
Beck-Nielsen SS et al. Int J Rare Dis Disord 2021, 4:029

Volume 4 | Issue 1
Open AccessInternational Journal of

Rare Diseases & Disorders

• Page 1 of 13 •Beck-Nielsen SS et al. Int J Rare Dis Disord 2021, 4:029

Citation: Beck-Nielsen SS, Greggio NA, Hagenӓs L (2021) Defining a Growing and Maturing Skele-
ton and its Relevance in Diseases that Affect Skeletal Growth, Such as X-Linked Hypophosphataemia 
(XLH). Int J Rare Dis Disord 4:029. doi.org/10.23937/2643-4571/1710029
Accepted: April 15, 2021; Published: April 17, 2021
Copyright: © 2021 Beck-Nielsen SS, et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

ISSN: 2643-4571

DOI: 10.23937/2643-4571/1710029

1Centre for Rare Diseases, Skejby, Aarhus University Hospital, Aarhus, Denmark and Department of Clinical 
Medicine, Aarhus University, Denmark
2Italian National Paediatric Coordinator Endo-ERN (SIEDP), EU-Endo-ERN Advisory Board Member, Italy
3Karolinska University Hospital, Stockholm, Sweden

Defining a Growing and Maturing Skeleton and its Relevance 
in Diseases that Affect Skeletal Growth, Such as X-Linked 
Hypophosphataemia (XLH)
Signe Sparre Beck-Nielsen1*, Nella Augusta Greggio2 and Lars Hagenӓs3

*Corresponding author: Signe Sparre Beck-Nielsen, Centre for Rare Diseases, Skejby, Aarhus University Hospital, Aarhus, 
Denmark and Department of Clinical Medicine, Aarhus University, Aarhus, PalleJuul-Jensens Boulevard 99, DK-8200, 
Aarhus, Denmark, Tel: +45-5172-9247, E-mail: sbeck-nielsen@dadlnet.dk

Abstract
The human skeleton is composed of bone, a living tissue 
that undergoes constant development throughout life. It is 
well established that changes in bone metabolism during the 
developmental stages of growth, modelling and remodelling 
determine long-lasting physiological parameters, such as 
final height achieved, peak bone mass, bone quality and 
bone health. A complex interplay of environmental, genetic, 
nutritional, physiological and behavioural factors plays a role 
in these processes. These modifiable and non-modifiable 
factors influence skeletal development and bone quality, 
as well as the occurrence of clinical conditions during 
adulthood, such as osteoarthritis and osteoporosis.

The phase of skeletal growth is a critical period in childhood 
development. Factors that adversely impact bone growth in 
childhood will have lifelong consequences, including short 
stature in adulthood and potentially also deficits in bone 
geometry, bone strength and bone structure. 

X-linked hypophosphataemia (XLH) is an example of a 
genetic condition that exerts a significant negative impact 
on skeletal growth and development. This rare inheritable 
disease is characterized by chronic renal phosphate wasting, 
where the lack of phosphate during the pivotal period of 
bone development especially in periods of rapid growth 
leads to rickets and poor longitudinal growth, resulting in 
limb deformities and disproportionate short stature. 

Understanding skeletal development in disorders associated 
with impaired growth is important to accurately identify 
growth patterns that deviate from the expected norm.

The absence of a universally accepted definition for a 
growing skeleton poses a challenge for assessing end-of-
growth in young adults. The authors reviewed key aspects 
of skeletal development, how skeletal growth is currently 
defined and measured, and propose definitions of a growing 
and maturing skeleton that would be applicable in the clinical 
setting, both in health and in pathological growth disorders, 
such as XLH.
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Skeletal deficits observed in conditions that are 
associated with pathologic growth, such as XLH, are also 
discussed. Furthermore, the concept of end-of-skeletal 
growth is discussed in the context of a lack of a universal 
definition. An updated definition for a ‘growing and 
maturing skeleton’ is proposed.

Bone Formation
There are four categories of bones that make up 

the human skeleton: long bones, short bones, flat 
bones and irregular bones. These different bone types 
undergo one of two distinct processes of skeletal 
development depending on the embryological origin, 
namely, intramembranous or endochondral ossification 
[6,7].

Intramembranous and endochondral ossification
Intramembranous ossification is the process of 

replacing sheet-like connective tissue with bony 
tissue. This process produces most of the flat bones, 
i.e., craniofacial bones and part of the clavicles. Bone 
development occurs from mesenchymal condensations, 
differentiating directly into osteoblasts in the primary 
ossification centres without any prior cartilage 
formation [6-10].

