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Introduction
In recent years, Virtual Reality (VR) has become more 

commonplace, with rapid adoption into daily life. VR is a 
non-invasive simulation technology that provides an im-
mersive, realistic, three-dimensional (3D) computer-sim-
ulated environment in which people perform tasks and 
experience activities as if they were in the real world. The 
most direct experience of VR is provided by fully immer-
sive VR systems. The most widely adopted VR systems dis-
play is a simulated environment through special wearable 
head-mounted visual displays (HMDs). HMDs have evolved 
over the past five years from tethered systems comprising 
of screens and lenses fitted into a helmet, to relatively in-
expensive systems that utilize mobile smart devices and fit 
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Abstract
Objectives: To investigate Visually-Induced Motion Sickness 
(VIMS) and visual effects associated with the Head-Mounted 
Displays (HMDs) most commonly used in Virtual Reality (VR) 
systems.

Methods: A comprehensive search query was performed 
on the Medline/PubMed, EMBASE, CENTRAL, ACM Digital 
Library, and IEEE Xplore databases. We identified popu-
lation-based studies that evaluated HMDs as an indepen-
dent factor for visual discomfort. Potential variables relevant 
to HMD discomfort, including system features (e.g. optical 
characteristics), subject characteristics (e.g. gender), and 
task characteristics (e.g. duration, vection, and task con-
tent) were reviewed. Total severity scores of Simulator Sick-
ness Questionnaires (SSQT), oculomotor scores of Simu-
lator Sickness Questionnaires (SSQO), and Visual Strain 
Questionnaires scores (VSQ) were used to measure HMD 
discomfort impact.

Results: We analyzed data for 1040 participants from a total 
of seventeen studies, all published between 1998 and 2015. 
Our review demonstrated that exposure to HMDs resulted 
in higher SSQT and SSQO mean change scores, compared 
with exposure to traditional displays such as TV and desk-
top computer displays. Furthermore, HMD exposure dura-
tion had a significant impact on the mean change scores 
of SSQT, SSQO, and VSQ. Our analysis also showed that 
HMD discomfort was affected by all three of the variables 
we evaluated.

Conclusion: This meta-analysis qualifies the risk factors 
causing discomfort after exposure to HMDs. We recommend 
that HMD manufacturers increase their awareness of, and 
address, these visual discomfort issues in their products.
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Abbreviations
HMD: Head-Mounted Display; NED: Near-to-Eye Display; 
VE: Virtual Environment; VR: Virtual Reality; 2D: Two-Di-
mensional; S3D: Stereoscopic Three-Dimensional; IPD: 
Inter-Pupillary Distance; FOV: Field of View; VIMS: Visu-
ally-Induced Motion Sickness; D: Disorientation; O: Oculo-
motor disturbance; N: Nausea; SSQ: Simulator Sickness 
Questionnaire; VSQ: Visual Strain Questionnaire; DK2: De-
velopmental Kit 2; CI: Confidence Interval; SS: Simulator 
Sickness
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aids in removing motion blur) and more advanced po-
sitional tracking allowing for precise movement, when 
compared to its predecessor. FOVE has introduced eye 
tracking with real time foveal rendering to improve user 
experience. HMD technology advancement and cost re-
duction has increased its potential for widespread use.

Visually induced motion sickness (VIMS) or simulation 
sickness, remains an obstacle to the widespread adoption 
and commercial development of technologies associated 
with VR based HMDs [3,4]. With occlusive HMD systems, 
which by definition, is the distinguishing factor of virtual 
reality vs. augmented and mixed reality systems, a user is 
dependent on the VR system for sensory input. This de-
pendency involves synchrony in sensory input, and the lack 
of this synchrony lends to visual-vestibular mismatch. The 
symptoms of visual-vestibular mismatch include nausea, 
stomach discomfort, disorientation, postural instability 
and visual discomfort.

It is commonly accepted that the symptoms of nau-
sea and instability result from various sensory input 
conflicts, including conflicting position and movement 
cues, leading to a disharmonious effect on the visual 
and vestibular systems [5,6]. In addition, specific types 
of HMDs might have mismatch problems with the user’s 
visual system due to improper optical design, resulting 
in convergence-accommodation conflict and visual dis-
comfort or fatigue [7-13].

into a light weight lens system. The optics within the HMDs 
vary from monocular (one eye view), binocular (both eyes 
view screen) and dichoptic (both eyes view different 
screen/image or image can be stereoscopic, adding depth 
cues). Recent advancements in hardware have included 
eye tracking and the use of multifocal optics.

