International Journal of Ophthalmology and Clinical Research

RESEARCH ARTICLE

The Visual Effects Associated with Head-Mounted Displays

Jing Yuan^{1,2}, Behzad Mansouri³, Jeff H Pettey⁴, Sarah Farukhi Ahmed⁵ and S Khizer Khaderi^{1,4*}

¹Eye Center, UC Davis Health System, USA

²Eye Center, Renmin Hospital of Wuhan University, China

³Section of Neurology, Department of Internal Medicine, Ophthalmology, Biomedical Engineering Program, Electrical & Computer Engineering, University of Manitoba, Winnipeg, Canada

Check for updates

⁴Moran Eye Center, University of Utah School of Medicine, USA ⁵Gavin Herbert Eye Center, University of California, USA

*Corresponding author: S. Khizer Khaderi, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA, E-mail: khizer@vizzario.com

Abstract

Objectives: To investigate Visually-Induced Motion Sickness (VIMS) and visual effects associated with the Head-Mounted Displays (HMDs) most commonly used in Virtual Reality (VR) systems.

Methods: A comprehensive search query was performed on the Medline/PubMed, EMBASE, CENTRAL, ACM Digital Library, and IEEE Xplore databases. We identified population-based studies that evaluated HMDs as an independent factor for visual discomfort. Potential variables relevant to HMD discomfort, including system features (e.g. optical characteristics), subject characteristics (e.g. gender), and task characteristics (e.g. duration, vection, and task content) were reviewed. Total severity scores of Simulator Sickness Questionnaires (SSQT), oculomotor scores of Simulator Sickness Questionnaires (SSQO), and Visual Strain Questionnaires scores (VSQ) were used to measure HMD discomfort impact.

Results: We analyzed data for 1040 participants from a total of seventeen studies, all published between 1998 and 2015. Our review demonstrated that exposure to HMDs resulted in higher SSQT and SSQO mean change scores, compared with exposure to traditional displays such as TV and desk-top computer displays. Furthermore, HMD exposure duration had a significant impact on the mean change scores of SSQT, SSQO, and VSQ. Our analysis also showed that HMD discomfort was affected by all three of the variables we evaluated.

Conclusion: This meta-analysis qualifies the risk factors causing discomfort after exposure to HMDs. We recommend that HMD manufacturers increase their awareness of, and address, these visual discomfort issues in their products.

Keywords

Head-mounted display, Virtual reality, Virtual environment, Visual discomfort

Abbreviations

HMD: Head-Mounted Display; NED: Near-to-Eye Display; VE: Virtual Environment; VR: Virtual Reality; 2D: Two-Dimensional; S3D: Stereoscopic Three-Dimensional; IPD: Inter-Pupillary Distance; FOV: Field of View; VIMS: Visually-Induced Motion Sickness; D: Disorientation; O: Oculomotor disturbance; N: Nausea; SSQ: Simulator Sickness Questionnaire; VSQ: Visual Strain Questionnaire; DK2: Developmental Kit 2; CI: Confidence Interval; SS: Simulator Sickness

Introduction

In recent years, Virtual Reality (VR) has become more commonplace, with rapid adoption into daily life. VR is a non-invasive simulation technology that provides an immersive, realistic, three-dimensional (3D) computer-simulated environment in which people perform tasks and experience activities as if they were in the real world. The most direct experience of VR is provided by fully immersive VR systems. The most widely adopted VR systems display is a simulated environment through special wearable head-mounted visual displays (HMDs). HMDs have evolved over the past five years from tethered systems comprising of screens and lenses fitted into a helmet, to relatively inexpensive systems that utilize mobile smart devices and fit

Citation: Yuan J, Mansouri B, Pettey JH, Ahmed SF, Khaderi SK (2018) The Visual Effects Associated with Head-Mounted Displays. Int J Ophthalmol Clin Res 5:085. doi.org/10.23937/2378-346X/1410085 **Received:** April 14, 2017: **Accepted:** April 16, 2018: **Published:** April 18, 2018

Copyright: © 2018 Yuan J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ISSN: 2378-346X

into a light weight lens system. The optics within the HMDs vary from monocular (one eye view), binocular (both eyes view screen) and dichoptic (both eyes view different screen/image or image can be stereoscopic, adding depth cues). Recent advancements in hardware have included eye tracking and the use of multifocal optics.

Although HMDs have recently been introduced to the general public, they are not a new phenomenon (Table 1). As early as the 1960s, computer graphics pioneer Ivan Sutherland developed the first HMD, which made it possible to overlay virtual images on the real world [1,2]. HMD technology gradually evolved through the 1970s with use across military, industry, scientific research and entertainment domains. The early commercially available HMDs had limited applications due to their narrow Field-Of-View (FOV) and inherent cumbersomeness in weight, physical restrictions, and system parameters. Recent advancements have been directed toward making HMDs more comfortable for longer duration of use. Recent HMD products including Samsung Gear, HTC Vive, Oculus Rift, FOVE, and Google Daydream have become commercially available and increasingly commonplace as a result of technical advancements. For example, the latest version of the Oculus Rift at this time, the Development Kit 2 (DK2), has a higher resolution, higher refresh rate (i.e., the frequency with which a display's image is updated), lower persistence (which aids in removing motion blur) and more advanced positional tracking allowing for precise movement, when compared to its predecessor. FOVE has introduced eye tracking with real time foveal rendering to improve user experience. HMD technology advancement and cost reduction has increased its potential for widespread use.

Visually induced motion sickness (VIMS) or simulation sickness, remains an obstacle to the widespread adoption and commercial development of technologies associated with VR based HMDs [3,4]. With occlusive HMD systems, which by definition, is the distinguishing factor of virtual reality vs. augmented and mixed reality systems, a user is dependent on the VR system for sensory input. This dependency involves synchrony in sensory input, and the lack of this synchrony lends to visual-vestibular mismatch. The symptoms of visual-vestibular mismatch include nausea, stomach discomfort, disorientation, postural instability and visual discomfort.

It is commonly accepted that the symptoms of nausea and instability result from various sensory input conflicts, including conflicting position and movement cues, leading to a disharmonious effect on the visual and vestibular systems [5,6]. In addition, specific types of HMDs might have mismatch problems with the user's visual system due to improper optical design, resulting in convergence-accommodation conflict and visual discomfort or fatigue [7-13].

Representative HMDs	Year	Weight (g)	vertical/diagonal	Resolution (pi × els)	Luminance (cd/m²)	Inter- ocular dist (mm)	Luminance difference (%)	Vertical misalignment (°)
Virtual Research Flight Helmet	1991	1670	100° diagonal	360 × 40	-	-	-	-
Virtual research V6	1995	821	60° diagonal	370 × 277	-	52 - 74	-	-
Virtual research V8	1998	820	60° diagonal	640 × 480	-	52 - 74	-	-
Virtual Vision Sport	c.1993	140	17.3° horizontal	160 × 250	3.9	-	-	-
Sony Glasstron PLM-50	1996	-	33.75° diagonal	-	-	-	-	-
Division PV100	1998	-	60° × 46.8°	-	-	-	-	-
ProView™ × L 50	1998	-	35° diagonal	1024 × 768	-	-	-	-
Virtual I/O i-glasses™	1995	226	30° × 23.6°	263 × 230	38	60	-	-
Visette 2	2000	-	105° × 41°	-	-	-	-	-
EyeTrek FMD-700	2000	105	28.5 × 21.1 × 35.5	800 × 600	-	-	-	-
Emagin Z800 3DVisor	2005	226.8	40° diagonal	800 × 600	-	-	-	-
EMG iTheater BP4L	2005	78	23.2° × 17.4° × 29.0°	320 × 240	136	63	22	0.5
MicroOptical MyVu MA-0341	2006	70	12° × 8.8° × 14.9°	320 × 240	97	62	5	0
Vuzi × iWear AV920	2008	82	22.7° × 17.6° × 28.7°	640 × 480	24	63	3	0.8
Zeiss Cinemizer 1488-603	2008	115	20.8° × 15.4° × 25.9°	640 × 480	72	62	14	0.1
NVIS nVisor S × 111	2010	1300	102° × 64°	1280 × 1024	-	55-73	-	-
Google Glass	2013	50	14° diagonal	640 × 360	-	-	-	-
Oculus Rift DK 1	2012	220	110° horizontal	640 × 800	-	-	-	-
Oculus Rift DK 2	2014	320	100° horizontal	960 × 1080	-	-	-	-
InViso e-case	2000	-	34 diagonals	800 × 600	109	-	-	-
InViso e-shades	2000	-	32 diagonals	800 × 600	78	-	-	-

Table 1: Optical characteristics of representative head mounted displays in the systematically reviewed articles.

Early evaluation of the side effects of HMDs showed variable and inconsistent results. Notably, Peli reported no objective functional visual differences between HMDs and conventional desktop computer displays [14].

Conversely, other early studies reported high incidence of visual discomfort including eyestrain, dry eye, tearing, foreign body sensation, feeling of pressure in the eyes, aching around the eyes, headache, blurred vision, and difficulty in focusing. For example, Mon-Williams, et al. found that following a 10-minute exposure to a stereoscopic VR display, 60% of study participants reported symptoms of eyestrain, headache, and nausea [15]. This finding has been confirmed in a number of more recent studies [16-26].

Other visual problems such as myopia, heterophoria, fixation disparity, accommodation-vergence disorders, and abnormal Tear Break-Up Time (TBUT) also have been reported [15,18,20,21,24,27,28]. Using HMDs may cause accommodative spasm that in turn may lead to a transient myopia [20]. Continued conflict between convergence-accommodation, the user's Inter-Pupillary Distance (IPD), and/or the systems' Inter-Optical Distance (IOD) may lead to heterophoria and fixation disparity changes [15,20,29-31]. Moreover, visual symptoms are not necessarily limited to the time of ac-

tual Virtual Environment (VE) immersion; rather, visual changes including visual fatigue, reduced visual acuity and heterophoria may continue after terminating exposure to HMD-based VE [25,32-34].

Meta-analysis and Systematic Reviews on the Role of HMDS in Visual Discomfort

As a result of the recent advancements in the industry of virtual technology, the growing side effects associated with it require thorough documentation and characterization. To our knowledge, there has been no review article on the role of HMDs in visual discomfort. The current existing body of literature shows mixed results and different roles for different influential variables. While some HMDs studies have found significant negative impact on visual comfort, others have not. Biocca suggested that the cause of VR-induced sickness could be a technical problem, which would disappear as the technology advanced [35]. Unfortunately, this has not been the experience so far as technological advancements have not significantly reduced visual problems [12,13,36-47] (Table 2). Therefore, the extent to which HMD design impacts visual discomfort is unclear.

