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Abstract
Kernicterus is a severe manifestation of neonatal unconjugated 
hyperbilirubinemia. We investigated the neuro-glia-vascular 
alterations in autopsy material from three infants with kernicterus. 
Histological and immunohistochemical studies were performed in 
the cerebellum, hippocampus and basal ganglia, the most vulnerable 
brain regions to bilirubin-induced neurotoxicity. The data obtained 
were compared with the relatively spared temporal cortex, as well 
as with three aged-matched controls with no hyperbilirubinaemia. 
Our data showed a reduction of the external germinal layer 
thickness e kernicterus cases cerebellum, indicating that bilirubin 
compromises the neural progenitor cells. Results also showed 
that neuronal dysfunction, including neuronal death and reduced 
neuronal bodies, was prevalent in the cerebellum, hippocampus 
and basal ganglia. The hippocampus was the region presenting the 
greatest neuronal loss and vacuolation, also showing astrogliosis 
and loss of pericyte vascular coverage. A marked decrease in the 
basement membrane collagen IV immunoreactivity was observed 
in the cerebellum, a region presenting increased vessel density, 
particularly in the cerebellar cortex. Moreover, based on the 
enhanced caveolin-1 expression observed in the cerebellum and 
hippocampus we hypothesize that a transcellular hyperpermeability 
may have been involved in cases of kernicterus. The temporal 
cortex did not show signs of endothelial dysfunction and was the 
one with the lowest microvessel density and the highest basement 
membrane thickness, features that may account to the limited 
bilirubin passage across the blood-brain barrier into the brain and 
to the low propensity of the temporal cortex to kernicterus. 

Conclusion: The results obtained in three post-mortem brain 
samples of children with kernicterus and comorbid factors indicate 
that neuronal impairment and astrocytosis occur in parallel with 
microvascular alterations commonly associated with blood-brain 
barrier impairment.
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Introduction
Neonatal jaundice is extremely common in the first week of 

life, affecting 60 to 85% of neonates [1]. The condition is usually 
benign and resolved with no treatment requirement. However, 
under circumstances such as prematurity and glucose-6-phosphate 
dehydrogenase deficiency [2,3] unconjugated bilirubin (UCB) levels 
may increase dramatically or extend beyond the first week of life and 
lead to acute bilirubin encephalopathy, or kernicterus, a potentially 
lethal disease [1,4,5]. Bilirubin entry into the brain is facilitated by 
drugs that displace bilirubin from its albumin binding site, by reduced 
albumin binding capacity to bilirubin, but also by an increased brain 
blood flow and enhanced permeability of the blood-brain barrier 
(BBB) [6,7]. Recently, ex vivo studies of a kernicterus case revealed 
angiogenic sprouting and the presence of blood-borne components 
in the brain parenchyma, together with neuronal impairment [8,9]. 
In addition, in vitro studies in conditions mimicking a moderate 
and severe neonatal jaundice (UCB/albumin molar ratios of 0.5 and 
1.0, respectively), revealed that UCB induces the disruption of tight 
junctions and increases caveolae formation, reflecting an enhanced 
paracellular and transcellular hyperpermeability, respectively [10,11]. 
Moreover, it was recently demonstrated that UCB also compromises 
pericytes [12], which are known to play a key role in the maintenance 
of BBB properties [13].

Kernicterus is characterized by a preferential deposition of UCB 
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in specific brain regions, such as the cerebellum, hippocampus, and 
basal ganglia, as well as within the cytoplasm of macrophages and 
neurons [8,14,15]. Several reports of autopsy cases of kernicterus have 
shown extensive neuronal loss, myelination defects and oxidative 
stress in these three brain areas [9,14-17]. Numerous studies with 
animal models of severe hyperbilirubinemia have demonstrated 
cerebellar hypoplasia and significant loss of Purkinje and granule 
neurons [18-20]. In addition, microglia activation and impaired long-
term synaptic plasticity were observed in in vitro and ex vivo studies 
using hippocampus [21,22]. When evaluating the response of neurons 
isolated from such regions to UCB cytotoxicity, the hippocampal 
neurons were the most susceptible [23] with a compromised 
neuronal differentiation, development, and plasticity [24]. However, 
and despite the well-known region-specific vulnerability to UCB 
harmful effects, the underlying reasons for such specific pattern are 
still unclear.