Although HMDs have recently been introduced to 
the general public, they are not a new phenomenon (Ta-
ble 1). As early as the 1960s, computer graphics pioneer 
Ivan Sutherland developed the first HMD, which made 
it possible to overlay virtual images on the real world 
[1,2]. HMD technology gradually evolved through the 
1970s with use across military, industry, scientific re-
search and entertainment domains. The early commer-
cially available HMDs had limited applications due to 
their narrow Field-Of-View (FOV) and inherent cumber-
someness in weight, physical restrictions, and system 
parameters. Recent advancements have been directed 
toward making HMDs more comfortable for longer du-
ration of use. Recent HMD products including Samsung 
Gear, HTC Vive, Oculus Rift, FOVE, and Google Daydream 
have become commercially available and increasingly 
commonplace as a result of technical advancements. 
For example, the latest version of the Oculus Rift at this 
time, the Development Kit 2 (DK2), has a higher resolu-
tion, higher refresh rate (i.e., the frequency with which 
a display’s image is updated), lower persistence (which 

Representative 
HMDs

Year Weight 
(g)

FOV (°) horizontal/
vertical/diagonal

Resolution 
(pi × els)

Luminance 
(cd/m2)

Inter-
ocular 
dist (mm)

Luminance 
difference 
(%)

Vertical 
misalignment 
(°)

Virtual Research 
Flight Helmet

1991 1670 100° diagonal 360 × 40 - - - -

Virtual research V6 1995 821 60° diagonal 370 × 277 - 52 - 74 - -
Virtual research V8 1998 820 60° diagonal 640 × 480 - 52 - 74 - -
Virtual Vision Sport c.1993 140 17.3° horizontal 160 × 250 3.9 - - -
Sony Glasstron 
PLM-50

1996 - 33.75° diagonal - - - - -

Division PV100 1998 - 60° × 46.8° - - - - -
ProView™ × L 50 1998 - 35° diagonal 1024 × 768 - - - -
Virtual I/O 
i-glasses™

1995 226 30° × 23.6° 263 × 230 38 60 - -

Visette 2 2000 - 105° × 41° - - - - -
EyeTrek FMD-700 2000 105 28.5 × 21.1 × 35.5 800 × 600 - - - -
Emagin Z800 
3DVisor

2005 226.8 40° diagonal 800 × 600 - - - -

EMG iTheater BP4L 2005 78 23.2° × 17.4° × 29.0° 320 × 240 136 63 22 0.5
MicroOptical MyVu 
MA-0341

2006 70 12° × 8.8° × 14.9° 320 × 240 97 62 5 0

Vuzi × iWear AV920 2008 82 22.7° × 17.6° × 28.7° 640 × 480 24 63 3 0.8
Zeiss Cinemizer 
1488-603

2008 115 20.8° × 15.4° × 25.9° 640 × 480 72 62 14 0.1

NVIS nVisor S × 
111

2010 1300 102° × 64° 1280 × 1024 - 55-73 - -

Google Glass 2013 50 14° diagonal 640 × 360 - - - -
Oculus Rift DK 1 2012 220 110° horizontal 640 × 800 - - - -
Oculus Rift DK 2 2014 320 100° horizontal 960 × 1080 - - - -
InViso e-case 2000 - 34 diagonals 800 × 600 109 - - -
InViso e-shades 2000 - 32 diagonals 800 × 600 78 - - -

Table 1: Optical characteristics of representative head mounted displays in the systematically reviewed articles.
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tual Virtual Environment (VE) immersion; rather, visual 
changes including visual fatigue, reduced visual acuity 
and heterophoria may continue after terminating expo-
sure to HMD-based VE [25,32-34].

Meta-analysis and Systematic Reviews on the 
Role of HMDS in Visual Discomfort

As a result of the recent advancements in the in-
dustry of virtual technology, the growing side effects 
associated with it require thorough documentation and 
characterization. To our knowledge, there has been no 
review article on the role of HMDs in visual discomfort. 
The current existing body of literature shows mixed 
results and different roles for different influential vari-
ables. While some HMDs studies have found significant 
negative impact on visual comfort, others have not. 
Biocca suggested that the cause of VR-induced sickness 
could be a technical problem, which would disappear 
as the technology advanced [35]. Unfortunately, this 
has not been the experience so far as technological ad-
vancements have not significantly reduced visual prob-
lems [12,13,36-47] (Table 2). Therefore, the extent to 
which HMD design impacts visual discomfort is unclear.