We conducted a meta-analytic review of publications related to the visual effects of HMDs. By compil-

Author	Country	Subjects Male Female	Mean age Age range (years)	HMDª (s) Used	Time of exposure	Results
Jaeger [48]	USA	60 42M 18F	(18 - 40)	Unidentified HMD	13 - 23 min	Females were significantly more affected than males by simulator activities. Longer time intervals were associated with significantly greater symptoms of SS ^b and perceived discomfort. Comparison of scores between distance judgment and movement production activities produced no significant results. Individuals who used the static simulator were significantly more affected than those with similar exposure times in the dynamic simulator.
Blom [45]	Spain	31 13M 18F	27.3 ± 7.1	NVIS nVisor SX111	Two exposures of 6 - 7 min	Limited evidence of sickness, including rotated conditions. This may be due to improved technologies or differences in tasks, or it may be because in our experiment participants had a virtual body.
Kolasinski [49]	USA	40 20M 20F	22.7 ± 4.7 (19 - 46)	i-glasses™	20 min	Sickness could be severe and may involve lingering and/or delayed effects. Gender differences in mean sickness scores were not statistically significant. A significant negative correlation between IPD° and eyestrain symptoms and between sickness scores and final level reached in Ascent.
Moss [34]	USA	80 30M 50F	19.5 (18 - 24)	ProView™ XL 50	Varied	Compared with no added delay, an additional 200 ms of display delay did not result in increased SS. However, SS was greater when peripheral vision was occluded than when it was not. Peripheral vision moderated the effects of image scale factor and delay on head movement velocity.

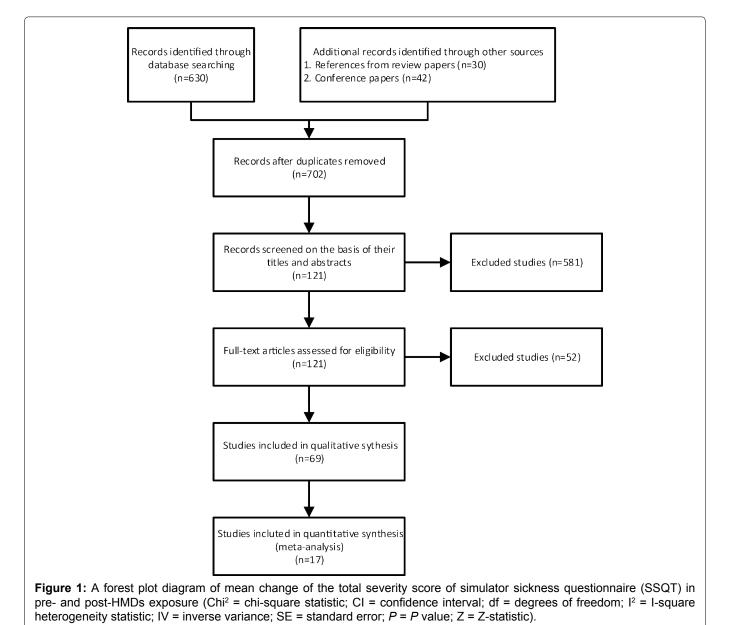
Table 2: Summary of empirical data from head mounted display meta-analysis studies.

Ehrlich [50]	USA	57 23M 34F	22.8 ± 5.1 (18 - 43)	Various unidentified HMDs	Not Stated	Dropouts experienced significantly more nausea than did finishers. The most severe symptom for dropouts was primarily disorientation followed by nausea. For finishers the most severe symptom was also disorientation but followed equally by either nausea or oculomotor discomfort.
Stanney [32]	USA	60	Not Stated	Virtual Research V6	15 - 45 min	Subjective symptomatology experienced by users after VE ^d exposure is substantial, persistent and statistically significant.
Stanney [33]	USA	34 20M 14F	25.8 ± 4.7	Kaiser Electro - Optics Virtual Immersion	30 min	When post-discomfort was compared to a pre-baseline, participants reported more sickness afterward. Change in felt limb position resulted in subjects pointing higher and slightly to the left; the latter difference was not statistically significant.
Ling [43]	Netherlands	86	28.0 ± 6.3 (18 - 70)	eMagin Z800	17 min	No significant effect of stereoscopy on simulator sickness compared with non- stereoscopic viewing conditions. No significant correlation between SS score and level of presence.
Lubos [46]	Germany	27 9M 18F	21.78 (19 - 25)	Oculus Rift DK1	36 min	Increase in simulator sickness over the experiment time was significant.
Lubos [47]	Germany	12 9M 3F	25.33 (19 - 36)	Oculus Rift DK1	26 min	No significant effect of increase in simulator sickness over the experiment time.
Draper [51]	USA	E1:11 6M 5F E2:10 6M 4F	E1:28.5 (19 - 39), E2:27.4 (23 - 36)	Virtual i/O i-glasses™	10, 20, 30 min	SS symptoms were significantly greater in minification (0.5) and magnification (2.0) image scale factor conditions than in neutral condition (1.0). SS did not vary with time delay changes.
Pölönen [52]	Finland	78 38M 40F	33.5 (21 - 53)	iTheater	40 min	NED ^e use induced slight sickness, but many of these shortcomings could be diminished with improved NED headset ergonomics and display quality.
Pölönen [37]	Finland	97 48M 49F	33.8 (23 - 45)	iTheater, MyVu, Vuzix, Zeiss	40 min	All NEDs induced eyestrain and sickness symptoms; magnitude of these symptoms varied according to the device. Adverse symptoms were related to problems with the display optics and design, text layout, headset fit, use context, individual differences.
Merhi [53]	USA	24 13M 11F	22 (17 - 35)	Visette - Pro	up to 50 min	Commercial console video game systems can induce motion sickness.
Sharples [54]	UK	71 38M 33/F	Not Given	Virtual research V8	30 min	Higher reported symptoms (nausea) in HMD compared with desktop viewing and in HMD compared with reality theatre viewing (nausea, oculomotor symptoms, disorientation).
Takada [44]	Japan	13	23 ± 6.2	iWear AV920	2 min	3-D movies can affect lateral body sway, thereby causing VIMS ^f .
Järvenpää [39]	Finland	232 123M 109F	34.5 (21 - 53)	Five unidentified HMDs, likely including HMDs from Toni Järvenpää [50]	40 min, 95 min	Determination of NED characteristics helps to predict the subjective experiences, but the nature of the relation between subjective and objective findings is complex and depends on several NED-, user- and task-related features.

^aHMD: HZead-Mounted Display; ^bSS: Simulator Sickness; ^cIPD: Inter-Pupillary Distance; ^dVE: Virtual Environment; ^eNED: Near to Eye Display; ^fVIMS: Visually-Induced Motion sickness.

ing data from multiple independent studies, this study allowed for a broad review and large population sample size in assessing the role of HMDs in visual discomfort. Furthermore, we systematically reviewed factors that might potentially affect the role of HMDs in visual discomfort. These factors included the characteristics of the systems, the participants (i.e., gender), and the tasks (i.e., duration, vection, and content).

Methods


Study selection

We performed an extensive and systematic review of scientific literature. The database search included Medline/PubMed (US National Institutes of Health/National Library of Medicine), Embase (Elsevier), ProQuest Central, ACM Digital Library (Association for Computing Machinery), and IEEE Xplore Digital Library (Institute of Electrical and Electronics Engineers). These databases were searched using the following keywords: VR, virtual environment (VE), HMDs, VIMS, SS, SSQ, VSQ, visual fatigue, and visual problems. Only papers from peer-reviewed journals and large national conference proceedings were selected for inclusion in our study. For the relevant trials lacking data, we also attempted to contact the corresponding author by email for further unpublished but potentially relevant data; none of these contacts resulted in receipt of additional data. Unpublished data and abstracts were not included. No language restrictions were imposed.

The inclusion criteria consisted of any of the following: (1) Human studies evaluating visual system-related problems in HMD-based VE, (2) Studies involving self-reported questionnaires (SSQ and VSQ). Studies for visual problems without HMD-based VE, case studies with fewer than three participants, or studies without enough data to evaluate the impact of HMDs on visual discomfort were excluded.

Evaluation methods of HMD-induced VIMS and visual discomfort

Visually Induced Motion Sickness (VIMS) can be measured by psychological and physiological methods. The

Simulator Sickness Questionnaire (SSQ), a self-reported measurement, is a well-known psychological method and the gold standard for measuring the extent of VIMS [4,55]. The questionnaire consists of three components: nausea (SSQN), disorientation (SSQD), and oculomotor symptoms (SSQO). The total score of SSQ (SSQT) is an aggregate score of the three components.

The SSQ contains 16 items (i.e general disomfot, fatigue, eye strain, nausea), and each item is scored on a 4-point scale in which 0 =none, 1 =slight, 2 =moderate and 3 =severe [56]. Given that the discomfort caused by HMDs is often connected to visual symptoms, the Visual Strain Questionnaire (VSQ), a more detailed visual strain-related questionnaire, was used to measure the severity of eyestrain symptoms (e.g. tired, sore or aching, irritated, watering or runny, dry, hot and burning eyes; blurred or double vision; and general visual discomfort) [57]. 57 These symptoms of eyestrain are also often connected to computer vision syndrome [58-61]. In this study, the SSQ and VSQ were used to verify the occurrence of VIMS. Figure 1, Figure 2, Figure 3, and Figure 4 compare the mean score of SSQT, SSQO, and VSQ