Increases in human height are primarily accounted 
for by endochondral ossification, the process responsible 
for development of the long bones. In the embryological 
phase, chondrocytes initially create a cartilage model, 
followed by the invasion of osteoblasts and blood 
vessels into the skeletal element to create the primary 
ossification centre in the middle of the bone. This forms 
a denser bone matrix known as primary spongiosa [11]. 
The cartilage matrix continues to form as the foetus 
grows, lengthening the bone, with layers of rounded 
‘resting’ chondrocytes at the ends and flat ‘proliferative’ 
chondrocytes towards the middle. Postnatally, 
secondary ossification starts to occur at centres at the 
end of the long bones. The growth plate can be found in 
between the primary and secondary ossification centres 
[11]. Any disturbance of the plate physiology may cause 
developmental abnormalities [6,10,12,13].

Longitudinal and appositional bone growth
Longitudinal growth is driven by elongation of the 

bones caused by the proliferation and differentiation of 
chondrocytes at the epiphyseal growth plates [6,14,15]. 
The growth plate is a structure present in growing 
children, composed of columns of chondrocytes found 
in a germ layer near the epiphyseal bone. Chondrocytes 
grow in size until they are replaced by bone in the 
metaphyseal bone, following apoptosis and vessel 
invasion [11].

The main factor influencing longitudinal growth is 
the size of the hypertrophic chondrocyte prior to its 
replacement by bone. Up to 73% of bone lengthening 
has been attributed to the volume increase achieved by 

Introduction
The human skeleton serves multiple essential functions 

that include providing support for the rest of the body; 
providing levers for the muscles to allow movement 
and locomotion; protecting vital internal organs and 
structures; providing maintenance of mineral homeostasis 
and the acid-base balance; serving as a reservoir of growth 
factors and cytokines; and providing an environment for 
haematopoiesis within the marrow spaces [1]. The skeleton 
undergoes major size changes and adaptations to forces, 
during infancy and childhood. Imbalances in nutritional 
status, diseases of many origins or constitutional/genetic 
conditions, may affect skeletal growth and maturation, 
often leading to shorter stature and/or altered bone 
structure/geometry.

Measuring skeletal growth (as height) and body 
proportions as well as evaluating skeletal radiographs 
are useful for identifying and diagnosing children with 
short stature or growth disorders; the projected adult 
height of children is compared with the ‘target height’ 
or genetic height based on parental height [2].

X-linked hypophosphataemia (XLH), is a rare lifelong 
hereditary disorder characterized by renal phosphate 
wasting leading to chronic hypophosphataemia [3]. 
The altered phosphate metabolism produces skeletal 
mineralization abnormalities with growth retardation 
and short, disproportionate stature being major 
manifestations of the condition. Since bone undergoes 
growth, modelling and remodelling processes during 
childhood; remodelling and, to a lesser extent, 
modelling in adult life [4,5]; an adequate supply of 
essential elements, including calcium and inorganic 
phosphate, is critical to maintain a healthy skeletal 
structure throughout life.

In disorders of growth or bone pathology, such 
as XLH, there is a need to define the end-of-skeletal 
growth. The current lack of a universal definition for 
the ‘growing skeleton’ poses a challenge to the optimal 
management of disorders with impaired skeletal 
growth and development since the aptness of certain 
treatments is dependent on whether or not longitudinal 
growth has ceased. Similarly, the definition of the 
attainment of final height is also inconsistent.

The authors of this paper held several working 
sessions to develop a standard definition for the growing 
skeleton that would be applicable in health and diseases 
with pathologic skeletal growth and development. 
Suggestions for the definition of skeletal growth and 
maturation were: (1) ‘a growing skeleton increases in 
height and shows radiological non-fusion of growth 
zones’ and (2) ‘in children and adolescents, a skeleton 
should be considered to undergo skeletal maturation as 
long as it is accruing bone mass and bone density’.

This review article briefly describes the physiology 
and key milestones of normal skeletal development. 
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adapts to its function in response to stress from muscle 
activity or weight by the deposition of bone and removal 
of bone where required. This process provides increased 
strength to the bone structure, while minimizing density 
to maintain its lightness [4,26,27]. Bone modelling can 
still occur, to a much lesser extent, in the adult skeleton 
as bones adapt to permanent strain, pressure or 
fractures [4,5].