We conducted a meta-analytic review of publica-
tions related to the visual effects of HMDs. By compil-

Early evaluation of the side effects of HMDs showed 
variable and inconsistent results. Notably, Peli reported 
no objective functional visual differences between HMDs 
and conventional desktop computer displays [14].

Conversely, other early studies reported high inci-
dence of visual discomfort including eyestrain, dry eye, 
tearing, foreign body sensation, feeling of pressure in 
the eyes, aching around the eyes, headache, blurred vi-
sion, and difficulty in focusing. For example, Mon-Wil-
liams, et al. found that following a 10-minute exposure 
to a stereoscopic VR display, 60% of study participants 
reported symptoms of eyestrain, headache, and nausea 
[15]. This finding has been confirmed in a number of 
more recent studies [16-26].

Other visual problems such as myopia, heterophoria, 
fixation disparity, accommodation-vergence disorders, 
and abnormal Tear Break-Up Time (TBUT) also have 
been reported [15,18,20,21,24,27,28]. Using HMDs may 
cause accommodative spasm that in turn may lead to 
a transient myopia [20]. Continued conflict between 
convergence-accommodation, the user’s Inter-Pupil-
lary Distance (IPD), and/or the systems’ Inter-Opti-
cal Distance (IOD) may lead to heterophoria and fixa-
tion disparity changes [15,20,29-31]. Moreover, visual 
symptoms are not necessarily limited to the time of ac-

Table 2: Summary of empirical data from head mounted display meta-analysis studies.

Author Country Subjects
Male
Female

Mean age
Age range 
(years)

HMDa (s) Used Time of 
exposure

Results

Jaeger [48] USA 60
42M
18F

(18 - 40) Unidentified
HMD

13 - 23 min Females were significantly more affected 
than males by simulator activities. 
Longer time intervals were associated 
with significantly greater symptoms 
of SSb and perceived discomfort. 
Comparison of scores between distance 
judgment and movement production 
activities produced no significant results. 
Individuals who used the static simulator 
were significantly more affected than 
those with similar exposure times in the 
dynamic simulator.

Blom [45] Spain 31
13M
18F

27.3 ± 7.1 NVIS nVisor 
SX111

Two 
exposures 
of 6 - 7 min

Limited evidence of sickness, including 
rotated conditions. This may be due to 
improved technologies or differences 
in tasks, or it may be because in our 
experiment participants had a virtual body.

Kolasinski [49] USA 40
20M
20F

22.7 ± 4.7 
(19 - 46)

i-glasses™ 20 min Sickness could be severe and may 
involve lingering and/or delayed effects. 
Gender differences in mean sickness 
scores were not statistically significant. A 
significant negative correlation between 
IPDc and eyestrain symptoms and 
between sickness scores and final level 
reached in Ascent.

Moss [34] USA 80
30M
50F

19.5
(18 - 24)

ProView™ XL 50 Varied Compared with no added delay, an 
additional 200 ms of display delay did 
not result in increased SS. However, 
SS was greater when peripheral vision 
was occluded than when it was not. 
Peripheral vision moderated the effects 
of image scale factor and delay on head 
movement velocity.

https://doi.org/10.23937/2378-346X/1410085
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aHMD: HZead-Mounted Display; bSS: Simulator Sickness; cIPD: Inter-Pupillary Distance; dVE: Virtual Environment; eNED: Near to 
Eye Display; fVIMS: Visually-Induced Motion sickness.

Ehrlich [50] USA 57
23M
34F

22.8 ± 5.1
(18 - 43)

Various 
unidentified 
HMDs

Not Stated Dropouts experienced significantly 
more nausea than did finishers. The 
most severe symptom for dropouts 
was primarily disorientation followed by 
nausea. For finishers the most severe 
symptom was also disorientation but 
followed equally by either nausea or 
oculomotor discomfort.

Stanney [32] USA 60 Not Stated Virtual Research 
V6

15 - 45 min Subjective symptomatology experienced 
by users after VEd exposure is 
substantial, persistent and statistically 
significant.