				Mean Difference	м	ean Difference
Study or Subgroup Me	an Difference	SE	Weight	IV, Random, 95%		, Random, 95%
aeger et al. (2001) / HMD	13.22	6.01	3.1%	13.22 [1.44, 25.00]		
, Kolasinski et al. (1998) / i-glasses™	17.48	4.31	3.5%	17.48 9.03, 25.93		
Takada et al. (2012) / iWear AV 920	19.8	0.97	4.1%	19.80 [17.90, 21.70]		•
Moss et al. (2011) / ProView™ XL 50	8	1.72	4.0%	8.00 [4.63, 11.37]		-
Ehrlich et al. (1998) / N/A	63.58	4.22	3.5%	63.58 [55.31, 71.85]		
Stanney et al. (1998) / Virtual Research V6	27.49	5.31	3.3%	27.49 [17.08, 37.90]		
Stanney et al. (1999) / Kaiser Electro-Optics 500hrpv	11.22	5.72	3.2%	11.22 [0.01, 22.43]		
Blom et al. (2014) / NVIS nVisor SX111	2.4	2.82	3.8%	2.40 [-3.13, 7.93]		+
Draper et al. (2001) / i-glasses™ - Experiment1	20.62	4.38	3.5%	20.62 [12.04, 29.20]		
Draper et al. (2001) / i-glasses™ - Experiment2	12	5.2	3.3%	12.00 [1.81, 22.19]		
Pölönen et al. (2009) / iTheater-Game	6.7	2.3	3.9%	6.70 [2.19, 11.21]		
Pölönen et al. (2009) / iTheater-Movie	5	2.5	3.9%	5.00 [0.10, 9.90]		
Pölönen et al. (2009) / iTheater-Reading	12.3	3.55	3.7%	12.30 [5.34, 19.26]		
Pölönen et al. (2010) / iTheater	5.2	3.8	3.6%	5.20 [-2.25, 12.65]		+
Pölönen et al. (2010) / MyVu	1.9	1.9	4.0%	1.90 [-1.82, 5.62]		+
Pölönen et al. (2010) / Vuzix	5	4.2	3.5%	5.00 [3.23, 13.23]		+
Pölönen et al. (2010) / Zeiss	1.9	3.4	3.7%	1.90 [-4.76, 8.56]		- - -
Merhi et al. (2007) / Visette-Pro	44.89	11.19	1.9%	44.89 [22.96, 66.82]		
Lubos et al. (2014) / Oculus Rift DK1	23.86	4.63	3.4%	23.86 [14.79, 32.93]		
Lubos et al. (2015) / Oculus Rift DK1	4.99	2.8	3.8%	4.99 [-0.50, 10.48]		
Sharples et al. (2008) / Virtual Research V8	15.75	6.22	3.0%	15.75 [3.56, 27.94]		
ärvenpää et al. (2010) / iTheater	5	3.5	3.7%	5.00 [-1.86, 11.86]		+
lärvenpää et al. (2010) / MyVu	1.9	1.98	4.0%	1.90 [-1.98, 5.78]		+
lärvenpää et al. (2010) / aligned HMD	1.1	3.2	3.8%	1.10 [-5.17, 7.37]		
järvenpää et al. (2010) / non-aligned HMD	8.1	5.3	3.3%	8.10 [2.29, 18.49]		+
ärvenpää et al. (2010) / Vuzix	5.1	3.9	3.6%	5.10 [2.54, 12.74]		+
ärvenpää et al. (2010) / Zeiss	1.9	3.5	3.7%	1.90 [4.96, 8.76]		- -
ing et al. (2012) / eMagin Z800	2.4	1.41	4.1%	2.40 [-0.36, 5.16]		-
Total(95% CI)			100%	11.54 [7.44, 15.64]		•
Heterogenity: Tau ² = 105.87 Chi ² = 410.58 df = 27 (P < 0.00001) I ² = 93%				100 50	0 50 40
Test for overall effect: Z = 5.52 (P < 0.00001)					-100 -50 Favours (experimental,	0 50 10 Favours (contro

Figure 2: A forest plot diagram of mean change of the oculomotor scores of a simulator sickness questionnaire (SSQO) in pre- and post-HMDs exposure (abbreviations are the same as those in Figure 1).

				M		Diff
Study or Subgroup Mea	n Difference	SE	Weight	Mean Differenc IV, Random, 959		an Difference Random, 95%
Kolasinski et al. (1998) / i-glasses™	11.75			11.75 [5.38, 18.1]		
Takada et al. (2012) / iWear AV 920	18.2	0.75		18.20 [16.73, 19.6		-
Stanney et al. (1998) / Virtual Research V6	18.2	4.14	5.4%	18.20 [10.09, 26.3	1]	
Stanney et al. (1999) / Kaiser Electro-Optics 500hrpv	8.11	3.74		8.11 [0.78, 15.4		_ _
Pölönen et al. (2009) / iTheater-Game	5	2	6.5%			
Pölönen et al. (2009) / iTheater-Movie	4.4	1.6	6.7%	4.40 [1.26, 7.5	4]	
Pölönen et al. (2009) / iTheater-Reading	14	3.7	5.6%	14.00 [6.75, 21.2	51	
Pölönen et al. (2010) / iTheater	5.6	4.2	5.3%	5.60 [-2.63, 13.8	3]	
Pölönen et al. (2010) / MyVu	3.5	3.3	5.9%	3.50 [-2.97, 9.9	7]	
Pölönen et al. (2010) / Vuzix	6.5	4.9	4.9%	6.50 [-3.10, 16.1	0]	
Pölönen et al. (2010) / Zeiss	1.6	4	5.4%	1.60 [-6.24, 9.4	4]	
Sharples et al. (2008) / Virtual Research V8	15.16	5.92	4.3%	15.16 [3.56, 26.7	6]	
Järvenpää et al. (2010) / iTheater	4.5	4.5	5.1%	4.50 [-4.32, 13.3	2]	
Järvenpää et al. (2010) / MyVu	3.44	3.44	5.8%	3.44 [-3.30, 10.1	8]	
Järvenpää et al. (2010) / aligned HMD	1.3	3.4	5.8%	1.30 [-5.36, 7.9	6]	+
Järvenpää et al. (2010) / non-aligned HMD	8.5	5.75	4.4%	8.50 [-2.77, 19.7	7]	
Järvenpää et al. (2010) / Vuzix	6.9	4.7	5.0%	6.90 [-2.31, 16.1	1]	+
Järvenpää et al. (2010) / Zeiss	1.75	4	5.4%	1.75 [-6.09, 9.5	9]	+
						+
Total(95% CI)			100%	7.67 [3.76, 11.5	8]	◆
Heterogenity: Tau ² = 57.19 Chi ² = 150.28 df = 17 (P < 0.00001) I^2	= 89%				-100 -50	0 50 1
Test for overall effect: Z = 3.84 (P < 0.00001)					Favours (experimental)	Favours (con

Figure 3: A forest plot diagram of mean change of the scores of visual strains questionnaire (VSQ) in pre- and post-HMDs exposure (abbreviations are the same as those in Figure 1).

Study or SubgroupN	lean Difference	SE	Weight	Mean Difference IV, Random, 95%		in Difference Random, 95%		
Pölönen et al. (2009) / iTheater-Game	1.3	0.3	22.6%	1.30 [0.71, 1.89]				
Pölönen et al. (2009) / iTheater-Movie	1.5	0.3	22.6%	1.50 [0.91, 2.09]				
Pölönen et al. (2009) / iTheater-Reading	2.5	0.85	2.8%	2.50 [0.83, 4.17]			-	
Pölönen et al. (2010) / iTheater	1.25	0.7	4.1%	1.25 [-0.12, 2.62]				
Pölönen et al. (2010) / MyVu	0.6	0.6	5.6%	0.60 [-0.58, 1.78]				
Pölönen et al. (2010) / Vuzix	0.8	0.7	4.1%	0.80 [-0.57, 2.17]				
Pölönen et al. (2010) / Zeiss	0.4	0.45	10.0%	0.40 [-0.48, 1.28]				
Järvenpää et al. (2010) / iTheater	0.8	1.14	1.6%	0.80 [-1.43, 3.03]				
Järvenpää et al. (2010) / MyVu	0.52	0.53	7.2%	0.52 [-0.52, 1.56]				
Järvenpää et al. (2010) / aligned HMD	0.88	0.41	12.1%	0.88 [0.08, 1.68]				
Järvenpää et al. (2010) / non-aligned HMD	1	0.83	2.9%	1.00 [-0.63, 2.63]				
Järvenpää et al. (2010) / Vuzix	0.65	0.7	4.1%	0.65 [-0.72, 2.02]				
Järvenpää et al. (2010) / Zeiss	0.45	5	0.1%	0.45 [-9.35, 10.25]				
Total(95% CI)			100%	1.07 [0.80, 1.35]		•		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I ² = 0%				-10 -5 Favours (experimental)	0	5 1 Favours (contr	

Figure 4: A forest plot diagram of sensitivity analyses of the mean change of the total severity score of SSQT in pre- and post-HMDs exposure (abbreviations are the same as those in Figure 1).

				Mean Difference		n Difference	-
Study or Subgroup Me	ean Difference	SE	Weight	IV, Random, 95%	IV, R	andom, 95%	6
laeger et al. (2001) / HMD	13.22	6.01	3.2%	13.22 [1.44, 25.00]]		
Kolãsinski et al. (1998) / i-glasses™	17.48	4.31	-	Not Estimable	1		
akada et al. (2012) / iWear AV 920	19.8	0.97	5.1%	19.80 [17.90, 21.70]]	-	
⁄loss et al. (2011) / ProView™ XL 50	8	1.72	4.9%	8.00 [4.63, 11.37]]		
hrlich et al. (1998) / N/A	63.58	4.22	-	Not Estimable	<u>)</u>		
tanney et al. (1998) / Virtual Research V6	27.49	5.31	-	Not Estimable	2		
tanney et al. (1999) / Kaiser Electro-Optics 500hrpv	11.22	5.72	-	Not Estimable	2		
Blom et al. (2014) / NVIS nVisor SX111	2.4	2.82	4.6%	2.40 [-3.13,7.93]]		
)raper et al. (2001) / i-glasses™ - Experiment1	20.62	4.38	3.9%	20.62 [12.04, 29.20]]		
)raper et al. (2001) / i-glasses™ - Experiment2	12	5.2	3.6%	12.00 [1.81, 22.19]]		
ölönen et al. (2009) / iTheater-Game	6.7	2.3	4.7%	6.70 [2.19, 11.21]]		
ölönen et al. (2009) / iTheater-Movie	5	2.5	4.7%	5.00 [0.10,9.90]]		
ölönen et al. (2009) / iTheater-Reading	12.3	3.55	4.3%	12.30 [5.34, 19.26]		
ölönen et al. (2010) / iTheater	5.2	3.8	4.2%	5.20 [2.25, 12.65]]		
ölönen et al. (2010) / MyVu	1.9	1.9	4.9%	1.90 [-1.82, 5.62]]	+	
ölönen et al. (2010) / Vuzix	5	4.2	4.0%	5.00 [3.23, 13.23]]		
ölönen et al. (2010) / Zeiss	1.9	3.4	4.3%	1.90 [-4.76, 8.56]]		
1erhi et al. (2007) / Visette-Pro	44.89	11.19	1.7%	44.89 [22.96, 66.82]]		
ubos et al. (2014) / Oculus Rift DK1	23.86	4.63	3.8%	23.86 [14.79, 32.93]			-
ubos et al. (2015) / Oculus Rift DK1	4.99	2.8	4.6%	4.99 [-0.50, 10.48]]		
harples et al. (2008) / Virtual Research V8	15.75	6.22	3.2%	15.75 [3.56, 27.94]			
arvenpää et al. (2010) / iTheater	5	3.5	4.3%	5.00 [-1.86, 11.86			
irvenpää et al. (2010) / MyVu	1.9	1.98	4.8%	1.90 [-1.98, 5.78			
arvenpää et al. (2010) / aligned HMD	1.1	3.2	4.4%	1.10 [-5.17, 7.37			
arvenpää et al. (2010) / non-aligned HMD	8.1	5.3	3.5%	8.10 [-2.29, 18.49]		—	
arvenpää et al. (2010) / Vuzix	5.1	3.9	4.1%	5.10 [-2.54, 12.74		+	
arvenpää et al. (2010) / Zeiss	1.9	3.5	4.3%	1.90 [-4.96, 8.76			
ing et al. (2012) / eMagin Z800	2.4	1.41	5.0%	2.40 [-0.36, 5.16		-	
otal(95% CI)			100%	8.29 [4.80, 11.77]	•	
leterogenity: Tau ² = 61.31 Chi ² = 233.27 df = 23 (P < 0.00001)	I ² = 90%						
est for overall effect: Z = 4.66 (P < 0.00001)					-100 -50 Favours (experimental)	0	50 100 Favours (control)
Figure 5:	The flow cha	art of	the pro	ocess of article	selection.		

respectively between the various studies analyzed.