Bone remodelling is a process that occurs once 
new bone has formed. Mineralized bone is removed 
by osteoclasts; the osteoblasts then replace the bone 
matrix, which has been resorbed. Osteoclasts and 
osteoblasts work sequentially in the bone forming unit 
during this process. Osteoclasts are activated on the 
bone surface and resorb the mineralized bone and the 
extracellular matrix. This creates a defect that is filled by 
the osteoblasts, resulting in new bone formation (Figure 
1) [1,4,28-30].

In childhood, bone remodelling is characterized by a 
positive bone turnover, with an overall increase in the 
amount of new bone formed compared with the levels of 
bone resorption. Once peak bone mass (PBM) is achieved, 
there is a net balance between bone resorption and 
bone formation, which then declines with age-related 
bone degeneration leading to a net loss of new bone. 
The bone remodelling process repairs microdamage, 
maintains biomechanical strength and ensures mineral 
homeostasis (phosphate and calcium) [4,31].

Peak Bone Mass
PBM is defined as the maximum amount of bone 

tissue accrued during an individual’s life; this occurs 
after normal growth has ceased and indicates that 
the skeleton has fully matured [32-35]. Bone mass is 
commonly measured by bone mineral content (BMC) 
and areal or volumetric bone mineral density (aBMD 
or vBMD) using dual X-ray absorptiometry (DXA) or 
high-resolution peripheral quantitative computed 
tomography (HR-pQCT)/computed tomography (CT) 
[36]. Lifelong bone health is dependent on maximizing 
PBM during the critical periods of growth, bone 
mineralization and maturation [37]. The growth years 
during childhood and young adulthood are particularly 
important for building PBM. Almost half of adult bone 
mass is attained during adolescence, with 25% being 
acquired during and just after the peak height gain 
during the pubertal growth spurt [38]. A higher risk 
in later life for fragility fractures appears if optimal 
PBM is not reached and maintained during adulthood 
[34,36,39].

Factors influencing PBM
In the healthy population, genetics can determine 

around 60–80% of PBM [35,38,40]. However, the 
predetermined genetic trajectory for the accrual of PBM 
can be influenced by modifiable environmental factors, 

these hypertrophic chondrocytes [16].The regulation 
of chondrocytes and longitudinal growth is thought to 
involve both systemic factors (e.g., growth hormone, 
parathyroid hormone, vitamin D, thyroid hormones, 
sex hormones, glucocorticoids) and local factors (e.g., 
insulin-like growth factor 1 (IGF-I), vascular endothelial 
growth factor, transforming growth factor beta 2, 
parathyroid hormone-related protein, leptin, integrins, 
prostaglandins and chondromodulin) [16,17].

A considerable part of longitudinal growth occurs 
at the vertebral bodies, where the increase in sitting 
height (SH) accounts for more than half of the height 
gain during the pubertal growth spurt [18]. The 
mechanisms of growth in vertebral height are similar 
to those in long bones, with endochondral ossification 
taking place in the growth plates adjacent to the discs. 
Sustained mechanical loading can also modulate growth 
in height [19]. Vertebral bodies also grow via primary 
and secondary ossification centres in a process where 
the vertebrae form shapes that optimize the protection 
of the spinal cord, aid general mobility and provide 
support for the head and neck. The vertebral bodies 
continue changing and adapting via endochondral 
ossification into adulthood as greater mobility and 
stability is required [20].

Increases in longitudinal growth of the long bones only 
occur during the growth phase of bone development. 
Normal childhood growth is characterized by: (1) a 
rapid, decelerating infantile growth phase lasting until 
about 3 years of age; (2) a longer childhood phase 
with a steady decelerating growth velocity; and (3) the 
adolescent growth spurt that is marked by an initial 
period of rapidly accelerating growth velocity followed 
by deceleration until final adult height is reached [21].

Appositional growth occurs at the diaphysis of the 
long bone and the vertebral bodies, which changes the 
bone shape and increases its width [19,22,23]. During 
appositional growth of the long bones, width is added 
on the outside through the process of subperiosteal 
apposition. Layers are added to those that already exist, 
while bone is simultaneously removed on the inside of 
the medullary bone cavity via endosteal resorption – 
the breaking down and reabsorption of bone material 
from the centre. Appositional growth (bone modelling) 
conserves the tubulation of long bones when the 
metaphyseal width is reduced into the diaphyseal 
dimension; failure in modelling may cause under- or 
over-tubulation. This continues throughout life, even 
after the cessation of longitudinal growth, in response 
to stresses from muscle activity or weight [5,7,24,25].