Stanney [33] USA 34
20M
14F

25.8 ± 4.7 Kaiser Electro 
- Optics Virtual 
Immersion

30 min When post-discomfort was compared 
to a pre-baseline, participants reported 
more sickness afterward. Change in felt 
limb position resulted in subjects pointing 
higher and slightly to the left; the latter 
difference was not statistically significant.

Ling [43] Netherlands 86 28.0 ± 6.3 
(18 - 70)

eMagin Z800 17 min No significant effect of stereoscopy on 
simulator sickness compared with non-
stereoscopic viewing conditions. No 
significant correlation between SS score 
and level of presence.

Lubos [46] Germany 27
9M
18F

21.78
(19 - 25)

Oculus Rift DK1 36 min Increase in simulator sickness over the 
experiment time was significant.

Lubos [47] Germany 12
9M
3F

25.33
(19 - 36)

Oculus Rift DK1 26 min No significant effect of increase in 
simulator sickness over the experiment 
time.

Draper [51] USA E1:11
6M
5F

E2:10
6M
4F

E1:28.5 
(19 - 39), 
E2:27.4 (23 
- 36)

Virtual i/O 
i-glasses™

10, 20, 30 
min

SS symptoms were significantly greater 
in minification (0.5) and magnification 
(2.0) image scale factor conditions than 
in neutral condition (1.0). SS did not vary 
with time delay changes.

Pölönen [52] Finland 78
38M
40F

33.5
(21 - 53)

iTheater 40 min NEDe use induced slight sickness, but 
many of these shortcomings could be 
diminished with improved NED headset 
ergonomics and display quality.

Pölönen [37] Finland 97
48M
49F

33.8
(23 - 45)

iTheater, MyVu, 
Vuzix, Zeiss

40 min All NEDs induced eyestrain and sickness 
symptoms; magnitude of these symptoms 
varied according to the device. Adverse 
symptoms were related to problems 
with the display optics and design, text 
layout, headset fit, use context, individual 
differences.

Merhi [53] USA 24
13M
11F

22
(17 - 35)

Visette - Pro up to 50 min Commercial console video game systems 
can induce motion sickness.

Sharples [54] UK 71
38M
33/F

Not Given Virtual research 
V8

30 min Higher reported symptoms (nausea) in 
HMD compared with desktop viewing 
and in HMD compared with reality theatre 
viewing (nausea, oculomotor symptoms, 
disorientation).

Takada [44] Japan 13 23 ± 6.2 iWear AV920 2 min 3-D movies can affect lateral body sway, 
thereby causing VIMSf.

Järvenpää [39] Finland 232
123M
109F

34.5
(21 - 53)

Five unidentified 
HMDs, likely 
including HMDs 
from Toni 
Järvenpää [50]

40 min, 95 
min

Determination of NED characteristics helps 
to predict the subjective experiences, 
but the nature of the relation between 
subjective and objective findings is complex 
and depends on several NED-, user- and 
task-related features.

https://doi.org/10.23937/2378-346X/1410085
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Only papers from peer-reviewed journals and large 
national conference proceedings were selected for in-
clusion in our study. For the relevant trials lacking data, 
we also attempted to contact the corresponding author 
by email for further unpublished but potentially rele-
vant data; none of these contacts resulted in receipt of 
additional data. Unpublished data and abstracts were 
not included. No language restrictions were imposed.

The inclusion criteria consisted of any of the follow-
ing: (1) Human studies evaluating visual system-relat-
ed problems in HMD-based VE, (2) Studies involving 
self-reported questionnaires (SSQ and VSQ). Studies for 
visual problems without HMD-based VE, case studies 
with fewer than three participants, or studies without 
enough data to evaluate the impact of HMDs on visual 
discomfort were excluded.

Evaluation methods of HMD-induced VIMS and vi-
sual discomfort

Visually Induced Motion Sickness (VIMS) can be mea-
sured by psychological and physiological methods. The 

ing data from multiple independent studies, this study 
allowed for a broad review and large population sam-
ple size in assessing the role of HMDs in visual discom-
fort. Furthermore, we systematically reviewed factors 
that might potentially affect the role of HMDs in visual 
discomfort. These factors included the characteristics 
of the systems, the participants (i.e., gender), and the 
tasks (i.e., duration, vection, and content).