Procedure

The following variables listed below were used for primary outcomes. Mean change refers to the difference in SSQT scores between difference HMD devices (i.e. oculus rift versus FOVE).

(1) Mean change in symptom scores between different HMD-based VE.

(2) Comparison of mean change in symptom scores between HMDs and other traditional displays.

The visual impact of HMDs was used as the effect size in the meta-analysis. For multiple session VE exposure studies, we used only the data from the first VE exposure session in order to perform a between-group analysis. For studies with multiple measures of visual discomfort, we included only the SSQ and VSQ outcomes in the meta-analysis.

Statistical analysis

All statistical analyses were performed with Review Manager Version 5.3 (The Cochrane Collaboration, Oxford, England), using two-tailed p values and a 95% Confidence Interval (CI). For generic inverse variance outcomes, the mean difference was analyzed. Meta regression was performed, and heterogeneity was explored using the Q test with calculating I2, indicating the percentage of variability due to heterogeneity rather than to chance. I2 values of 50% or more were considered

Results

Results of database search

Figure 5 shows the flow chart of the selection process for the reviewed studies. Of 69 potentially relevant studies identified through the electronic search, 34 publications met all the inclusion criteria. After excluding 17 articles because specific data for SSQ or VSQ were not provided, 17 studies with 1040 participants remained for inclusion in the meta-analysis. The smallest sample size in an included article was twelve [47], and the largest was 232 [39]. All 17 studies were published between 1998 and 2015. Eight were performed in the USA; three in Finland; two in Germany; and one each in the United Kingdom, Japan, Spain, and the Netherlands.

Characteristics and quality of trials

Table 2 provides a description of the pre- versus post-exposure mean score changes of SSQT, SSQO and VSQ. These were analyzed in seventeen, seven, and three studies, respectively. In three studies, the mean SSQT and SSQO score changes in exposure to HMDs and traditional displays also were included in the meta-analysis.

Effect of HMDs on VIMS and visual discomfort

The forest plots show that the visual discomfort was significantly different in pre- versus post-VR exposure (Figure 1, Figure 2, and Figure 3). The results show mean difference of 11.54 (95% CI 7.44 to 15.64; P < 0.00001), 7.67 (95% CI 3.76 to 11.58; P = 0.0001) and 1.07 (95% CI 0.8 to 1.35; P < 0.00001) for the SSQT, SSQO and VSQ, respectively.

In order to investigate the possible role of publication year, we undertook a sensitivity analysis by excluding the four studies published before 2000. Older publications assessed older HMDs; consequently, their results may have been skewed in favor of greater VIMS. This analysis showed a mean difference of 8.29 (95% CI 4.80 to 11.77; P < 0.00001) for SSQT in pre- versus post-VR exposure (Figure 4).

Comparison of HMD exposure versus traditional displays

Only four studies provided adequate information for meta-analysis of visual discomfort in HMDs compared to traditional displays (i.e., TV, desktop computer displays, or other 2D viewing condition) [37,39,43,54]. The forest plots show that the mean differences of SSQT and SSQO in HMDs versus traditional displays were 3.62 (95% CI 1.47 to 5.78; P = 0.001), and 4.78 (95% CI 1.51 to 8.05; P = 0.004) respectively; these results were statistically significant (Figure 6 and Figure 7).

		HMDs		Traditi	ional D	isplays		Mean Difference	Mea	an Differen	ce	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, I	ixed, 95% (сі	
Pölönen et al. (2010) / iTheater	5.2	16.56	19	-0.4	9.84	20	6.3%	5.60 [-3.00, 14.20]]			-
Pölönen et al. (2010) / MyVu	1.9	8.5	20	-0.4	9.84	20	14.3%	2.30 [-3.40, 8.00]]			
Pölönen et al. (2010) / Vuzix	5	18.78	20	-0.4	9.84	20	5.4%	5.40 [-3.89, 14.69]]			-
Pölönen et al. (2010) / Zeiss	1.9	14.42	18	-0.4	9.84	20	7.4%	2.30 [-5.64, 10.24]] –			
Sharples et al. (2008) / Virtual Research V8	15.75	24.51	19	5.51	15.83	18	2.7%	10.24 [-2.99, 23.47]]			
ärvenpää et al. (2010) / iTheater	5	15.65	20	-0.5	10.73	20	6.7%	5.50 [-2.82, 13.82]]			
ärvenpää et al. (2010) / MyVu	1.9	8.85	20	-0.5	10.73	20	12.5%	2.40 [-3.70, 8.50]			
ärvenpää et al. (2010) / aligned HMD	1.1	14.31	20	-0.5	10.73	20	7.6%	1.60 [-6.24, 9.44	i –			
ärvenpää et al. (2010) / non-aligned HMD	8.1	23.7	20	-0.5	10.73	20	3.6%	8.60 [-2.80, 20.00]]			
ärvenpää et al. (2010) / Vuzix	5.1	17.44	20	-0.5	10.73	20	5.8%	5.60 [-3.37, 14.57]			-
ärvenpää et al. (2010) / Zeiss	1.9	15.65	20	-0.5	10.73	20	6.7%	2.40 [-5.92, 10.72	i –			
Ling et al. (2012) / eMagin Z800	2.4	13.04	86	-0.57	17.95	86	21.1%	2.97 [-1.72, 7.66]]		_	
Fotal(95% CI)			302			304	100%	8.29 [4.80, 11.77	']	•		
Heterogenity: Chi ² = 3.30 df = 11(P < 0.99) l ² = 0%												
Fest for overall effect: Z = 3.29 (P < 0.0010)									-20 -10 Favours (experimental)	0	10 Favo	20 urs (control,

Figure 6: A forest plot diagram of HMDs versus the traditional displays (TV, desktop, or other 2D viewing condition) for the mean change of the total severity score of SSQT (abbreviations are the same as those in Figure 1).

	1	HMDs		Tradit	ional D	isplays		Mean Difference	Me	an Differer	ice	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight		IV,	Fixed, 95%	CI	
Pölönen et al. (2010) / iTheater	5.6	18.31	19	-0.5	16.01	20	9.1%	6.10 [-4.72, 16.92]]		•	
Pölönen et al. (2010) / MyVu	3.5	14.76	20	-0.5	16.01	20	11.7%	4.00 [-5.54, 13.54]] -			-
Pölönen et al. (2010) / Vuzix	6.5	21.91	20	-0.5	16.01	20	7.6%	7.00 [-4.89, 18.89]]		-	
Pölönen et al. (2010) / Zeiss	1.6	16.97	18	-0.5	16.01	20	9.7%	2.10 [-8.42, 12.62]]			
Sharples et al. (2008) / Virtual Research V8	15.16	24.83	19	6.78	17.41	18	5.7%	8.38 [-5.38, 22.14]] -		-	
ärvenpää et al. (2010) / iTheater	4.5	20.12	20	-0.62	15.56	20	8.6%	5.12 [-6.03, 16.27]] –			
ärvenpää et al. (2010) / MyVu	3.44	15.38	20	-0.62	15.56	20	11.6%	4.06 [-5.53, 13.65]] -			-
lärvenpää et al. (2010) / aligned HMD	1.3	15.21	20	-0.62	15.56	20	11.8%	1.92 [-7.62, 11.46	j —			
ärvenpää et al. (2010) / non-aligned HMD	8.5	25.71	20	-0.62	15.56	20	6.2%	9.12 [-4.05, 22.29]]		-	
ärvenpää et al. (2010) / Vuzix	6.9	21.02	20	-0.62	15.56	20	8.1%	7.52 [-3.94, 18.98]]		-	
lärvenpää et al. (2010) / Zeiss	1.75	17.89	20	-0.62	15.56	20	9.9%	2.37 [-8.02, 12.76]	j —			
Total(95% CI)			216			218	100%	8.29 [1.51, 8.05	5]			
Heterogenity: Chi ² = 1.94 df = 10(P < 1.00) l ² = 0%												
est for overall effect: Z = 2.87 (P < 0.004)									-20 -10 Favours (experimental)	0	10 Favo	20 urs (control)

Figure 7: A forest plot diagram of HMDs versus the traditional displays (TV/desktop) for the mean change of the oculomotor scores of SSQO (abbreviations are the same as those in Figure 1).

Table 3: Experimental studies investigating causative factors of HMD-induced motion sicknes.

Number of Studies	Groups	Variables investigated	References
26	(1) Studies investigating variables related to systems	Display's field-of- view	Moss [34], Draper [51]
		System time delay	Moss [34], Draper [51], Nelson [64], St. Pierre [65]
		Optical characteristic	Aykent [66] 66 Peli [14], Kooi [67], Sheedy [18], Kuze [17], Moss [68], Ehrlich [69], Häkkinenl [70], Häkkinen [71] Moffitt [72], Kim [73], Pölönen [37], Pölönen [74], Pölönen [52], Howarth [20], Howarth [19], Kozulin [21], Vlad [75], Sharples [54], Nichols [22], Järvenpää [38], Järvenpää [39]
20	(2) Studies investigating variables related to individuals	Age, gender	Jaeger [48], Kolasinski [49], Häkkinen [69], Stanney [33], Kozulin [21], Mourant [76]
		Posture stability	Häkkinen [69], Smart [77], Owen [78], Cobb [79], Stoffregen [80]
		Habituation	Regan [81], Hill [82], Howarth [83], Kennedy [84]
		Personality traits	Takada [85], Ehrlich [50], Kotulak [86], Ehrlich [87], Kutsuna [88], Morse [89], Stoffregen [80]
28	(3) Studies investigating variables related to task characteristics	Dynamic or static stimuli	Jaeger [48], Ehrlich [50]
		Vection	Davis [90], Jang [91], Kuze [17], Smart [77], So [92], So [93], Mourant [76], Lo [94]
		Duration	Jaeger [48], Lampton [95], Kuze [17], Moss [34], Häkkinen [70], Stanney [32], Kozulin [21], Kennedy [84], Ames [25], Rushton [24], Steinicke [96], Järvenpää [39], Aaltonen [26]
		Viewing angle	Mon-Williams [30], Pölönen [97]
		Task content	Jaeger [48], Häkkinen [70], Pölönen [52], Nelson [64], Järvenpää [39]
		Sitting or standing	Merhi [53], Stoffregen [80], Nichols [22]

Table 4: Eye symptoms related to head mounted display exposure.