In the present study we investigated the histopathological 
alterations in the cerebellum, hippocampus and basal ganglia in post-
mortem samples from kernicterus cases, and evaluated the associated 
neuronal-glial-vascular changes by comparing data with that from 
non-icteric controls. To better understand the region-specific pattern 
of kernicterus, we decided to also include the temporal cortex in the 
study, due to its assumed less vulnerability. Changes in the number 
of neurons (and cell body area), of astrocytes and of vessels, as well 
as in pericyte vascular coverage, collagen IV and caveolin-1 in vessel 
walls were assessed.

Materials and Methods
Subject description

In this work, we re-examined autopsy material from three neonates 
with diagnosed kernicterus and same number of matched controls 
already described [17]. In summary, the patients consisted in two 
males and one female that experienced hyperbilirubinemia during the 
neonatal period with the diagnosis of acute bilirubin encephalopathy 
(kernicterus) and associated morbidity made at autopsy. Kernicterus 
case 1 (K1), a female, was born at 29 weeks of gestation with 1.2kg 
birth weight. She presented mild asphyxia, and developed dyspnea 
and severe jaundice one day after birth, dying of respiratory failure 
due to pneumonia, at the 4th day of life. No therapy was performed 
for severe jaundice. Autopsy demonstrated intracerebral hemorrhage 
and severe pneumonia, in addition to kernicterus. Kernicterus case 
2 (K2) was a male, born with 2.2kg birth weight, at 35 weeks, due 
to premature rupture of amnionic membrane, without asphyxia. 
The patient revealed severe jaundice and abdominal distention with 
frequent vomiting and received phototherapy. Seven days after birth, 
the patient developed fever and dyspenea, and died from respiratory 
failure at the 10th day of life. Autopsy demonstrated suppurative 
bacterial meningitis, gastric ulcer and liver abscess with severe 
jaundice, in addition to kernicterus. Kernicterus case 3 (K3) was a 
male, born with 3.5kg, at 39 weeks, with mild asphyxia and developed 
jaundice three days after birth. The infant received phototherapy and 
revealed poor sucking reflex and suffered a brief convulsion at the 4th 
day of life. Five days after birth, he was admitted to the hospital with 
consciousness disturbance, dehydration and hypotonia. The patient 
died on the 11th day of life of subarachnoid and intraventricular 
hemorrhage. Autopsy demonstrated brain hemorrhage, kernicterus, 
brain oedema and systemic jaundice. Values for total bilirubin 
levels in these three cases were not made available and a deficiency 
in glucose-6-phosphate dehydrogenase enzymatic activity was not 
reported [17].

The control cases consisted in three males that died without any 
pathological changes in the central nervous system (CNS). Control 
case 1 (C1) was a male born with 2.9Kg, at 36 weeks/5days of gestation 
after toxemia and threatened abortion. The patient was healthy and 
had good sucking. Two days after birth, he developed hypoglycaemia 
that was improved by 10% glucose infusion. The patient died at the 4th 
day of life of sudden cardiorespiratory arrest. Autopsy demonstrated 
no changes in either the brain or general organs, and he was diagnosed 

as having sudden infant death syndrome. Control case 2 (C2) was 
a male born with 3.0Kg, at 40 weeks/3 days, with normal sucking. 
On the 3rd day of life, the patient died of sudden cardiorespiratory 
arrest. Autopsy demonstrated no changes in either the brain or 
general organs, and he was diagnosed as having sudden infant death 
syndrome. Control case 3 (C3) was a male, with 2.7Kg that died 
at 41 weeks of sudden intrauterine cardiac arrest just before birth. 
There was no abnormality in the baby blood tests, but the infection 
of group B Streptococcus was confirmed in the amniotic fluid. 
Autopsy demonstrated no changes in the brain, but revealed severe 
chorioamniotis of the placenta, vasculitis, and bronchopneumonia. 
Sepsis was considered an associated cause of death.

Tissue was obtained and used in a manner compliant with the 
Declaration of Helsinki, as revised in 1983. The family of each infant 
provided informed consent for neuropathological analysis. Brains 
of all subjects were fixed in buffered formalin solution for 2 weeks. 
Each formalin-fixed paraffin-embedded sample was cut coronally in 
6μm sections as previously described. Except for some non-available 
sections (Supplementary Table 1,2), this study relied on analysis of the 
cerebellum, hippocampus and basal ganglia of the three kernicterus 
and three control cases.