Methods

Study selection
We performed an extensive and systematic review 

of scientific literature. The database search included 
Medline/PubMed (US National Institutes of Health/Na-
tional Library of Medicine), Embase (Elsevier), ProQuest 
Central, ACM Digital Library (Association for Computing 
Machinery), and IEEE Xplore Digital Library (Institute of 
Electrical and Electronics Engineers). These databases 
were searched using the following keywords: VR, virtual 
environment (VE), HMDs, VIMS, SS, SSQ, VSQ, visual fa-
tigue, and visual problems.

         

Figure 1: A forest plot diagram of mean change of the total severity score of simulator sickness questionnaire (SSQT) in 
pre- and post-HMDs exposure (Chi2 = chi-square statistic; CI = confidence interval; df = degrees of freedom; I2 = I-square 
heterogeneity statistic; IV = inverse variance; SE = standard error; P = P value; Z = Z-statistic).

https://doi.org/10.23937/2378-346X/1410085
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by HMDs is often connected to visual symptoms, the Vi-
sual Strain Questionnaire (VSQ), a more detailed visual 
strain-related questionnaire, was used to measure the 
severity of eyestrain symptoms (e.g. tired, sore or ach-
ing, irritated, watering or runny, dry, hot and burning 
eyes; blurred or double vision; and general visual dis-
comfort) [57]. 57 These symptoms of eyestrain are also 
often connected to computer vision syndrome [58-61]. 
In this study, the SSQ and VSQ were used to verify the 
occurrence of VIMS. Figure 1, Figure 2, Figure 3, and Fig-
ure 4 compare the mean score of SSQT, SSQO, and VSQ 

Simulator Sickness Questionnaire (SSQ), a self-reported 
measurement, is a well-known psychological method 
and the gold standard for measuring the extent of VIMS 
[4,55]. The questionnaire consists of three components: 
nausea (SSQN), disorientation (SSQD), and oculomotor 
symptoms (SSQO). The total score of SSQ (SSQT) is an 
aggregate score of the three components.

The SSQ contains 16 items (i.e general disomfot, fa-
tigue, eye strain, nausea), and each item is scored on a 
4-point scale in which 0 = none, 1 = slight, 2 = moderate 
and 3 = severe [56]. Given that the discomfort caused 

         

Figure 2: A forest plot diagram of mean change of the oculomotor scores of a simulator sickness questionnaire (SSQO) in 
pre- and post-HMDs exposure (abbreviations are the same as those in Figure 1).

         

Figure 3: A forest plot diagram of mean change of the scores of visual strains questionnaire (VSQ) in pre- and post-HMDs 
exposure (abbreviations are the same as those in Figure 1).

https://doi.org/10.23937/2378-346X/1410085
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exposure session in order to perform a between-group 
analysis. For studies with multiple measures of visu-
al discomfort, we included only the SSQ and VSQ out-
comes in the meta-analysis.

Statistical analysis

All statistical analyses were performed with Review 
Manager Version 5.3 (The Cochrane Collaboration, Ox-
ford, England), using two-tailed p values and a 95% Con-
fidence Interval (CI). For generic inverse variance out-
comes, the mean difference was analyzed. Meta regres-
sion was performed, and heterogeneity was explored 
using the Q test with calculating I2, indicating the per-
centage of variability due to heterogeneity rather than 
to chance. I2 values of 50% or more were considered 

respectively between the various studies analyzed.

Procedure
The following variables listed below were used for 

primary outcomes. Mean change refers to the differ-
ence in SSQT scores between difference HMD devices 
(i.e. oculus rift versus FOVE).

(1) Mean change in symptom scores between differ-
ent HMD-based VE.

(2) Comparison of mean change in symptom scores 
between HMDs and other traditional displays.

The visual impact of HMDs was used as the effect 
size in the meta-analysis. For multiple session VE expo-
sure studies, we used only the data from the first VE 

         

Figure 4: A forest plot diagram of sensitivity analyses of the mean change of the total severity score of SSQT in pre- and post- 
HMDs exposure (abbreviations are the same as those in Figure 1).

         

Figure 5: The flow chart of the process of article selection.

https://doi.org/10.23937/2378-346X/1410085
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Effect of HMDs on VIMS and visual discomfort
The forest plots show that the visual discomfort was 

significantly different in pre- versus post-VR exposure 
(Figure 1, Figure 2, and Figure 3). The results show mean 
difference of 11.54 (95% CI 7.44 to 15.64; P < 0.00001), 
7.67 (95% CI 3.76 to 11.58; P = 0.0001) and 1.07 (95% CI 
0.8 to 1.35; P < 0.00001) for the SSQT, SSQO and VSQ, 
respectively.