Bone modelling and remodelling
Bone modelling primarily takes place in actively 

growing bone, where bones are shaped or reshaped by 
either bone formation or bone resorption occurring at 
a given bone surface [4,7,26]. In bone modelling, bone 
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required for the intestinal absorption of calcium and 
phosphate, [45] an imbalance in vitamin D levels will 
negatively impact the relationship between dietary calcium 
and phosphate intake and bone mineral density [38,41,46]. 
Decreased vitamin D levels have been associated with a 
low bone mineral content and density, osteomalacia in 
adults and rickets in children [47]. The nutritional vitamin D 
level is one of the physiological determinants of PBM, and 
supplementation in infancy is associated with increased 
aBMD [40,48]. Murine models of XLH demonstrate 
beneficial effects of calcitriol supplementation on growth 
plate maturation and skeletal microarchitecture in 
absence of phosphate supplementation [49]. In patients 
with XLH, active vitamin D, in combination with phosphate 
supplementation, leads to improvements in rickets, limb 
deformity, growth and gains in height [50,51].

Timing of PBM attainment
The timing of when PBM is attained has been 

reported to help define the lifecycle phase for optimal 
bone health, allowing for appropriate and timely 
targeting of interventions aimed at achieving optimal 
PBM [52]. A large age range for the attainment of PBM, 
BMD and peak of total bone mineral content has been 
reported in the literature [34-36, 52-54], but in general 
is reported to be achieved in early adulthood.

X-Linked Hypophosphataemia
XLH is a rare, hereditary, progressive and lifelong 

renal phosphate wasting disorder caused by loss-of-

in particular, physical activity and optimal nutritional 
intake of protein, calcium and vitamin D [33,37,38,40].

The impact of physical activity on bone mass 
acquisition during childhood is modulated by diet, 
particularly through the intake of protein and other 
essential nutrients [33]. Dietary protein enhances 
the production of IGF-I that stimulates the kidney 
production of 1,25 dihydroxyvitamin D (1,25(OH)2D), 
which, in turn, boosts intestinal absorption of calcium 
and inorganic phosphate, thereby positively influencing 
bone mineralization [33,41]. This production of 
1,25(OH)2D is tightly controlled and is stimulated by 
parathyroid hormone (PTH). Phosphate (in the form of 
inorganic phosphate) plays a vital role in bone health 
and constitutes a major component of bone [42]. 
Approximately 85% of total adult body phosphate 
resides in the bone [43]. Adequate phosphate levels are 
crucial for the apoptosis of hypertrophic chondrocytes 
and, along with calcium, for mineralization of the 
newly formed bone matrix. Although dietary intake of 
phosphate usually exceeds the quantity of phosphate 
required for these processes, increased excretion of 
phosphate in patients with XLH results in phosphate 
deficiency. Maintenance of normal phosphate 
homeostasis is crucial for normal bone growth, 
especially during the phases of rapid growth [44].

Up to 50% by volume and 70% by weight of human 
bone is a modified form of hydroxyapatite, known as 
bone mineral. It is composed of calcium and phosphate 
Ca10(PO4)6(OH)2. Since adequate levels of vitamin D are 
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Figure 1: Bone remodelling cycle. Adapted from Moreira, et al. [30].
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Skeletal deficits in XLH
The significant morbidity associated with XLH 

that impacts bones, joints and muscle, in addition to 
dentition and hearing, is well documented [3]. The 
resultant, progressive musculoskeletal abnormalities 
throughout life are debilitating – causing pain and 
stiffness, impairing mobility and physical function, 
decreasing range of motion and reducing health-related 
quality of life [67].

XLH is primarily characterized by chronic 
hypophosphataemia, which in addition to other 
disease factors such as changes in tissue non-specific 
alkaline phosphatase, pyrophosphate, calcitriol, the 
direct impact of FGF23 and compromised activity of 
the PHEX protein, exerts deleterious effects on bone 
development. These include reduced longitudinal 
growth, impaired bone mineralization, osteoid 
accumulation leading to osteomalacia, and an increase 
in skeletal osteopontin deposition contributing to the 
local inhibition of bone mineralization [3,68]. In XLH, 
apoptosis of the hypertrophic chondrocytes is halted, 
followed by a decrease in chondrocyte proliferation 
and loss of organization of the proliferative columns, 
resulting in reduced and delayed bone growth at the 
growth plate [69].

