intended to be 
considered as a diagnostic aid in thoracic imaging.
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Introduction
Thoracic imaging plays an essential role in the 

diagnosis and monitoring of pulmonary diseases. 
Due to the absence of ionizing radiation, MRI is 
strongly recommended as an alternative in the case 
of contraindications to iodinated contrast agents 
or repeated exposures [3]. Although computed 

tomography (CT) remains the recommended method 
for vascular assessment and detection of pulmonary 
embolisms. This is because it is characterized by its 
high spatial resolution and speed [4]. The disadvantage 
of using MRI remains the low proton density of the 
lungs and physiological movements limit the quality 
of the images. The accuracy of the BOLD signal is often 
affected by cardiac and respiratory movements, which 
affects the accuracy of the diagnosis [5]. 

To overcome these drawbacks, ultra-short echo time 
(UTE) sequences have been developed, which allow the 
acquisition of morphological images with a very short 
echo time (TE ~ 0.5 ms) and a limitation of the decay of 
the T2 signal by the non-Cartesian filling of the k-space, 
often radial, which improves the spatial resolution [6].

Nowadays, different artificial intelligence tools are 
becoming essential in this field. The use of these tools in 
thoracic imaging increasingly improves image quality by 
correcting artifacts and becomes a diagnostic aid tool 
[7,8]. Despite these advances, pulmonary MRI signals 
remain characterized by uncertainties and inaccuracies. 
Hence, this study proposes an attempt to correct and 
adjust the factors involved in the process by an artificial 
neural network system to manage these drawbacks.

Methodology
Modeling the factors affecting the quality of MRI lung 

images was performed using artificial neural networks.

https://doi.org/10.23937/2469-5858/1510131
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ANN system

Based on real-world data, artificial neural networks 
have the ability to interpret experimental data and solve 
complex systems such as biophysical processes. This is 
because these networks mimic natural neural networks.

The network comprises two mapped spaces (input-
output). These systems then link inputs and outputs via 
a transfer function. The essential phase during network 
operation is learning. Thus, upon reading the input and 
output variables, the transfer function is modified to 
remain optimal. The function is adjusted by adapting 
mathematical coefficients called "weights." This learning 
phase then consists of optimizing the function so that it 
remains valid in all scenarios [9]. The proposed network 
is a multi-layer network (one input layer, one hidden 
layer, and one output layer) (Figure 1).

Input-Output variables

The network's input and output variables include:

•	 The degree of inaccuracy of the BOLD signal, 
influenced by the low proton density and the rapid 
signal decay, normalized between 0 (maximum 
accuracy) and 1 (maximum inaccuracy).

•	 A variable that quantifies the intensity of magnetic 
disturbances due to cardiac and respiratory 
movements, on a normalized scale of 0 to 1.

•	 The output variable corresponds to the degree of 
reliability of the obtained image, expressing the 
diagnostic confidence from 0 (unreliable image) to 1 
(highly reliable image) (Table 1).

Transfer function optimization is achieved by training 
the neural network using a set of real clinical cases, 

integrating radiological expertise and quantitative 
measurements of MRI signals.

Integration of the ANN system into the diagnostic 
chain

The neural system was integrated downstream of 
preprocessing to provide a quantitative assessment of 
image quality. For better diagnostic interpretation and 
to enable the signaling of acquisitions to be repeated or 
completed, this assessment serves as a decision-making 
aid for the radiologist, indicating the optimal images.

Results
Using the neural network to process clinical data 

across a set demonstrates an improvement in the 
selection of reliable images. Visual quality remains to 
be assessed by the expert. Images deemed reliable 
exhibited better spatial resolution and fewer artifacts, 
facilitating the detection of pulmonary abnormalities, 
particularly proximal embolisms [10].

UTE sequences combined with neural network 
analysis reduce false negatives related to motion 
artifacts and weak signals. The diagnostic sensitivity of 
lung MRI is thus improved.

The network's performance is presented in figure 2.

The training process stopped when the minimum 
gradient was reached. This means that the neural 
network was successfully trained. The stopping of 
the variation of the performance function explains 
acceptable convergence. The network converged after 
six epocs. This means that the model reached the 
optimal solution quickly. The network performance, 
measured by the mean squared error (MSE), decreased 
dramatically from 0.0446 to 3.63e-16. This significant 
reduction indicates an excellent fit of the model to 
the training data. The gradient reached its target 
value (1e-07), thus confirming the convergence of the 
model. Validation checks remained at 0, which means 
that no early stopping conditions based on validation 
performance were triggered. This is consistent with the 
observed fast convergence and good performance.

Discussion
The histogram of the distribution of errors made 

by the regression model. Ideally, the errors should be 
centered on zero, which would indicate that the model is 
making generally correct predictions (Figure 3), but the 
distribution of errors is not perfectly centered on zero. 
There is a notable scatter of errors to the left (negative 
errors) and right (positive errors) of zero. The histogram 
also shows that the frequency (number of instances) of 
each error range with the highest bars is close to zero, 
meaning that the model is making more predictions with 
relatively small errors than with large errors.

The line in Figure 4, representing the model's learned 
relationship between target and output values with an 

Imprécision signal 
BOLD (0-1)

Intensité 
perturbations 
magnétiques (0-1)

Degré fiabilité 
image (0-1)

0.10 0.20 0.90
0.30 0.40 0.70
0.50 0.10 0.85
0.70 0.80 0.40
0.90 0.70 0.30
0.20 0.30 0.80
0.40 0.50 0.65
0.60 0.60 0.50
0.80 0.90 0.35
1.00 0.95 0.20

Table 1: Coding of input-output variables.

Figure 1: Network architecture.
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Figure 2: System performance.

Figure 3: System performance.

Figure 4: Error generalization.

equation, (Output ~ = 0.86.Target + 0.17), indicates 
that for every unit increase in the target, the model's 
output increases by approximately 0.86 units, with a 
constant offset of 0.17. This line is close to the dotted 
line but does not overlap it exactly, meaning the model 
is capturing the overall trend but with some error. The 
equation shows that the model is underestimating the 
slope. A perfect slope would have a value of 1. The bias 
of 0.17 indicates that the model tends to predict a value 
that is 0.17 higher when the target is 0.

Improving model performance requires collecting 
a large amount of data for training, and in this case, it 
would be wise to try a different network architecture.

In general, lung MRI benefits greatly from 
technological advances such as UTE sequences and 
AI algorithms [1,7]. The neural network approach 
proposed here brings an additional dimension by 
explicitly addressing the uncertainty inherent in lung 
MRI signals.

The integration of AI in thoracic imaging is growing 
rapidly, with applications ranging from noise reduction 
to automated diagnostic assistance [11,12]. Our neural 
network system is part of this dynamic, providing decision 
support based on rigorous uncertainty modeling.

Conclusion
The proposed system adopts artificial neural 

networks as an artificial intelligence technique for 
analyzing and processing lung MRI data. The system 
takes into account uncertainties related to weak BOLD 
signals and motion artifacts. This model, combined with 
UTE sequences, opens new perspectives for the clinical 
use of MRI in the diagnosis of lung diseases, especially 
when contrast agents are contraindicated. The 
developed system still suffers from limitations due to 
the limited sample size analyzed. With the expansion of 
its database, this tool could be considered a diagnostic 
aid in thoracic imaging.
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