Author	Country	Subjects Male Female	Mean- age Age- range (years)	Head Mounted Displays	Evaluation methods	Results
Kooi [67]	Nether- lands	8	Not Given	Virtual I/O i-glasses™ Vision Sport monocular	Objective measurement	The scores of the accommodative facility after viewing the Vision Sport HMD ^a were reduced to nearly half their value, showing significant strain. The Virtual io HMD scores were intermediate, the monocular version being more straining than the binocular version. All subjects showed more eyestrain with the monocular systems.
Ehrlich [69]	USA	48 36M 12F	23.6 (18 - 50)	Virtual Research Fight Helmet	SSQ	The stereoscopic condition produced greater simulator sickness than the bi- ocular condition.
Howarth [19]	UK	20 16M 4F	28 (19 - 42)	Virtual I/O i-glasses™	Subjective questionnaire	The use of HMDs as personal viewing devices more readily induced the specific symptoms of virtual simulation sickness.
Peli [14]	USA	37 21M 16F	18 - 49	Virtual I/O i-glasses™	Subjective questionnaire Objective measurement	No functional differences were found between HMD and CRT ^b . Subjective comfort found a statistically significant difference in the impression of comfort between the CRT and the HMD in stereoscopic mode.
Nichols [22]	UK	9 6M 3F	25	Virtuality Visette 2, Virtual i/O i-glasses™ Division dVisor	Subjective questionnaire	Participants experienced different levels of discomfort in different systems. Ergonomics of HMDs were potential causes of discomfort.

Howarth [20]	UK	41	27	Virtual I/O	Objective	The use of HMDs in immersive VR can
	OIX	32M	(19 - 56)	i-glasses™	measurement	lead to changes within the oculomotor
		9F	(19-50)	Virtuality Visette		system. The Virtual I-Glasses and Division
		96		2, Division dVisor		systems induced exophoric changes (eyes
				,		turning outwards), Virtuality system induced
<u></u>					a	esophoric changes (eyes turning inwards).
Sheedy	USA	22		Inviso eCase, Inviso eShades	Subjective	Symptoms of eyestrain and blurry vision were significantly higher on monocular
[18]			- 39)	Inviso esnades	questionnaire	virtual than on other displays. No significant
						changes in visual acuity or heterophoria
					Objective	occurred with any of the displays. Motion-
					measurement	related symptoms with the head mounted
						near-eye display were not significantly
						different from those observed with other
Häkki-	Finland	60	26.8	Olympus EyeTrek	Simulator	displays tested. The stereoscopic condition produced
	Fillianu			FMD-700		slightly increased postural sway and
Nen [70]		36M	(18 - 41)		Sickness Questionnaire	sickness symptoms for 20-30 min after
		24F			Questionnalle	HMD use.
					Visual	
					Symptom	
Uäkki non	Finland	60	27.8		Questionnaire Simulator	No significant differences is sickness
Häkki-nen [71]	Finland	60	-	Olympus EyeTrek FMD-700		No significant differences in sickness symptoms compared to ordinary display
L, .]			(19 - 48)		Sickness Questionnaire	and the virtual display in non-stereoscopic
					Questionnane	mode. In stereoscopic condition the eye
						strain and disorientation symptoms were
						significantly elevated compared to the
Kuno [17]	lanan	104	(17 00)	Canu Classinan	Cubicativa	ordinary display.
Kuze [17]	Japan	104	(17 - 32)	Sony Glasstron PLM-50	Subjective questionnaire	Viewing stereoscopic images caused visual fatigue.
					questionnaire	laugue.
Moss [68]	USA	10	20.6	ProView XL50	Simulator	Peak Simulator
		2M			Sickness	Sickness Questionnaire scores were
		8F			Questionnaire	significantly higher when wearing an HMD
						than when not wearing an HMD to view the
Charm las		74	Net Civer		Circulator	laboratory.
Sharp-les	UK	71	Not Given	Virtual research V8	Simulator	Higher reported symptoms in HMD compared with desktop viewing (nausea)
54		38M		VO	Sickness	and in HMD compared with reality
		33F			Questionnaire	theatre viewing (nausea, oculomotor and
						disorientation symptoms).
Kozulin	Australia	60	11	Micro-Optical	Subjective	In children aged 5 to 16 years, virtual
[21]		29M	(5 - 16)	Binocular Viewer	questionnaire	imagery viewing with the Binocular Viewer
		31F				had few additional adverse effects when compared to viewing a more conventional
					Objective	high definition television display.
•	<u> </u>				measurent	
Järven	Finland	120	Not Given	iTheater, MyVu,	Simulator	Small interocular differences in biocular
Pää [38]				Vuzix, Zeiss	Sickness	NEDs are not easily detected by humans, but may still create visual fatigue.
					Questionnaire	out may sum oreate visual latigue.
					Visual	
					Symptom Questionnaire	
Järven	Finland	232	34.5	Five unidentified	Simulator	The determination of NED's characteristics
Pää [39]		123M	(21 - 53)	Head Mounted	Sickness	helped to predict the subjective
		109F	(21 - 00)	Displays likely	Questionnaire	experiences, but the nature of the relation
		IUSE		including HMDs		between subjective and objective findings
				from Järvenpää	Visual	was rather complex and depended on
				[38]		several NED-, user-, and task-related features.
					Symptom Questionnaire	וכמנעוכס.
					Questioninalie	

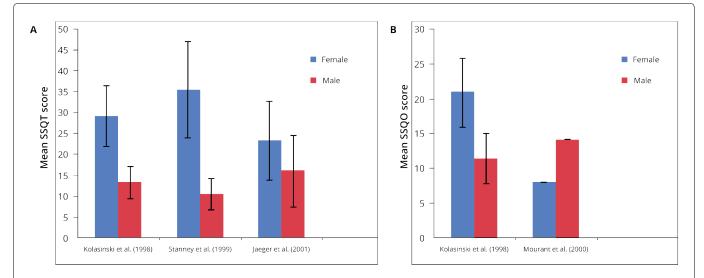
Pölönen [37]	Finland	97 48M 49F	33.8 (23 - 45)	iTheater, MyVu, Vuzix, Zeiss Cinemizer Plus	Simulator Sickness Questionnaire Visual Symptom Questionnaire	In general sickness levels remained low after 40 min of immersion. Better headset fit, and light structure were related to lower total workload, frustration and effort levels, and to positive opinion change. Higher visual quality and positive opinion change were related to more pleasant task experiences, whereas sickness and high workload led to less pleasant outcomes.
Pölönen [74]	Finland	20 10M 10F	34.9 (23 - 53)	iTheater BP4L, Zeiss Cinemizer Plus, Vuzix Wrap 920	Simulator Sickness Questionnaire Visual Symptom Questionnaire	All near-to-eye displays induced eyestrain and sickness symptoms, but the magnitude of these symptoms varied according to the device. The adverse symptoms were related to problems with the display optics and design, text layout, headset fit, use context, and individual differences.
Vlad [75]	France	102 65M 37F	25	Prototype HMDs	Simulator Sickness Questionnaire	Different stereoscopic displays generated different symptoms.
Aykent [66]	France	14 12M 2F	24.4 ± 2	OCULUS Rift	Subjective questionnaire Objective measurement	Oculus HMDs could cause more sickness in driving simulators, such as Eco2 driving simulator, than medium field of view systems. However, this type of HMD may have provided better immersive impressions than medium to large files of view display systems.
					Modified Simulator Sickness Questionnaire	

^aHMD: Head-Mounted Display; ^bCRT: Cathode Ray Tube.

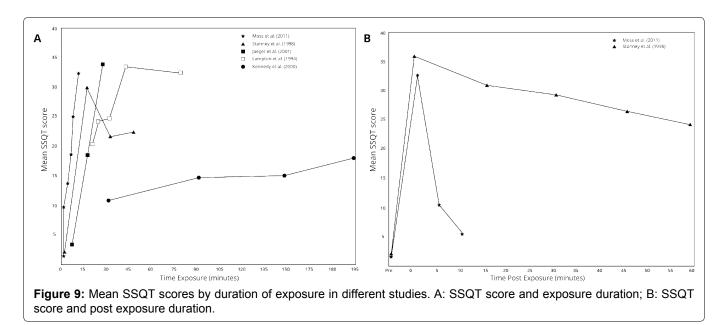
Table 5: Eye symptoms related to vection in a head mounted display environment.

Study	HMD	Vection	Immersion	Eye symptom
			times (minutes)	
So [93]	Virtual Research VR4	3D VE ^a viewing, E1: visual scene oscillation in the yaw axis (angular velocity was 30°/second and the range of oscillation was ± 60°), E2: visual scene was stationary.	20	Total severity scores of SS ^b questionnaires and three SS Questionnaire sub-scores increased significantly after both conditions (with and without scene movement); with the absence of scene movement, these scores were significantly less.
Mourant [76]	Virtual Research VR8	3D VE: virtual driving simulator three types: highway (60 mph ^c), rural (60 mph), city (25 mph)		Participants in the highway (60 mph) or rural road (60 mph) virtual environments reported more symptoms than those in the city virtual environment (25 mph).
So [92]	Virtual Research VR4	3D VE: Speeds of 3.3, 4.3, 5.9, 7.9, 9.5, 23.6, 29.6, and 59.2 m/s ^d RMS ^e in the fore- and-aft axis	30	Vection sensation and sickness symptoms increased with increasing navigation speeds from 3 m/s to 10 m/s RMS. Beyond 10 m/s RMS, both vection and sickness stabilized and remained steady as speeds increased further to 59 m/s RMS.
Lo [94]	Virtual Research VR4	E1: Scene oscillations along different axes (pitch, yaw, roll or no oscillation), E2: Without scene oscillations	20	Nausea ratings and SS Questionnaire scores increased at higher rates in the presence of scene oscillations than with no oscillation. Overall effects of oscillations along different axes were not significant.
Kuze [17]	Glasstron PLM- 50	E1: Shaky video, E2: Stabilized video	20	Change in eyestrain scores was higher when viewing shaky video.
Davis [90]	Oculus Rift DK 1	Two virtual roller coasters	14	The more realistic roller coaster with higher levels of visual flow had a significantly greater chance of inducing sickness.

^aVE: Virtual Environment; ^bSS: Simulator Sickness; ^cmph: Miles Per Hour; ^dm/s: Meters Per Second; ^eRMS: Root Mean Square.


Systematic review of the different influence factors of HMD-induced visual discomfort

The previous studies highlighted a number of factors that have the potential to cause stress to the visual system in HMD-based VR. It seems that the stress on the visual system is multifactorial [63] (Table 3). We identified several studies that reported the effects of HMDs from different influence factors. Among these studies, HMDs' optical characteristics (system features), participants' gender (individual characteristics), duration, vection, and task content (task characteristics) were systematically reviewed respectively (Table 4, Table 5, Figure 8, Figure 9, and Figure 10).


Discussion

Advances in HMD technology have provided the potential for its widespread use in VR. However, VIMS, as an inherent problem, still remains an obstacle to public adoption and commercial development of this technology. HMD devices, such as Oculus Rift, HTC Vive, Samsung Gear, FOVE and Google DayDream have already entered the market, thus highlighting the importance of further research about VIMS. In our meta-analysis and systematic review, we have demonstrated through our data analysis the presence of significant visual discomfort after exposure to HMDs, when compared to traditional displays, and identified the potential moderating factors for this visual discomfort. To our knowledge, this is the first comprehensive summary and meta-analysis to address this issue.