Hypomineralization of newly formed bone leads to 
accumulation of osteoid and weakened bones that may 
undergo deformation from applied strain and forces on 
the body [3]. Deformities in the lower limbs become 
more apparent when the child starts to ambulate [3]. 
Of note, mild lower limb extremity bowing has been 
reported in infants with XLH who may not be fully 
ambulatory [70]. Deformities of the weight-bearing long 
bones of the lower limbs include genu varum and genu 
valgus, with associated gait abnormalities and a typical 
waddling gait, and reduced muscle function [71]. Lower 
extremity torsion and rotation of the long bones may 
also be observed [72].

Upper limb deformities may be observed when 
the child starts crawling (Beck-Nielsen S, professional 
experience). Loading appears to affect the function of 
hypomineralized growth plates, which collectively cause 
leg length to be more affected than arm span in patients 
with XLH [3,73].

Bone volumetric density in XLH
Bidirectional axial transmission (BDAT) bone 

ultrasound of the radius and tibia of children and 
young adults with XLH aged between 4.2 and 20.8 
years revealed a poorer bone quality in terms of matrix 
stiffness and strength compared with healthy controls 
[74]. Trabecular thickness in the tibia was significantly 
higher in the patients with XLH compared with the 
control groups. In addition, cortical thickness in the tibia 
showed a tendency to be higher in patients with XLH 
compared with the control groups [74].

function mutations in PHEX (phosphate-regulating 
endopeptidase homolog X-linked). For full reviews refer 
to Beck-Nielsen 2019 [55] and Haffner 2019 [50]. This 
condition is primarily inherited in an X-linked dominant 
pattern, whereas approximately 20–30% of cases arise 
from spontaneous mutations [55-57].

Although the pathogenesis of XLH is not fully 
understood, studies indicate that loss of PHEX function 
leads to the enhanced production, primarily from the 
osteocytes in the skeleton, of the phosphaturic hormone 
fibroblast growth factor 23 (FGF23). Elevated levels 
of serum FGF23 increase renal phosphate wasting by 
reducing phosphate reabsorption in the proximal renal 
tubule and increasing urinary phosphate excretion. 
FGF23 also downregulates one alpha hydroxylase, which 
curtails the formation of 1,25(OH)2D [58]. The resultant 
decrease in active vitamin D production impairs 
phosphate absorption from the gut. These actions, in 
turn, reduce serum phosphate concentration [59].

Growth retardation in XLH
Growth retardation is a major manifestation of XLH 

in children. The abnormal, disproportionate growth 
is primarily seen in reduced longitudinal growth of 
endochondral long bones [60]. Diminished growth 
with declining z-scores has been reported in children 
with XLH as young as 6 months of age and the growth 
velocity continues to decline progressively during early 
childhood, remaining behind that of normal population 
growth curves [61]. In another study, growth retardation 
in children under 1 year of age was observed to be 
similar between boys and girls. However, after reaching 
the age of 5 years, stunting was more pronounced in 
boys than in girls [62].

The mechanism responsible for growth impairment 
in XLH remains to be elucidated. It has been suggested 
that both cartilage and bone alterations are important 
underlying causes for the impaired growth and long bone 
deformities observed in XLH [63]. Moreover, studies 
using murine models of XLH indicated that antagonizing 
FGF23 activity, by administering a mitogen-activated 
protein kinase (MAPK) pathway inhibitor, resulted not 
only in the acceleration of growth and improvement 
of rickets, but also in a normalization of growth plate 
structure [64]. Further studies are needed to clarify the 
relationship of elevated FGF23 and growth retardation 
in XLH, but experimental studies suggest that blocking 
FGF23 action accelerates growth velocity without the 
risk of worsening bone deformities [17].

Treatment of XLH with oral phosphate supplements 
and active vitamin D analogues is insufficient to 
normalize longitudinal growth, although improvements 
in biochemical parameters, in addition to partial 
prevention or amelioration of rickets and other 
manifestations of the disease have been reported 
[50,62,65,66].
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syndrome receiving growth hormone therapy [77]. 
Although a growth velocity of zero signifies epiphyseal 
plate closure, [78] there is no consensus on the growth 
velocity value to determine near-final adult height 
(Table 1).

Growth velocity is considered normal when it is 
following a percentile line on a standard growth chart. 
Deviations from normal in growth velocity may occur 
due to natural causes of early or late puberty. In such 
cases, the final height is expected to be within the 
normal range for that child but will be obtained at an 
earlier or later age compared with normal average age 
range.