Histology and immunohistochemistry

Neuronal-astrocyte-vascular parameters were evaluated in four 
brain regions: cerebelllum, hippocampus, basal ganglia and temporal 
cortex. Standard Hematoxylin-Eosin staining was performed 
for the histological evaluation of the different brain regions. For 
immunohistochemical analysis, a 3% H2O2 solution was used to 
inhibit endogenous peroxidase and antigen recovery was achieved by 
treatment with citrate buffer. Sections were incubated overnight at 
4ºC with the primary antibodies: mouse anti-cluster of differentiation 
34 (CD34) diluted 1/100 (Leica Biosystems, # NCL-L-END), 
mouse anti-neurofilament diluted 1/40 (Invitrogen, #180171Z), 
rabbit anti-caveolin-1 diluted 1/100 (Cell Signaling, #3238S), rabbit 
anti-glial fibrillary acidic protein (GFAP) diluted 1/250 (Sigma-
Aldrich, # G9269), mouse anti-α-smooth muscle actin diluted 1/100 
(AbDSerotec, #MCA2903Z) and mouse anti-collagen IV diluted 
1/100 (Sigma-Aldrich, #C1926). Sections were incubated with 
EnVision detection system for 1 h at room temperature, followed by 
the development with 3,3-diaminobenzidine tetrahydrochloride and 
H2O2 solution, and finally counterstained with Mayer’s hematoxylin. 
Images were acquired with a bright field microscope (Zeiss, model 
AxioSkop HBO50) with an integrated digital camera (Leica, model 
DFC490).

Data collection and statistical analysis

Data analysis was performed using the ImageJ software (National 
Institutes of Health, USA). Neuronal-astrocyte-vascular changes were 
analysed in a minimum of 15 independent photos per sample. Unless 
otherwise specified, analysis was performed in the overall cerebellum, 
hippocampus and basal ganglia. Cerebellar layer thickness was 
calculated by manually tracing a perpendicular line extending from 
the beginning to the end of each identifiable layer and measuring 
the respective line length. Analysis relied on the count of neuronal 
number, which was expressed per microscopic field, as well as on the 
determination of neuronal area, which was calculated by tracing the 
cell body with the referred software and expressed in μm2. The number 
of astrocytes was evaluated by counting the cells expressing the glial 
marker GFAP, while vascular features were assessed by the following 
markers: caveolin-1, α-smooth muscle actin and collagen IV. For 
the evaluation of vessel density, the number of vessels per field was 
counted and expressed as number of vessels per mm2 of brain tissue. 
The intensity and area of the exterior and interior (lumen) limits of the 
individual vessels were measured, and then the interior lumen data 
were deducted from the exterior lumen values in 8-bit pictures. All 
immunostaining intensities were normalized by vessel wall area, and 
expressed as intensity per μm2 of vessel wall. In the case of collagen IV 
it was evaluated the intensity of the immunostaining per μm2 of vessel 
wall, as well as the area (μm2) occupied by the component. Assessment 
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Supplementary Table 2: Astrocytic, perivascular and vascular data obtained for each of the kernicterus (K) cases

K Cerebellum Hippocampus Basal ganglia Temporal cortex

Number of astrocytes per field
K1 19 ± 11 NA 30 ± 10 NA
K2 20 ± 9 32 ± 6 23 ± 9 28 ± 6
K3 NA 22 ± 4 15 ± 6 18 ± 5

α-smooth muscle actin intensity/µm2 of 
vessel wall

K1 139 ± 24 NA 157 ± 26 NA
K2 189 ± 17 129 ± 17 164 ± 35 170 ± 39
K3 NA 136 ± 19 153 ± 21 161 ± 16

Collagen IV intensity/µm2 of vessel wall 
(Diameter<7.5 µm)

K1 170 ± 32 NA 188 ± 21 NA
K2 145 ± 32 189 ± 20 179 ± 19 177 ± 24
K3 NA 193 ± 21 211 ± 17 192 ± 17

Collagen IV intensity/µm2 of vessel wall 
(Diameter 7.5-15 µm)

K1 118 ± 24 NA 178 ± 20 NA
K2 133 ± 24 181 ± 16 171 ± 20 153 ± 25
K3 NA 192 ± 16 200 ± 12 182 ± 18

Number of vessels/mm2

K1 93 ± 22 NA 72 ± 15 NA
K2 93 ± 22 82 ± 10 59 ± 21 57 ± 16
K3 NA 65 ± 8 56 ± 17 32 ± 10

Caveolin-1 intensity/µm2 of vessel wall
K1 231 ± 7 NA 229 ± 9 NA
K2 216 ± 8 220 ± 7 207 ± 9 222 ± 12
K3 NA - - -

NA: Not Available; Results are presented as mean values ± SD

Supplementary Table 1: Neuronal density and neuron body area of each of the kernicterus (K) cases