Although the evaluation methods of HMD-induced visual problems varied between studies and in some studies the details were not provided, the results of this meta-analysis showed that regardless of the evaluation methods, the exposure to HMDs has been associated with significant visual discomfort. This meta-analysis of pre- and post-exposure questionnaires demonstrated significant associations between visual impact and the mean change scores of total severities of SS, oculomotor score of simulator sickness questionnaires scores

Figure 8: Mean SSQ scores by gender in different studies (higher scores = higher symptom severity). A: SSQT scores; B: SSQO scores. Error bars represent standard error of mean.

and visual strain questionnaires scores. Furthermore, HMD exposure was associated with higher scores of mean changes of SSQT and SSQO compared to other traditional displays, such as TV and desktop computer displays.

Theoretically, HMDs with sub-optimal designs were used in the earlier articles, i.e., those published before 2000. The visual discomfort reported in those papers might have been a result of their poor design, rather than valid observations. Therefore, the meta-analysis from those papers published before 2000 may have substantially overestimated the incidence of HMD-induced visual discomfort. For example, the Virtual Research V6 HMD used for Stanney's 1998 study was a mid-range display made by the US-based Virtual Research System Inc. and had a lower brightness and poorer color presentation compared to the updated Virtual Research V8 HMD used for Sharples' 2008 study [32,54]. These advancements in the manufacturer's HMD technology may have produced a higher mean change of the questionnaire score when compared to scores from participants who had used the older Virtual Research V6.

In order to rule out any significant influence from the papers published prior to 2000, (i.e., to assess the reliability of our meta-analysis), our sensitivity analysis excluded the four studies published before 2000. This exclusion did not change the outcome of our meta-analysis; i.e. the result after eliminating the old papers was statistically consistent with the result of original meta-analysis. Even though these questionnaires are self-reported subjective evaluation methods, they provide converging evidence that HMD-based VR causes visual discomfort. These findings are consistent with a cross-sectional survey of 953 questionnaires related to VIMS, in which almost 35% of the respondents reported tired eyes during 3D movies [98]. The results suggest a need for raising public awareness about the visual discomfort that individuals may suffer after exposure to HMDs. We recommend that the HMD industry and manufacturers address the visual discomfort issue before their products become commonly used.

To date, no controlled studies have evaluated the extent to which user subjective responses are determined by characteristics resulting from pre- and post-test measures. Young gave subjects SSQ's either pre- and post-VR immersion, or only post immersion. Participant reports of sickness after immersion in VR showed higher scores when both pre- and post-test questionnaires were given to the participants than when only a posttest questionnaire was used [23]. These results are notable because measurements of sickness by both preand post-self-report questionnaires are significantly biased due to demand characteristics, and may substantially overestimate the incidence of HMD-induced visual discomfort. We suggest that comparative studies of the visual effects of HMD-based VEs employ experimental designs that are not subject to such biases, or at least take measures to balance these biases. Alternatively, more objective measures could be used systematically in order to evaluate visual effects after HMD exposure.

User Settings Risk Factors

Our systematic review also shows that many factors impact HMD-induced VIMS. These factors include the characteristics of the device system, the participants in the studies we included, and the tasks they were asked to perform. Device system variables included viewing mode (e.g. monocular, binocular or dichoptic), headset design (e.g. fit, weight), optics (e.g. misalignment in the optics; contrast, luminance), Field Of View (FOV), and time lag (i.e. transport delay). HMD weight has been associated with the experience of visual discomfort and injury [99]. A key consideration for HMD design must be that weight is within the level of human tolerance to minimize head and neck fatigue. With the decrease in cost of components, HMD design has moved to more ergonomic HMD systems, which has been reflected in the adoption of mobile systems, such as Samsung Gear and Google DayDream.

Symptoms of eyestrain and blurry vision were significantly higher in monocular mode than in other modes [18,67,72]. The use of HMDs in stereoscopic mode is less comfortable than in non-stereoscopic mode [14,17,69-71]. Spatial properties of the display, i.e., Field of View (FOV), may be implicated in producing visual discomfort symptoms [34,51]. The FOV studies show that narrow FOV (< 50 degrees) reduces the perception of self-motion and wide FOV (> 100 degrees) may increase the presence and level of simulator sickness. Patterson, et al. recommend a minimum 60° FOV to achieve a full sense of immersion [100].

Device Risk Factors

Resolution contributes to overall image quality but also directly affects the users' experience of VIMS. It is often uncomfortable to view low-quality images that are noisy or blurry. Anatomically, the central retinal fovea has the highest number of photoreceptors and the highest capacity for resolving an image [101]. While the limit of human visual resolution is 1 minute of arc at the central fovea, few HMDs can achieve this, primarily due to current technological limitations. The result can be a pixelated experience [101]. It is important to provide the highest possible resolution in the central field of view of the virtual environment to truly simulate a real-life experience and mimic the viewing characteristics of human vision. Some devices attempt to achieve this by creating a gradient of resolution with the highest resolution in the central field of view and the lowest resolution at the periphery [101,102]. The potential trade off of higher resolution is the overexposure of energy from the display, given the proximal distance of the display to the eyes.

Time lag between an individual's action and the system's reaction potentially could influence a user's experience of VIMS symptoms, as it affects human perception of visual and vestibular cues [33,51,64,65]. Therefore, reducing the sensor error of HMD systems may minimize the VIMS experience. HMD optical characteristics, such as eye relief (a fixed distance from the eyepiece lens to its exit pupil), convergence demand, horizontal disparity, vertical misalignment of displays, inter-ocular rotation difference, vertical-horizontal magnification differences, luminance, focus differences, temporal asynchrony, focal distance, field curvature difference and Inter-Pupillary Distance (IPD), are all potential factors that can induce visual discomfort and headache when they are poorly aligned or adjusted [37-39,66,68,73-75,100,103-106]. Another consideration is the type of optics used in HMD systems, single focus lens systems vs. multifocal lens systems, with the latter lending to more natural adaptive zones for multiple focal lengths typically encountered in VR environments, especially interactive experiences.

High rates of ocular symptoms may be associated with certain device characteristics (Table 1). For example, the VIMS experienced with the Vuzix may be attributable to the focal distance of the display (5 m/2.4 m), luminance level (24 cd/m²), and vertical misalignment (0.8°). Conversely, the low ocular symptom rate in the MyVu may be explained by its luminance level (97 cd/m²), lack of vertical misalignment (0°), physical design and assigned tasks. It is essential to note that technical advances have reduced obvious problems such as physical ergonomic issues including HMD weight, system time delay, and luminance.

It is also important to note that the conflict between visual and vestibular input remains a significant problem. In other words, the VIMS from HMD exposure is not simply a "technical problem" that will be resolved as the technology advances. The discomfort from the vestibular-visual mismatch will not resolve unless the mismatch itself resolves, which may involve a multifactorial process of synchronizing sensory inputs dependent on hardware specifications and software/content design.

User Individual Risk Factors

Individuals differ in their susceptibility to VIMS [107]. Age has been shown to have a significant relationship with HMD-related eyestrain symptoms [70]. Children 2-12 years of age have immature visual systems and binocular function that is worse than that of adults; this makes children more susceptible to both visual discomfort caused by HMDs and oculomotor side effects including reduced visual acuity, amblyopia, or strabismus [21,31,108,109]. Adults with limited fusional ranges experienced more visual discomfort, specifically with convergent eye movement in response to stimuli in VEs (Karpicka E, unpublished data). Therefore, age effect on HMDs needs to be further studied and taken into account in the design of future HMDs. In regard to gender, females reported more simulator sickness and more often withdrew from HMD-based VEs when compared to male participants [16,19,33,48,49,70]. This difference may be due to under-reporting of susceptibility on self-reports by males (so-called "macho effect") or hormonal effects [110]. Other possible explanation for this gender difference is that females generally have a wider FOV than males, which increases the likelihood of flicker perception and sickness susceptibility [111].

People with visual deficits may have an increased susceptibility to oculomotor side effects compared to those without such deficits, although this has yet to be verified experimentally. A past history of motion sickness has also been found to predict susceptibility to

ISSN: 2378-346X

sickness in HMD-based VEs [49]. Individuals also differ in their ability to habituate or adapt to HMD-based VEs (i.e. plasticity), with some individuals adapting much more readily than others after repeated exposures to stimuli [50,81-84,87].

It has been suggested that those with greater plasticity may be less susceptible to VIMS, although the time course to adapt may vary. Greater plasticity is associated with faster symptom reduction on repeated exposures rather than with reduction of initial symptoms [81-84]. Thus far, the characteristics of individuals with greater levels of plasticity have not been identified, and this will require further study.

Other Risk Factors

An individual's posture may also contribute to VIMS. The postural instability theory states that motion sickness occurs with a loss of postural control [112]. In a virtual environment setting, there is a sensory conflict between the virtual image and the real-world posture that increases the body's risk for motion sickness [70,77-80,112]. Postural stability relies on input from the visual, somatosensory, and vestibular systems. This input is processed and then controls two major reflexes, including the Vestibular Ocular Reflex (VOR) that maintains stability of visual objects on the retina as well as the vestibular spinal reflex that maintains body postural stability while an individual is in motion. Conflict between the visual and vestibular sensory inputs can give rise to postural instability (ataxia) as well as to VIMS [79]. Postural instability, which has been reported as a symptom of HMDs exposure, may last for several hours after exposure [70,77-80,85,88]. Special consideration for HMD user safety, as related to the risk of postural instability, must be kept in mind. For instance, HMD users should allow for adaptation and recovery time before engaging in potentially dangerous activities such as driving, or sports may be in order.

Task characteristics have been also identified as potentially affecting VIMS. The most important of these is the duration of exposure to VE. As shown in Figure 9, longer exposure to VE increases the incidence of VIMS. These symptoms may persist up to 60 minutes after exposure [17,21,24-26,32,34,39,48,70,84,95,96]. Another important factor shown to influence VIMS is vection (i.e. an illusion of self-motion; Table 5), with faster vection resulting in greater sickness symptoms [17,77,91,93] Viewing HMD-based VR in a sitting position may reduce symptoms, as sitting reduces the demands on postural control [22,53,78,113]. More complicated tasks, such as reading, may induce total symptom severity scores and oculomotor-related symptom scores that are significantly higher than those observed with movies or games (Figure 10) [39,52,64]. These findings imply that more demanding tasks probably will create some degree of eyestrain. Increased reading sensitivity, when compared to watching a movie or playing a game, might be due to activation of different areas of the brain, which may make reading more complex than other tasks. Alternatively, reading can affect attention and blink rate, which may also contribute to an increase in VIMS. Moreover, inappropriate vertical gaze angle may cause increased oculomotor changes and visual discomfort [30,97].