In order to investigate the possible role of publi-
cation year, we undertook a sensitivity analysis by ex-
cluding the four studies published before 2000. Older 
publications assessed older HMDs; consequently, their 
results may have been skewed in favor of greater VIMS. 
This analysis showed a mean difference of 8.29 (95% CI 
4.80 to 11.77; P < 0.00001) for SSQT in pre- versus post- 
VR exposure (Figure 4).

Comparison of HMD exposure versus traditional 
displays

Only four studies provided adequate information for 
meta-analysis of visual discomfort in HMDs compared 
to traditional displays (i.e., TV, desktop computer dis-
plays, or other 2D viewing condition) [37,39,43,54]. The 
forest plots show that the mean differences of SSQT 
and SSQO in HMDs versus traditional displays were 3.62 
(95% CI 1.47 to 5.78; P = 0.001), and 4.78 (95% CI 1.51 
to 8.05; P = 0.004) respectively; these results were sta-
tistically significant (Figure 6 and Figure 7).

substantial heterogeneity. The fixed-effects model was 
used to pool the data. A random-effects model was ap-
plied when P < 0.1 in the test for heterogeneity, and the 
fixed-effects model was used for other cases [62].

Results

Results of database search
Figure 5 shows the flow chart of the selection pro-

cess for the reviewed studies. Of 69 potentially relevant 
studies identified through the electronic search, 34 pub-
lications met all the inclusion criteria. After excluding 17 
articles because specific data for SSQ or VSQ were not 
provided, 17 studies with 1040 participants remained 
for inclusion in the meta-analysis. The smallest sample 
size in an included article was twelve [47], and the larg-
est was 232 [39]. All 17 studies were published between 
1998 and 2015. Eight were performed in the USA; three 
in Finland; two in Germany; and one each in the United 
Kingdom, Japan, Spain, and the Netherlands.

Characteristics and quality of trials
Table 2 provides a description of the pre- versus 

post-exposure mean score changes of SSQT, SSQO and 
VSQ. These were analyzed in seventeen, seven, and three 
studies, respectively. In three studies, the mean SSQT and 
SSQO score changes in exposure to HMDs and traditional 
displays also were included in the meta-analysis.

         

Figure 6: A forest plot diagram of HMDs versus the traditional displays (TV, desktop, or other 2D viewing condition) for the 
mean change of the total severity score of SSQT (abbreviations are the same as those in Figure 1).

         

Figure 7: A forest plot diagram of HMDs versus the traditional displays (TV/desktop) for the mean change of the oculomotor 
scores of SSQO (abbreviations are the same as those in Figure 1).

https://doi.org/10.23937/2378-346X/1410085
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Table 3: Experimental studies investigating causative factors of HMD-induced motion sicknes.

Number of 
Studies

Groups Variables 
investigated

References

26 (1) Studies 
investigating 
variables 
related to 
systems

Display's field-of-
view

Moss [34], Draper [51]

System time delay Moss [34], Draper [51], Nelson [64], St. Pierre [65]
Optical 
characteristic

Aykent [66] 66 Peli [14], Kooi [67], Sheedy [18], Kuze [17], Moss [68], 
Ehrlich [69], Häkkinenl [70], Häkkinen [71] Moffitt [72], Kim [73], Pölönen 
[37], Pölönen [74], Pölönen [52], Howarth [20], Howarth [19], Kozulin [21], 
Vlad [75], Sharples [54], Nichols [22], Järvenpää [38], Järvenpää [39]

20 (2) Studies 
investigating 
variables 
related to 
individuals

Age, gender Jaeger [48], Kolasinski [49], Häkkinen [69], Stanney [33], Kozulin [21], 
Mourant [76]

Posture stability Häkkinen [69], Smart [77], Owen [78], Cobb [79], Stoffregen [80]
Habituation Regan [81], Hill [82], Howarth [83], Kennedy [84]
Personality traits Takada [85], Ehrlich [50], Kotulak [86], Ehrlich [87], Kutsuna [88], 

Morse [89], Stoffregen [80]
28 (3) Studies 

investigating 
variables 
related to task 
characteristics

Dynamic or static 
stimuli

Jaeger [48], Ehrlich [50]