K

Cerebellum Hippocampus Basal ganglia

Cerebellar cortex Dentate CA3 Globus pallidus

Number of neurons per field
K1 7 ± 3 4 ± 1 NA 2 ± 1
K2 7 ± 4 5 ± 3 14 ± 6 2 ± 1
K3 NA NA 12±3 2 ± 1

Neuron body
area (µm2)

K1 174 ± 66 281 ± 87 NA 197 ± 57
K2 179 ± 45 212 ± 70 124±33 197 ± 87
K3 NA NA 126±28 207 ± 49

NA: Not Available, Results are presented as mean values ± SD

         

c 
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50 μm  

b 

Figure 1: Histologic features of the brain parenchyma of kernicterus and control cases. Hematoxylin–Eosin staining revealed: (a) eosinophilic neurons (arrows) in 
the cerebellum, hippocampus and basal ganglia, but not in the temporal cortex of kernicterus cases; (b) spongiosis and vacuolation in the cerebellum, hippocampus 
and basal ganglia, but not in the temporal cortex of kernicterus cases; (c) no eosinophilic staining nor spongiosis or vacuolation in the control cases in any of the 
studied regions. Representative photos are shown. 
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of pericyte vascular coverage was based on the staining of α-smooth 
muscle actin, a known pericyte marker [13], surrounding the vessels. 
The total intensity of collagen IV, which was proportional to the 
pericyte vascular coverage, was measured and then normalized to the 
vessel caliber. Collagen IV was measured on transversely-sectioned 
vessels, while caveolin-1 and α-smooth muscle actin were evaluated 
on longitudinal vessels. Caliber of blood vessels was separated into 
three categories: under 7.5μm (small vessels, or capillaries), between 
7.5 and 15μm (intermediate vessels), and between 15 and 30μm (large 
vessels). We only considered small and intermediate vessels directly 
related with the BBB-brain microvasculature, and, unless stated, data 
are a combination of such categories.

To ascertain that alterations in the kernicterus cases were due to 
hyperbilirubinemia and UCB deposition in specific brain regions, 
related to the diagnosis of kernicterus at autopsy, and not biased by 
the K1 prematurity, results were separately analysed and are shown in 
supplementary tables 1 and 2. Since the values obtained fitted within 
those of K2 and K3, data are expressed as means ± SEM. Significant 
differences between groups were determined by the two-tailed t-test 
performed on the basis of equal and unequal variance as appropriate. 
Statistical significance was considered when P values were lower than 
0.05.

Results
Histological findings in the kernicterus-associated 
vulnerable brain regions comprise degenerating neurons, 
parenchymal spongiosis/vacuolation and depletion of 
neurons

We started the histological examinations by observing the sections 
stained by Hematoxylin–Eosin (Figure 1). Common features observed 
in the cerebellum, hippocampus and basal ganglia of the samples 
collected from the three children with kernicterus included the 
eosinophilia of neurons, a characteristic of cells that are degenerating. 
Such neurons were predominantly observed in the hippocampus, but 
were also evident in the cerebellum and basal ganglia, but not in the 
temporal cortex (Figure 1a). Other common effects were an increased 
spongiosis (vacuolation) in the brain parenchyma, usually linked to 
the depletion of neurons, more evident in the hippocampus and also 
not noticed in the temporal cortex (Figure 1b). Injury may result from 
the cytoplasmic accumulation of bilirubin once it was not observed in 
the temporal cortex region, which is not susceptible to kernicterus, or 
in the matched controls (Figure 1c).

Since the loss of neurons is a kernicterus hallmark we next 
performed neurofilaments immunostaining and determined the 
thickness of cerebellar layers as well as the neuronal density and 
neuron body area (Figure 2). Bilirubin seems to be in the origin of 
the significant 34% reduction in the extent of the external germinal 
layer of the cerebellar cortex, not causing changes at the molecular 
layer, Purkinje cell layer and internal granular layer, shown in figure 
2a. Interestingly, a reduction in the number of neurons per field 
was noticed in the Purkinje neurons of the cerebellar cortex (24%, 
Figure 2b), but even more obviously in the dentate nucleus neurons 
(65%, Figure 2c) when compared to control samples. Also to point 
out, cerebellar neurons did not reveal any alteration in the cell 
body dimension. In accordance with the histopathological findings 
depicted in figure 1 neuronal loss was particularly manifest in the 
third layer of the Ammon’s horn (CA3, hippocampus) (Figure 2d). 
Besides the 73% decrease in neuronal density, cells were also changed 
in their cell body dimensions, revealing a 51% decrease in samples 
from the children that developed kernicterus. A very important 62% 
reduction of neuronal density and 39% in cell body dimension was 
similarly observed in the globus pallidus region of the basal ganglia 
(Figure 2e), when compared to matched controls.