The growth velocity is lower than normal in XLH. A 
close observation of activity of rickets both by paracrine 
and radiological evaluation, and the need for treatment 
adjustments are necessary during the growth phase, 
especially during phases of rapid growth [50].

Bone age
Bone age, which represents the degree of secondary 

ossification in the long and short bones, [92] can be 
used to derive biological and skeletal maturity [93]. 
Ossification of the hand has been considered to 
represent maturation of the entire skeletal system. Bone 
age reported at end-of-growth varies in the literature 
[84,94]. End-of-growth definitions varied from beyond 
15 years for boys and beyond 13 years for girls [95-97].

The commonest modality used to assess bone 
age is radiography of the left hand and wrist, which 
contain many bones, are easy to radiograph and are 
often part of the non-dominant hand and, therefore, 
less prone to injury [98]. Other methods to determine 
bone age include ultrasonography, CT and magnetic 
resonance imaging (MRI) [92,93]. A recent technological 
development, known as BoneXpert, uses digital X-ray 
radiogrammetry to measure cortical BMD of the second 
to fourth metacarpal joints and has been shown to be an 
accurate method for determining bone age [99]. Bone-

Moreover, a study using HR-pQCT found that adults 
with XLH, in addition to having a higher total bone 
cross-sectional area of both the tibia and radius, had 
a reduced cortical thickness and a lower total vBMD 
[75]. Surprisingly, given that XLH is a disorder that 
impairs bone mineralization, patients with XLH were 
found to have a reduced risk of fractures compared 
with normal reference data [73]. Reasons for this 
observation and normal bone strength estimates are 
speculated to be caused by altered geometry with 
broader and shorter bones resulting in a positive impact 
on fracture prevention. Furthermore, the lower risk-
taking behaviour may also contribute to the fracture 
risk reduction in XLH [75]. 

Defining Growth or End-of-Growth
The importance of the growth phase in bone 

development to define optimal bone structure and 
mass is well established [76]. Although the distinct 
phases of skeletal development in healthy individuals 
have been studied in detail [7], similar data for patients 
with pathological growth conditions are scanty. 
Understanding skeletal development in disorders 
associated with impaired growth is important to 
accurately identify growth patterns that deviate from 
the expected norm. This will assist in determining 
whether a decrease in growth velocity is a natural cause 
of a disease associated with growth disturbance, i.e. 
XLH, at that particular stage of skeletal development, or 
indicates the need for optimized medical treatment.

At present, there is no universal definition for the 
end-of-skeletal growth [2]. Broad parameters that have 
been used in the scientific literature to define growth 
include growth velocity associated with final height, 
bone age, epiphyseal plate closure and chronological 
age.

Growth velocity associated with final height
A growth velocity of <2 cm/year has been used to 

estimate final height in a study of girls with Turner 

Table 1: Definitions of final adult height based on growth/height velocity.

Reference Definition
Lee, et al. 2018; Tanner, et al. 1975; Tanaka, et al. 2018 [79-81] <1 cm/year
Bourguignon, et al. 1986 [82] <2 cm/6 months
Burns, et al. 1981; Kim YM, et al. 2014; Lindgren, et al. 2002; 
Pfäffle 2017 [83-86] <2 cm/year

Van den Broeck, et al. 1995 [87]
Linear growth velocity of 4 mm/year or less, measured over at 
least 6 months or near-final height, defined as a growth velocity 
of 5–9 mm/year 

Tanaka, et al. 2018 [81] Annual height velocity <2 cm after achieving peak velocity at 
puberty

Roche and Davila 1972 [88] Four successive measurements of <0.5 cm/6 months
Filipsson and Hall 1975 [89] <0.5 cm/24 months
Largo, et al. 1978 [90] <2 cm/24 months
Marubini, et al. 1972 [91] <1 cm/year
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growth more accurately. The Roche-Wainer-Thissen 
method, as an example, predicts adult stature based 
on the age, weight, stature, skeletal age and average 
parental height of a person [111].

Rationale for Defining End-of-Growth
The growth course for children and adolescents with 

slow height velocity and impaired growth, as seen in 
XLH, is not well characterized in the literature. Despite 
having a normal birth length, individuals with XLH 
show impaired growth especially during infancy and 
early childhood [60,61]. Compared with the Centers 
for Disease Control and Prevention growth curves, 
linear height in children with XLH fell behind that of 
the normal population as early as 6 months of age, and 
progressively declined during early childhood, with all 
median height percentiles <8% between the ages of 2 
and 12 years [61]. Results from a multicentre study also 
revealed that children with XLH from the age of 2 years 
had a stature mean value that was persistently below 
-2 standard deviation score (SDS) of normal reference 
values in healthy children [60].