Conclusion

Our meta-analysis and systematic review confirms that visual discomfort occurs after exposure to current HMDs significantly more than after exposure to traditional displays. The visual discomfort induced by HMDs is influenced by the three categories of moderator factors, which indicates that the discomfort is multi-factorial and poly-symptomatic. It is conceivable that the visual discomfort induced by HMDs will diminish gradually as the quality of design of HMDs improves and the technology of the components increases; however, the discomfort may not resolve completely until the visual-vestibular mismatch is resolved. VIMS and visual discomfort continue to be obstacles for widespread acceptance of HMDs; this increases the importance of further research into VIMS. More research is needed to resolve visual-vestibular mismatch, and to develop objective methods of evaluating and quantifying VIMS symptoms such as visual/ocular changes (e.g. ocular movements), physiological changes (e.g. changes in heart rate, blink rate, EEG [electroencephalography]), and vestibular changes (e.g. perceived spatial velocity). More research focusing on the user experience is necessary, with recommended expansion of subjective assessment methods such as questionnaires (e.g. the SSQ and VSQ).

Furthermore, as the VR market expands from early consumer adoption, a burgeoning environment for VR-related software has developed. While the emphasis of our paper relates to the current hardware limitations of HMDs, the authors recommend future research also focus on the relationship of software implementation to simulation/VR sickness. For example, perceived motion in virtual environments is affected by how head motion or controls are mapped into the graphical representation of the virtual environment. To limit some of the effects of software-related VIMS, developers may limit movements in certain directions or provide a frame of reference. Recent advancements include the usage of eye tracking with foveal rendering to simulate real-world object focus in virtual environments [101].

We have proposed recommended guidelines below, in part for both hardware and software developers, to design accordingly to minimize VIMS. Although there are still hurdles related to creating seamless virtual environments, there is a lot of promise. Continued research and development of both hardware features and software implementation will continue to improve the VR experience.

Our meta-analysis has led us to propose a few key

observations and recommendations. Our observations are as follows:

- 1. Lighter HMDs are associated with a decrease in discomfort;
- 2. Monocular presentations should be avoided, as they are associated with more discomfort compared to binocular and dichoptic presentations;
- 3. Exposure to VR in sitting position may decrease VIMS;
- Complex visual tasks and reading may increase VIMS severity;
- 5. Rapid vection results in an increase in VIMS symptoms.

Our recommendations are as follows:

- 1. Manufacturers need to be attentive to system characteristics of the devices they develop and market;
- Users should be advised that children, women, users with visual field defects, postural instability, or past history of motion sickness may be especially prone to VIMS;
- Inexperienced users are especially susceptible to developing VIMS, and users are different in their adaptation to HMDs;
- 4. Users should be warned to not use HMDs for a long period of time, and to take frequent breaks;
- 5. Users should avoid driving or operating heavy machinery after exposure to VR until VIMS and postural instability resolve.

Acknowledgements

This study was supported in part by an unrestricted grant from Research to Prevent Blindness, Inc., New York, New York, USA, to the Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, USA.

We are grateful for the consultation support we received from: Michael Zyda, DSc, GamePipe Laboratory, Department of Computer Science, Viterbi School of Engineering, University of Southern California; Los Angeles, CA, USA; Kushagra Shrivastava, Marketing Technologist; Advisory Board, Vizzario; and Jacob Mederos, Lead Software Engineer, Vizzario, Davis, CA, USA. Susan Schulman, University of Utah School of Medicine, provided editorial and manuscript preparation assistance.

Financial Disclosures

Dr. Khaderi is an Advisory Board Member for Magic Leap Inc., an advisor for Medella Health, a consultant and speaker for Merz Pharma, and the founder and CEO of Vizzario. The other authors have declared that they have no financial disclosures.

References

1. Sutherland IE (1965) The Ultimate Display. Proceedings of IFIP Congres 506-508.

- Sutherland IE (1968) A head-mounted three-dimensional display. American Federation of Information Processing Societies (AFIPS) Fall Joint Computer Conference Proceedings, Thompson Book Company, Washington, USA, 33: 757-764.
- Kennedy RS, Hettinger LJ, Lilienthal MG (1990) Simulator Sickness. In: Crampton GH, Motion and Space Sickness. CRC Press, Boca Raton, USA, 317-341.
- 4. Kennedy RS, Drexler J, Kennedy RC (2010) Research in visually induced motion sickness. Appl Ergon 41: 494-503.
- 5. Ukai K, Kibe A (2003) Counterroll torsional eye movement in users of head-mounted displays. Displays 24: 59-63.
- Bles W, Wertheim AH (2001) Appropriate use of virtual environments to minimise motion sickness. In: Werkhoven P, Breaux R, What is essential for virtual reality systems to meet military human performance goals? Soesterberg, The Netherlands.
- 7. Peli E (1990) Visual issues in the use of a head-mounted monocular display. Opt Eng 883-892.
- Kooi FL, Toet A (2004) Visual comfort of binocular and 3D displays. Displays 25: 99-108.
- 9. Ukai K, Howarth PA (2008) Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays 29: 106-116.
- 10. Menozzi M (2000) Visual ergonomics of head-mounted displays. Japanese Psychological Research 42: 213-221.
- Urvoy M, Barkowsky M, Le Callet P (2013) How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors. Ann Telecommun 68: 641-655.
- 12. Howarth PA (2011) Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review. Ophthalmic Physiol Opt 31: 111-122.
- 13. Bando T, Iijima A, Yano S (2012) Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: A review. Displays 33: 76-83.
- 14. Peli E (1998) The visual effects of head-mounted display (HMD) are not distinguishable from those of desk-top computer display. Vision Res 38: 2053-2066.
- 15. Mon-Williams M, Wann JP, Rushton S (1993) Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display. Ophthalmic and Physiological Optics 13: 387-391.
- Lampton DR, Rodriguez ME, Cotton JE (2000) Simulator sickness symptoms during team training in immersive virtual environments. SAGE 44: 530-533.
- 17. Kuze J, Ukai K (2008) Subjective evaluation of visual fatigue caused by motion images. Displays 29: 159-166.
- 18. Sheedy J, Bergstrom N (2002) Performance and comfort on near-eye computer displays. Optom Vis Sci 79: 306-312.
- 19. Howarth PA, Costello PJ (1997) The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays 18: 107-116.
- 20. Howarth PA (1999) Oculomotor changes within virtual environments. Appl Ergon 30: 59-67.
- 21. Kozulin P, Ames SL, McBrien NA (2009) Effects of a head-mounted display on the oculomotor system of children. Optom Vis Sci 86: 845-856.
- 22. Nichols S (1999) Physical ergonomics of virtual environment use. Appl Ergon 30: 79-90.

- Young SD, Adelstein BD, Ellis SR (2006) Demand characteristics of a questionnaire used to assess motion sickness in a virtual environment. Proceedings of the Institute of Electrical and Electronics Engineers (IEEE), Virtual Reality (VR) Conference, 97-102.
- Rushton S, Mon-Williams M, Wann JP (1994) Binocular vision in a bi-ocular world: new-generation head-mounted displays avoid causing visual deficit. Displays 15: 255-260.
- Ames SL, Wolffsohn JS, McBrien NA (2005) The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom Vis Sci 82: 168-176.
- 26. Aaltonen V, Polonen M (2009) The effect of viewing duration on visual comfort with near-to-eye displays. SID 40: 812-814.
- 27. Edgar GK, Pope JCD, Craig IR (1993) Visual accommodation problems with head-up and helmet-mounted displays. SPIE Digital Library.
- Schega L, Hamacher D, Erfuth S, Behrens-Baumann W, Reupsch J, et al. (2014) Differential effects of head-mounted displays on visual performance. Ergonomics 57: 1-11.
- 29. Costello PJ, Howarth PA (1996) The effects on the visual system of wearing a Head-Mounted Display for an hour. VISERG Report.
- Mon-Williams M, Plooy A, Burgess-Limerick R, Wann J (1998) Gaze angle: a possible mechanism of visual stress in virtual reality headsets. Ergonomics 41: 280-285.
- Rushton SK, Riddell PM (1999) Developing visual systems and exposure to virtual reality and stereo displays: Some concerns and speculations about the demands on accommodation and vergence. Appl Ergon 30: 69-78.
- Stanney KM, Kennedy RS (1998) Aftereffects from virtual environment exposure: How long do they last? HFES Annual Meeting Proc 42: 1476-1480.
- Stanney KM, Kennedy RS, Drexler JM, Harm DL (1999) Motion sickness and proprioceptive aftereffects following virtual environment exposure. Appl Ergon 30: 27-38.
- Moss JD, Muth ER (2011) Characteristics of head-mounted displays and their effects on simulator sickness. Hum Factors 53: 308-319.
- 35. Biocca F (1992) Virtual reality technology: A Tutorial. J Commun 42: 23-72.
- Lambooij MTM, IJsselsteijn WA, Fortuin MF, Heynderickx IEJ (2009) Visual discomfort and visual fatigue of stereoscopic displays: A Review. J Imaging Sci Technol 53: 1-14.
- Polonen M, Jarvenpaa T, Hakkinen J (2010) Comparison of near-to-eye displays: Subjective experience and Comfort. J Disp Technol 6: 27-35.
- Jarvenpaa T, Polonen M (2009) Advances in near-to-eye display optical characterization. SID International Symposium Digest of Technical Papers 40: 507-510.
- Jarvenpaa T, Polonen M (2010) Optical characterization and ergonomical factors of near-to-eye displays. J Soc Inf Disp 18: 285-292.
- Banks MS, Read JC, Allison RS, Watt SJ (2012) Stereoscopy and the human visual system. SMPTE Motion Imaging J 121: 24-43.
- O'Hare L, Zhang T, Nefs HT, Hibbard PB (2013) Visual discomfort and depth-of-field. Iperception 4: 156-169.
- Li J, Barkowsky M, Le Callet P (2014) Visual discomfort of stereoscopic 3D videos: Influence of 3D motion. Displays 35: 49-57.