Analysis of the non-icteric brain established the specific neuronal, 
astroglial and vascular profiles of different brain regions (Table 
1). The maximal neuronal density was typically manifest in CA3 
hippocampus, with an approximate 5-fold increase over the other 
two evaluated brain regions (P<0.05), which may have accounted for 

the increased neurotoxicity associated to kernicterus in this specific 
brain region. In addition, the larger neuron body area, mainly for cells 
located in the globuspallidus region when compared to the Purkinje 
neurons of the cerebellar cortex (P<0.05), may justify the particular 
neuronal shrinkage in the hippocampus and basal ganglia observed in 
the kernicterus samples.

Kernicterus-associated hippocampus presents alterations 
in the distribution of astrocytes and pericytes whereas 
cerebellum shows a decrease in the collagen IV component 
of the basement membrane

Astrogliosis was shown to occur in experimental models of 
hyperbilirubinemia [25-27], and in kernicterus cases [28]. Therefore, 
we anticipated to also find an increased number of astrocytes in the 
post-mortem samples from the cases of kernicterus. For that, we 
examined the density of GFAP labelled astrocytes. In the children 
that developed bilirubin encephalopathy astrogliosis was only 
significantly enhanced in the hippocampus (76%, Figure 3a), i.e. the 
region with major neuronal loss and vacuolation. On the other hand, 
it is interesting to point out that the region presenting the highest 
astrocytic density in control cases is the temporal cortex (Table 1), 
which is known for the lower susceptibility to UCB deposition, as 
mentioned above.

The CNS microvascular pericytes are considered unique in 
promoting tissue survival [29] and the loss of pericyte vascular coverage 
has been associated to BBB impairment and neurodegeneration 
[30,31], namely in our own studies (Janota et al. submitted). Although 
pericytes are relatively quiescent in normal conditions, the picture 
changes during stress and injury, where the loss of pericytes may 
compromise the pericyte-astrocyte communication and contribute 
to a focal increase of BBB permeability. Thus, we next evaluated the 
pericyte vascular coverage by immunostaining of α-smooth muscle 
actin, a known pericyte marker [13]. It was interesting to verify that 
a 16% lack of pericyte vascular coverage was precisely located in the 
hippocampus (Figure 3b), the region that showed astrogliosis. In 
contrast, no differences were noted for the other two kernicterus-
associated brain regions, nor for the temporal cortex or among brain 
regions in the matched controls.

The CNS pericyte is surrounded by the basal lamina on all sides. 
The basal lamina has been shown to become thicker or thinner in 
response to stress stimuli, and pericytes are known producers of 
type IV collagen among other basal lamina constituents [32]. To 
evaluate if the reduced coverage of microvascular pericytes or 
dysfunctional pericytes were responsible for a compromised basal 
lamina formation, we determined the collagen IV immunostaining 
in kernicterus samples and controls. A significant 31% decrease in 
the collagen IV immunoreactivity per vessel wall area was noticed in 
the cerebellum for both small and intermediate vessels (Figure 4a,4b), 
but not in the other regions. Thus, it is conceivable that bilirubin may 
have accounted to an increased fragility of these cerebellar pericytes. 
In addition, the 41% increase in the collagen area in the vessels of the 
temporal cortex, but not in all the other regions (Figure 4c,4d), may 
derive from defensive/adaptive mechanisms that this region possibly 
develops against bilirubin-induced injury.

Changes to blood vessels in the kernicterus brain
Bilirubin may disturb the membrane structure of the capillary 