Applying standard growth charts used for the general 
population to patients with XLH could likely lead to 
the underestimation of improvements in children and 
adolescents with XLH and pathological growth. In XLH 
management, inaccuracies in measuring or monitoring 
growth may result in treatment cessation before the 
full benefits of restoring phosphate homeostasis and 
achieving final height are realized. Growth curves that 
are specifically developed for patients with XLH will shed 
light regarding the onset of reduced growth velocity and 
help characterize the course of growth from birth to 
adulthood. A widely accepted definition of end-of-growth, 
aided by XLH-specific growth charts, will guide optimal 
management strategies and treatment guidelines.

Precedence with Disease-Specific Growth Charts
Disease-specific growth charts are important 

tools that help to understand the growth pattern and 
pathogenesis of hereditary diseases associated with 
growth failure [112]. A precedent for growth curves in 
diseases affecting growth has already been set. Disease-
specific growth charts are available for achondroplasia, 
sickle cell anaemia, Turner syndrome, Williams 
syndrome and Noonan syndrome [112-114]. Specific 
growth charts have also been developed for disorders 
that are associated with height increase in a population, 
which is the case for patients with Marfan syndrome 
who often have a tall stature [115]. In addition, growth 
charts for children with XLH are now available [61]. 
For many rare syndromes, sufficient longitudinal 
growth data for varying individual patterns is usually 
impossible to collate to establish meaningful growth 
charts. Therefore, current practice also utilizes normal 
population growth charts with extended SD-lines down 
to -5SDS to track children with extreme short stature.

Xpert is suitable for use in the healthy population and is 
useful to predict bone age and final height in children 
with short stature [100,101], although its value in XLH is 
compromised by the altered bone size, and is therefore 
considered inapplicable.

Epiphyseal growth plate closure
Longitudinal growth occurs primarily within the 

long bones at the epiphyseal growth plate as well as 
in the vertebral bodies of the spine. During childhood, 
the growth plate matures and the total height of the 
growth plate decreases, finally closing in late puberty, 
with complete replacement of bone. The primary 
determinant for epiphyseal closure is timing of puberty 
and this step marks the end of longitudinal growth of 
the long bones and vertebrae and the attainment of 
final height [15,102]. Epiphyseal plate closure does 
not happen simultaneously in the skeleton and a 
study of union at the epiphyses at the knee involving 
young males/females aged 18–18.9 years showed that 
complete epiphyseal union of the femur, tibia and fibula 
occurred in males/females in 12.5%/10%, 0%/10%, and 
25%/60%, respectively [20,103,104].

Techniques used to identify time of epiphyseal 
fusion include the Tanner-Whitehouse 2nd edition 
(TW2) radius-ulna-short bone, which uses 20 regions of 
the bone to assess bone age [105]. Each of these regions 
is further split into several developmental stages, one 
of which identifies when epiphyseal fusion is complete 
[106].

Spinal growth and termination
During adolescence, the growth occurring in the 

spine results in an increase in SH, which is not necessarily 
synchronized with the leg growth [19]. This leads to an 
increase in SH/height ratio in adolescence indicating 
that the spinal growth velocity is exceeding the growth 
velocity of the legs [107]. Although the dimensions of 
growth in the neural canal, as well as the inter-pedicular 
distance is nearly complete in early childhood, spinal 
growth has been reported to continue after skeletal 
maturity and the cessation of limb growth [19].

Chronological age or maturity
Chronological age has been used in the literature 

inconsistently to define end-of-growth irrespective 
of the nomenclature used, e.g. adult height, mature 
height, young adults or final height. The age of 18 years 
is frequently accepted as the time when the estimated 
final height is reached [108]. However, the exact age 
used for determining final stature varies from 18 to 
30 years of age, with variations also between gender 
[95,109,110].

Chronological age to determine final height is 
seldomly used in isolation to determine skeletal maturity, 
but rather in combination with other parameters such 
as bone age and growth velocity to determine end-of-
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raise awareness on disease-specific growth patterns and 
address the possible pitfalls when interpreting height 
data. It will also aid in the assessment of new therapies 
and the monitoring of the response to new and existing 
therapies. The understanding and definition of a growing 
and maturing skeleton may be divided into two modalities:

Achieving final height
Individuals affected by disorders that impair skeletal 

growth and development exhibit a growth pattern that 
deviates from and falls behind that of standard growth 
curves. The growth pattern may even be dissociated with 
different body segments variably affected, such as in 
XLH. Thus, there is a need for growth curves specifically 
for XLH to identify growth patterns that deviate from 
the expected normal growth in XLH.