- 43. Ling Y, Brinkman WP, Nefs HT, Qu C, Heynderickx I (2012) Effects of stereoscopic viewing on presence, anxiety and cybersickness in a virtual reality environment for public speaking. Presence 21: 254-267.
- 44. Takada H, Miyao M, Takada M, Matsuura Y, Yamamoto T (2012) Effect of a stereoscopic movie on body sway and head acceleration. Computer Technology and Application 3: 159-168.
- 45. Blom KJ, Arroyo Palacios J, Slater M (2014) The effects of rotating the self out of the body in the full virtual body ownership illusion. Perception 43: 275-294.
- 46. Lubos P, Bruder G, Steinicke F (2014) Analysis of direct selection in head-mounted display environments. 3DUI.
- 47. Lubos P, Bruder G, Steinicke F (2015) Influence of comfort on 3D selection task performance in immersive desktop setups. JVRB.
- Jaeger BK, Mourant RR (2001) Comparison of simulator sickness using static and dynamic walking simulators. HFES Annual Meeting Proc 45: 1896-1900.
- 49. Kolasinski EM, Gilson RD (1998) Simulator sickness and related findings in a virtual environment. HFES Annual Meeting Proc 42: 1511-1515.
- 50. Ehrlich JA, Kolasinski EM (1998) A comparison of sickness symptoms between dropout and finishing participants in virtual environment studies. HFES Annual Meeting Proc 42: 1466-1470.
- Draper MH, Viire ES, Furness TA, Gawron VJ (2001) Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Hum Factors 43: 129-146.
- Polonen M, Hakkinen J (2009) Near-to-eye display-An accessory for handheld multimedia devices: Subjective studies. J Display Technol 5: 358-367.
- Merhi O, Faugloire E, Flanagan M, Stoffregen TA (2007) Motion sickness, console video games, and head-mounted displays. Hum Factors 49: 920-934.
- Sharples S, Cobb S, Moody A, Wilson JR (2008) Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays 29: 58-69.
- Robert SK, Norman EL, Kevin SB, Michael GL (1993) Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int J Aviation Psychol 3: 203-220.
- 56. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology 3: 203-220.
- 57. Howarth PA, Istance HO (1985) The association between visual discomfort and the use of visual display units. Behaviour and Information Technology 4: 135-149.
- Blehm C, Vishnu S, Khattak A, Mitra S, Yee RW (2005) Computer vision syndrome: A review. Surv Ophthalmol 50: 253-262.
- 59. International organization for standardization (1992) Ergonomic requirements for office work with visual display terminals (VDTs) -- Part 3: Visual display requirements.
- 60. International organization for standardization (2008) Ergonomics of human-system interaction -- Part 302: Terminology for electronic visual displays.
- 61. Gowrisankaran S, Sheedy JE (2015) Computer vision syndrome: A review. Work 52: 303-314.

- 62. Villar J, Mackey ME, Carroli G, Donner A (2001) Meta-analyses in systematic reviews of randomized controlled trials in perinatal medicine: comparison of fixed and random effects models. Stat Med 20: 3635-3647.
- 63. Kennedy RS, Fowlkes JE (1992) Simulator Sickness Is Polygenic and polysymptomatic: Implications for Research. The International Journal of Aviation Psychology 2: 23-38.
- 64. Nelson WT, Roe MM, Bolia RS, Morley RM (2000) Assessing Simulator Sickness in a See-Through HMD: Effects of Time Delay, Time on Task, and Task Complexity. Air Force Research Laboratory, Wright-Patterson, Ohio, USA.
- 65. St. Pierre ME, Banerjee S, Hoover AW, Muth ER (2015) The effects of 0.2 Hz varying latency with 20–100 ms varying amplitude on simulator sickness in a helmet mounted display. Displays 36: 1-8.
- 66. Aykent B, Zhao Y, Merienne F, Kemeny A (2014) Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2). Driving Simulation Conference Europe Proceedings 65-71.
- 67. Kooi FL (1997) Visual strain: a comparison of monitors and head-mounted displays. Proceedings Imaging Sciences and Display Technologies 2949.
- Moss J, Scisco JL, Muth E (2008) Simulator Sickness during Head Mounted Display (HMD) of Real World Video Captured Scenes. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 52: 1631-1634.
- Ehrlich JA (1997) Simulator sickness and HMD configurations. Proceedings Telemanipulator and Telepresence Technologies IV 3206.
- Häkkinen J, Vuori T, Puhakka M (2002) Postural stability and sickness symptoms after HMD use. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 1: 147-152.
- 71. Häkkinen J, Pölönen M, Takatalo J, Nyman G (2006) Simulator Sickness in virtual display gaming: a comparison of stereoscopic and non-stereoscopic situations. Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services 227-230.
- 72. Moffitt K (1989) Ocular Responses To Monocular And Binocular Helmet-Mounted Display Configurations. Proc SPIE Helmet-Mounted Displays 1116: 142.
- Kim K, Rosenthal MZ, Zielinski DJ, Brady R (2014) Effects of virtual environment platforms on emotional responses. Comput Methods Programs Biomed 113: 882-893.
- 74. Pölönen M, Järvenpää T, Häkkinen J (2012) Reading e-books on a near-to-eye display: Comparison between a small-sized multimedia display and a hard copy. Displays 33: 157-167.
- 75. Vlad R, Nahorna O, Ladret P, Guerin A (2013) The influence of the visualization task on the simulator sickness symptoms A comparative SSQ study on 3DTV and 3D immersive glasses. 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON) 1-4.
- 76. Mourant RR, Thattacheny TR (2000) Simulator sickness in a virtual environments driving simulator. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 534-537.
- Smart LJ Jr, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors 44: 451-465.

- Owen N, Leadbetter AG, Yardley L (1998) Relationship between postural control and motion sickness in healthy subjects. Brain Res Bull 47: 471-474.
- 79. Cobb SV (1999) Measurement of postural stability before and after immersion in a virtual environment. Appl Ergon 30: 47-57.
- Stoffregen TA, Faugloire E, Yoshida K, Flanagan MB, Merhi O (2008) Motion sickness and postural sway in console video games. Hum Factors 50: 322-331.
- 81. Regan EC (1995) Some evidence of adaptation to immersion in virtual reality. Displays 16: 135-139.
- 82. Hill KJ, Howarth PA (2000) Habituation to the side effects of immersion in a virtual environment. Displays 21: 25-30.
- 83. Howarth PA, Hodder SG (2008) Characteristics of habituation to motion in a virtual environment. Displays 29: 117-123.
- Kennedy RS, Stanney KM, Dunlap WP (2000) Duration and Exposure to Virtual Environments: Sickness Curves During and Across Sessions. Presence: Teleoperators and Virtual Environments 9: 463-472.
- 85. Takada H, Matsuura Y, Takada M, Miyao M (2011) Comparison in Degree of the Motion Sickness Induced by a 3-D Movie on an LCD and an HMD. In: Shumaker R, Virtual and Mixed Reality - New Trends. Springer-Verlag Berlin, Germany, 371-379.
- 86. Kotulak JC, Morse SE (1995) Oculomotor responses with aviator helmet-mounted displays and their relation to inflight symptoms. Hum Factors 37: 699-710.
- 87. Ehrlich JA, Singer MJ, Allen RC (1998) Relationships between head-shoulder divergences and sickness in a virtual environment. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 42: 1471-1475.
- Kutsuna K, Matsuura Y, Fujikake K, Miyao M, Takada H (2013) Comparison of form in potential functions while maintaining upright posture during exposure to stereoscopic video clips. Conf Proc IEEE Eng Med Biol Soc 7200-7203.
- 89. Morse SE, Jiang BC (1999) Oculomotor function after virtual reality use differentiates symptomatic from asymptomatic individuals. Optom Vis Sci 76: 637-642.
- 90. Davis S, Nesbitt K, Nalivaiko E (2015) Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In: Pisan Y, Nesbitt K, Blackmore K, Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015). Conferences in Research and Practice in Information Technology (CRPIT) 167: 3-14.
- 91. Jang DP, Kim IY, Nam SW, Wiederhold BK, Wiederhold MD, et al. (2002) Analysis of physiological response to two virtual environments: driving and flying simulation. Cyberpsychol Behav 5: 11-18.
- 92. So RH, Lo WT, Ho AT (2001) Effects of navigation speed on motion sickness caused by an immersive virtual environment. Hum Factors 43: 452-461.
- 93. So RHY, Lo WT (1998) Cybersickness with Virtual Reality Training Applications: a claustrophobia phenomenon with head mounted displays? First World Congress on Ergonomics for Global Quality and Productivity 209-212.
- 94. Lo WT, So RH (2001) Cybersickness in the presence of scene rotational movements along different axes. Appl Ergon 32: 1-14.
- 95. Lampton DR, Kolasinski EM, Knerr BW, Bliss JP, Bailey JH, et al. (1994) Side effects and after effects of immersion in virtual environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 38: 1154-1157.

- 96. Steinicke F, Bruder G (2014) A Self-Experimentation Report about Long-Term Use of Fully-Immersive Technology. Proceedings of the 2nd ACM symposium on Spatial user interaction 66-69.
- 97. Pölönen M, Aaltonen V, Nyman G, Häkkinen J (2008) Influence of the monocular near-to-eye display position on the visual system during dual-task performance. Journal of the Society for Information Display 16: 1083-1087.
- 98. Solimini AG, Mannocci A, Di Thiene D, La Torre G (2012) A survey of visually induced symptoms and associated factors in spectators of three dimensional stereoscopic movies. BMC Public Health 12: 779.
- Di Zio P, Lackner JR (1992) Spatial orientation, adaptation and motion sickness in real and virtual environments. Presence: Teleoperators and Virtual Environments 1: 319-328.
- 100. Patterson R, Winterbottom MD, Pierce BJ (2006) Perceptual issues in the use of head-mounted visual displays. Hum Factors 48: 555-573.
- 101. Fergason JL (1998) Optical system for a head mounted display combining high and low-resolution images.
- 102. National Research Council (1995) Virtual reality: scientific and technological challenges. National Academies Press, Washington.
- 103. Melzer JE, Brozoski FT, Letowski TR, Harding TH, Rash CE (2009) Guidelines for HMD design. In: Rash CE, Helmet-Mounted Displays: Sensation, Perception and Cognition Issues. Army Aeromedical Research Laboratory Fort Rucker, USA, 805-848.
- 104. Moffitt K (2011) Designing HMDs for viewing comfort. In: Melzer JE, Moffitt K, Head-Mounted Displays: Designing for the User. North Charleston, USA, 117-145.

- 105. Cakmakci O, Rolland J (2006) Head-Worn Displays: A Review. Journal of Display Technology 2: 199-216.
- 106. Task HL (2011) HMD image source, optics, and the visual interface. In: Melzer JE, Moffitt K, Head-Mounted Displays: Designing for the User. North Charleston, USA, 55-82.
- 107. Turner M, Love S (2003) Individual differences in user experience of head mounted displays: personality and visuo-spatial attention effects. In: de Waard D, Brookhuis KA, Sommer SM, Verwey WB, Human Factors in the Age of Virtual Reality. Shaker Publishing, Maastricht, Netherlands 31-42.
- Ciuffreda KJ, Levi DM, Selenow A (1991) Amblyopia: Basic and Clinical Aspects. Butterworth-Heinemann, Boston, USA.
- 109. Reason JT, Brand JJ (1975) Motion Sickness. Academic Press, London, England.
- 110. Kennedy RS, Lanham SD, Massey CJ, Drexler JM (1995) Gender differences in simulator sickness incidence: implications for military virtual reality systems. Safe Journal 25: 69-76.
- 111. La Viola JJ Jr (2000) A Discussion of Cybersickness in Virtual Environments. SIGCHI Bulletin 32: 47-56.
- 112. Smart LJ Jr, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Human Factors 44: 451-465.
- 113. Regan EC, Price KR (1993) Some side-effects of immersion virtual reality: The effects of increasing head movements, of rapid interaction, and of seating subjects. Army Personnel Research Establishment, Farnborough, UK.