endothelial cells [10,33]. Accordingly, vasogenicoedema and 
leakage of erythrocytes into the extravascular space were observed 
by Hematoxylin–Eosin staining in all the kernicterus-associated 
vulnerable brain regions (Figure 5a,5b). Additionally, analysis of the 
endothelial marker CD34 [34] revealed an increased vascularization 
of the kernicterus over control samples in the cerebellum (combined 
analysis of the cerebellar cortex and dentate nucleus, P<0.05, Figure 
5c), mainly due to the 28% increase in the number of vessels counted 
in the cerebellar cortex, since no difference was noticed in the dentate 
nucleus. Such modification may have contributed to the decrease 
of the basement membrane previously indicated in this region. In 
contrast, a 14% reduction in the number of vessels was evident in the 
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Figure 2: Neuronal alterations in the brain parenchyma of kernicterus cases.Immunostaining for the neuronal marker, neurofilaments, revealed: (a) a reduction 
in the thickness of the external germinal layer (EGL), with no alterations in those of the molecular layer (ML), Purkinje cell layer (PCL) and internal granular layer 
(IGL) of the cerebellar cortex; (b) a reduction in the number of Purkinje neurons in the cerebellar cortex, with no changes in their cell body area; (c) a reduction in 
the number of neurons in the dentate nucleus of the cerebellum, with no changes in their cell body area; (d) a reduction in both the number and cell body area of 
the neurons present in the third layer of the Ammon’s horn (CA3) of the hippocampus; (e) a reduction in both the number and cell body area of the neurons present 
in the globuspallidus region of the basal ganglia. Representative photos are shown. *P<0.05, **P<0.01 and ***P<0.001 vs. control cases.
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globuspallidus (Figure 5c). However, since the number of neurons 
dramatically decreased in both regions of kernicterus cases, the 
ratio between the number of vessels/number of neurons per mm2 
was actually increased from 0.8 to 2.3 (3-fold elevation, P<0.01) in 
the dentate nucleus of the cerebellum and from 1.6 to 3.5 (2.2-fold, 
P<0.01) in the globuspallidus of the basal ganglia.

Endothelial dysfunction was also evaluated based on caveolin-1 
immunostaining, since its increase precedes barrier compromise 
[10] and is often observed in pathologies involving BBB breakdown 
[35]. Interestingly, our results showed an increased caveolin-1 
immunoreactivity of 19 and 29% (P<0.05) in the cerebellum and 
hippocampus (Figure 5d), respectively. Differences between brain 
regions in controls are indicated in table 1, where the temporal 

cortex revealed the lowest vessel density together with high astrocyte 
number and vessel intensity. These specific features are important 
when considering that cortex is not affected by kernicterus [5].

Discussion
Here, we report novel histopathological features observed in 

three cases of kernicteus during neonatal life. Although presenting 
associated risk factors, the kernicterus cases had hyperbilirubinemia as 
a common denominator, suggesting that UCB has been the dominant 
neurotoxic factor although it cannot be excluded the existence 
of concomitant aggravating conditions. The fact that the results 
were cross-compared with controls without hyperbilirubinemia or 
alterations of the CNS, and that infection was present in two of the 

         

Figure 3: Changes in astrocyte number and pericyte vascular coverage in the brain parenchyma of kernicterus cases. (a) Immunostaining for the astrocyte marker, 
glial fibrillary acidic protein, showed an elevation in the number of these glial cells in the kernicteric hippocampus; (b) Immunostaining for the pericyte marker, 
α-smooth muscle actin, revealed a reduction in the pericyte vascular coverage in the hippocampus. Representative photos are shown. *P<0.05 vs. control cases.

Table 1: Neuronal, astroglial and vascular profiles of different brain regions in non-icteric brain

Indicators Cerebellum Hippocampus Basal ganglia Temporal cortex
Neuronal density
(number of neurons/field) 8Ɨ/13§ 49*ƒ 5$ -

Neuron cell body area (μmc) 171Ɨ/243§ 265ƒ 327#$ -

Astrocytic density
(number of astrocytes/field) 20 16 20 24&

Pericyte vascular coverage (intensity/μm2 of vessel wall) 170 154 158 172

Basement membrane immunoreactivity in intermediate vessels

(intensity/μm2 of vessel wall) 186 155 166 181&

Basement membrane area in small vessels (μm2) 53* 40 43 38

Vessel density
(number of vessels/mm2) 86 68 74 48**

Small caliber vessels (%) 13* 49 35 46

Caveolin-1
(intensity/μm2 of vessel wall) 178 168 210 209

Immunohistochemical analysis was performed to assess neurons (neurofilaments), astrocytes (glial fibrillary acidic protein), pericytes (α-smooth muscle actin), 
basement membrane (collagen IV), vessels (cluster of differentiation 34), and caveolae (caveolin-1). *P<0.05 and **P<0.01 vs all other regions; #P<0.05 vs Cerebellum; 
&P<0.05 vs Hippocampus; ƗCerebellar cortex; §Dentate nucleus; ƒAmmon’s horn layer 3; $Globus pallidus
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kernicterus cases and one of the controls, further points to the relevance 
of UCB in the achieved neurovascular alterations. Moreover, since 
the results obtained for K1 (with 29 weeks gestation) did not differ 
from those for K2 and K3 (35 and 39 weeks gestation, respectively) 
suggests that prematurity was not the determinant of such changes. 
Nevertheless, additional human kernicterus cases should be studied 
to more firmly establish the relevance of the neuronal, astroglial and 
microvascular alterations here reported.