Underestimation of growth improvement in 
patients suffering from pathological growth, i.e. 
when longitudinal growth goes unrecognized due to 
progressive deformation of the lower extremities, 
could lead to treatment cessation before the full 
benefits of therapy are realized. The use of alternative 
measures such as SH or ASL should be considered when 
estimating growth or the cessation of growth in diseases 
characterized by deformations of the spine or lower 
extremities. In XLH, the use of ASL or SH is independent 
of eventual bowing of the lower extremities and the 
lower growth velocity of the weight-bearing long bones.

Thus, in the clinical setting a proposed definition of 
final height achievement:

In children with a normal growth pattern:

1. The increase in height of <0.5 cm/6 months in two 
consecutive measurements.

2. The radiological closure of the growth zones at the 
wrist and knee supports the decision for obtained final 
height.

Adapted for XLH and other diseases affecting 
skeletal growth, bone shape and development:

1. The increase in height of <0.5 cm/6 months in two 
consecutive measurements, when there is no worsening 
of eventual deformation of the lower extremities and 
no worsening of an eventual scoliosis.

2. If there is worsening of deformation of the lower 
extremities and/or worsening of an eventual scoliosis, 
utilize the increase in arm span of <0.5 cm/6 months in 
two consecutive measurements.

3. The radiological closure of the growth zones at the 
wrist and knee supports the decision for obtained final 
height.

Skeletal maturation
Continued bone modelling after final height has 

been achieved:

Providing a clear measure of when bone modelling/

Alternative Methods to Measure Skeletal 
Growth 

As longitudinal growth in the endochondral long 
bones is largely affected in XLH, and in addition, 
eventual bowing of the long bones may affect the 
height measurements, other methods of measuring 
skeletal growth in pathologic growth conditions may be 
considered.

Arm span length
When the measurement or interpretation of 

standing height represents a challenge, especially in the 
presence of gradually bowing of the lower extremities, 
arm span length (ASL) can be considered. ASL is a 
commonly used body parameter for predicting height, 
[116-118] and has proven useful to identify individuals 
with disproportionate growth abnormalities and 
skeletal dysplasia as well as to predict age-related loss 
in stature [117]. The arm span to height ratio (ASHR) in 
normal individuals is usually around one, but it differs 
between children and adults (age-dependent), gender 
and ethnic groups [118]. ASL may also be useful in 
monitoring the longitudinal bone growth at a site not 
affected by weight bearing [117].

Intercondylar/intermalleolar distance
The intercondylar (IC) and intermalleolar (IM) distance 

are measured at the knee or the ankle respectively, using 
a measuring tape with the patient in a standing position. 
This measurement is used to assess valgus or varus leg 
deformities. Performing IC and IM measures at clinical 
visits will reveal a worsening in a leg deformity.

Sitting height
SH is measured from the vertex of the head to the 

seated buttocks by a normal stadiometer, with the 
patient sitting on a stool subtracting the height of 
the stool from the measured height. The SH can be 
used instead of stature, if height cannot be accurately 
measured because of lower limb deformities, revealed 
by the IC/IM values [107]. A multicentre study involving 
76 children with XLH reported that SH/height ratio 
SDS increased significantly during late childhood/
adolescence. The reduction in height SDS in XLH was 
thus primarily driven by the reduced growth of the 
lower limbs and is suggestive of a dissociated growth 
retardation primarily affecting the long weight-bearing 
bones. The degree of leg bowing was only weakly 
associated with leg length [60].

Proposing a Definition for a Growing and 
Maturing Skeleton

The absence of a universally accepted single definition 
for a growing skeleton poses a challenge for the assessment 
of the end-of-growth in young adults.

A definition that may be adapted to be applicable 
to disorders affecting bone growth and bone shape will 
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a maturing skeleton is proposed as being one that is 
still accruing bone mass and bone density; this implies 
that skeletal maturation occurs after cessation of 
longitudinal growth.

These definitions may be beneficial to guide 
assessment of end-of-growth in young adults, in both 
health and skeletal disease. Moreover, the proposal of 
a definition of final height achievement addresses the 
pitfalls when interpreting height data in young adults 
with disorders affecting bone growth and bone shape. 
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