Our histological analysis revealed the existence of several 

neurons in the three brain regions (cerebellum, hippocampus 
and basal ganglia) with an orange cytoplasm, consistent with 
eosinophilia, which is a characteristic of neuronal degeneration [36]. 
High susceptibility of neurons to bilirubin and death was reported 
in several studies of kernicterus cases, especially in the cerebellum 
and hippocampus [8,9,14,15], and in animal models of severe 
hyperbilirubinemia [18,37]. Accordingly, we observed several other 
signs of neuronal compromise, such as parenchymal spongiosis 
and reduction in neuronal density and body area, together with a 
decreased layer thickness of the cerebellar cortex. Such findings seem 

         

Figure 4: Changes in basement membrane assembly in the brain parenchyma of kernicterus cases. Immunostaining for the basement membrane component 
collagen IV showed: (a,b) a decreased intensity in small (<7.5μm) and intermediate (7.5-15μm) vessels in the cerebellum; (c,d) an increased collagen IV area in small 
(<7.5μm) and intermediate (7.5-15μm) vessels in the temporal cortex. Representative photos are shown. *P<0.05 vs. control cases.
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to be derived from the significant diminution in the external germinal 
layer, a layer constituted by a stem cell population that disappears 
during development as the cells migrate to the internal granular 
layer and differentiate into granule cells [38]. Similar observation 
was noticed in a mouse model of severe jaundice [18], and in other 
injurious conditions [39,40], probably due to a deficient granule cell 
development that may compromise the survival of Purkinje neurons 

[41]. Interestingly, Robert et al. [42] reported the existence of cell cycle 
perturbation and apoptosis related to high bilirubin concentrations 
in the cerebellar tissue, mainly in granular cells.

Brain parenchyma homeostasis depends on complex interactions 
of neurons with glial and vascular cells within the neurovascular unit 
(NVU) [13] and dysfunction of the BBB has been associated with 

         

Figure 5: Blood vessels alterations in the brain parenchyma of kernicterus cases. Hematoxylin–Eosin staining revealed: (a) vascular oedema and (b) erythrocyte 
leakage. (c) Immunostaining for the endothelial marker, CD34, showed an increased number of vessels in the cerebellum (cerebellar cortex and dentate nucleus), 
while the basal ganglia presented a reduction in the number of microvessels per area, particularly in the globuspallidus. (d) Immunostaining for the caveolae 
marker, caveolin-1, revealed that the microvessels in the cerebellum and hippocampus present an elevated expression of the protein. Representative photos are 
shown. *P<0.05 vs. control cases.
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the onset and progression of numerous pathologies [43,44]. In the 
present study it was observed a marked elevation of astrocytic density 
in the kernicteric hippocampus. We have previously indicated that 
astrocytes may trigger an early neuroprotection against UCB injury 
[45], while adverse secondary impacts later occur [46], explaining why 
irreversible brain damage usually develops after the first day of post-
natal life. Upon exposure to UCB, the release of pro-inflammatory 
cytokines by astrocytes [26,47], endothelial cells [48] and pericytes 
[12] may increase microvascular permeability [49] and sustain the 
UCB-induced impairment of the BBB observed in in vitro studies 
[10,11].

The interaction of pericytes with brain endothelial cells is believed 
to improve barrier function [50] and reduced pericyte coverage 
increases endothelial permeability [51-54]. In addition, pericyte 
deficiency was shown to contribute to the fragility of specific brain areas 
during development [55]. Here, we report for the first time a reduced 
pericyte vascular coverage in the kernicteric hippocampus, which 
is in line with the loss of pericytes viability and enhanced apoptotic 
death that we recently observed in primary cultures of human brain 
pericytes exposed to UCB in conditions mimicking a moderate and 
severe unconjugated hyperbilirubinemia [12]. Therefore, the loss 
of pericytes and the poorer pericyte vascular coverage suggests a 
microvascular fragility and BBB disruption, probably accounting to 
the extravasation of albumin into the brain parenchyma observed in 
a premature infant with kernicterus [8]. Interestingly, the depletion 
of pericyte covering the vasculature in the hippocampus seems to be 
accompanied by the above discussed astrocytes activation, raising 
the question of whether the loss of pericytes results from astrocytes 
activation or is in the origin of the observed astrogliosis. It is 
worthwhile to point out that the loss of pericyte vascular coverage 
here observed based on the immunostaining of the pericyte marker 
α-smooth muscle actin is in line with that observed by others [30] 
and by ourselves (Janota et al. submitted) in Alzheimer’s disease 
patients and animal models based on analysis of other pericyte 
markers, CD13 and platelet derived growth factor receptor-β, These 
observations reinforce the role of pericytes in the pathogenesis of 
central nervous system diseases and point to their modulation as a 
possible therapeutic approach.

Amongst the many interactions within the NVU, the direct 
contacts of endothelial cells, astrocytes, and pericytes with the 
basement membrane are crucial for proper barrier function [13,56]. 
Therefore, the clear reduction in collagen IV immunoreactivity 
in cerebellar microvessels of the kernicterus cases reinforce the 
assumption of vascular impairment, in agreement with other 
pathological conditions [57-60] and with the neovascularization-
associated degradation of collagen IV [61], herewith also observed. 
On the other hand, the enhanced thickness of the basement 
membrane observed in the temporal cortex suggests that this region 
is less permeable to UCB, compatible with the absence of yellow 
staining in this brain region in kernicterus cases compatible with no 
UCB deposition [8,62].

Analysis of the brain parenchyma also revealed signs of vascular 
oedema and the presence of erythrocytes in the cerebellum, 
hippocampus and basal ganglia, but not in the temporal cortex. Such 
events are in line with the microvascular fragility and hyperpermeability 
suggested by the diminished pericyte vascular coverage and basement 
membrane compromise observed in kernicterus-associated regions. 
Such endothelial permeability was already noticed in another 
kernicterus case [9]. Here, an increase in the number of microvessels 
was evident in the cerebellum, and particularly in the cerebellar 
cortex. Although dentate nucleus region of the cerebellum did not 
present changes in this parameter, its number relatively to that of 
neurons was considerably enhanced. Contrary to the cerebellum, 
the basal ganglia presented a lower number of microvessels, but 
the neuronal density was far more reduced. Thus, we may assume 
a higher number of vessels per neuron, especially in globus pallidus 
and dentate nucleus. Moreover, the high number of vessels observed 
in controls in the brain regions most susceptible to kernicterus, may 
determine such areas as preferential targets for UCB injury.

Caveolin-1 is the major structural protein of caveolae that are 
responsible for the transcellular transport of macromolecules such 
as albumin. Elevated levels have been directly associated with the 
reduction of intercellular junction proteins [63-65] and consequently, 
increased endothelial permeability and BBB breakdown [66-69]. 
The elevation of caveolin-1 immunoreactivity in the cerebellum 
and hippocampus microvessels, consistent with the increased 
number of caveolae and caveolin-1 previously found in human brain 
microvascular endothelial cells exposed to UCB [10], may therefore 
account to the entrance of albumin-bound UCB into the brain 
parenchyma.

Taken collectively, the results of this study provide new insights 
into the neuropathology of kernicterus and to the pattern of UCB 
deposition in specific brain regions, such as the cerebellum, the 
hippocampus and the basal ganglia. Specific vascular characteristics 
of the areas affected and not affected may preside to the selective 
damage observed in kernicterus. Our data corroborate that neuronal 
dysfunction, including neuronal loss and reduced neuronal body, 
is particularly evident in the cerebellum, hippocampus and basal 
ganglia, the most vulnerable areas to kernicterus. In addition, 
the decreased layer thickness observed in the cerebellar cortex 
eventually may reflect a compromised maturation. Changes in 
astrocytic density, lower vascular pericyte coverage, reduced 
basement membrane and enhanced microvascularization seem 
to be responsible for the selective neuropathological damage in 
kernicterus. Another interesting observation relies on the increased 
ratio between the number of vessels/number of neurons per mm2 
of brain tissue in the cerebellum and globuspallidus remaining to 
clarify whether it is determined by a decreased number of neurons 
or enhanced vascularization. Furthermore, the elevated expression 
of caveolin-1 facilitating the passage of albumin-bound UCB across 
the endothelium towards the brain, may subsequently contribute to 
escalate the severity of bilirubin encephalopathy. Also relevant are the 
findings obtained for the temporal cortex that did not present signs of 
endothelial dysfunction in kernicterus. Indeed, this is the region with 
the largest basement membrane area in the pathological condition, 
which shall difficult UCB permeation. On the other hand, the greatest 
astrocytic density and pericyte vascular coverage, together with the 
lowest microvessels density, points to a more functional BBB and 
suggests a reduced UCB load to this region in control conditions. 
The disruptive effects of immaturity and associated risk factors to the 
kernicterus condition still occurring in premature babies may include 
additional aspects to those here indicated. Collectively, the novel data 
herewith reported depict the involvement of vascular dysfunction in 
the neuronal compromise by neonatal kernicterus and provide novel 
insights for the selective regional pattern of bilirubin deposition in 
kernicterus.
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