Vection Davis [90], Jang [91], Kuze [17], Smart [77], So [92], So [93], Mourant 
[76], Lo [94]

Duration Jaeger [48], Lampton [95], Kuze [17], Moss [34], Häkkinen [70], 
Stanney [32], Kozulin [21], Kennedy [84], Ames [25], Rushton [24], 
Steinicke [96], Järvenpää [39], Aaltonen [26]

Viewing angle Mon-Williams [30], Pölönen [97]
Task content Jaeger [48], Häkkinen [70], Pölönen [52], Nelson [64], Järvenpää [39]
Sitting or standing Merhi [53], Stoffregen [80], Nichols [22]

Table 4: Eye symptoms related to head mounted display exposure.

Author Country Subjects 
Male
Female

Mean- age
Age- range 
(years)

Head Mounted 
Displays

Evaluation 
methods

Results

Kooi [67] Nether-
lands

8 Not Given Virtual I/O 
i-glasses™
Vision Sport 
monocular

Objective 
measurement

The scores of the accommodative facility 
after viewing the Vision Sport HMDa were 
reduced to nearly half their value, showing 
significant strain. The Virtual io HMD scores 
were intermediate, the monocular version 
being more straining than the binocular 
version. All subjects showed more eyestrain 
with the monocular systems.

Ehrlich [69] USA 48
36M
12F

23.6
(18 - 50)

Virtual Research 
Fight Helmet

SSQ The stereoscopic condition produced 
greater simulator sickness than the bi-
ocular condition.

Howarth [19] UK 20
16M
4F

28
(19 - 42)

Virtual I/O 
i-glasses™

Subjective 
questionnaire

The use of HMDs as personal viewing 
devices more readily induced the specific 
symptoms of virtual simulation sickness.

Peli [14] USA 37
21M
16F

18 - 49 Virtual I/O 
i-glasses™

Subjective 
questionnaire

Objective 
measurement

No functional differences were found 
between HMD and CRTb. Subjective 
comfort found a statistically significant 
difference in the impression of comfort 
between the CRT and the HMD in 
stereoscopic mode.

Nichols
[22]

UK 9
6M
3F

25 Virtuality Visette 
2, Virtual i/O 
i-glasses™
Division dVisor

Subjective 
questionnaire

Participants experienced different levels of 
discomfort in different systems. Ergonomics 
of HMDs were potential causes of 
discomfort.

https://doi.org/10.23937/2378-346X/1410085


ISSN: 2378-346XDOI: 10.23937/2378-346X/1410085

Yuan et al. Int J Ophthalmol Clin Res 2018, 5:085 • Page 10 of 19 •

Howarth [20] UK 41
32M
9F

27
(19 - 56)

Virtual I/O 
i-glasses™
Virtuality Visette 
2, Division dVisor

Objective 
measurement

The use of HMDs in immersive VR can 
lead to changes within the oculomotor 
system. The Virtual I-Glasses and Division 
systems induced exophoric changes (eyes 
turning outwards), Virtuality system induced 
esophoric changes (eyes turning inwards).

Sheedy
[18]

USA 22 22 ± 5.9 (18 
- 39)

Inviso eCase, 
Inviso eShades

Subjective 
questionnaire

Objective 
measurement

Symptoms of eyestrain and blurry vision 
were significantly higher on monocular 
virtual than on other displays. No significant 
changes in visual acuity or heterophoria 
occurred with any of the displays. Motion-
related symptoms with the head mounted 
near-eye display were not significantly 
different from those observed with other 
displays tested.

Häkki-
Nen [70]

Finland 60
36M
24F

26.8
(18 - 41)

Olympus EyeTrek 
FMD-700

Simulator
Sickness 
Questionnaire

Visual
Symptom 
Questionnaire

The stereoscopic condition produced 
slightly increased postural sway and 
sickness symptoms for 20-30 min after 
HMD use.

Häkki-nen 
[71]

Finland 60 27.8
(19 - 48)

Olympus EyeTrek 
FMD-700

Simulator
Sickness 
Questionnaire

No significant differences in sickness 
symptoms compared to ordinary display 
and the virtual display in non-stereoscopic 
mode. In stereoscopic condition the eye 
strain and disorientation symptoms were 
significantly elevated compared to the 
ordinary display.

Kuze [17] Japan 104 (17 - 32) Sony Glasstron 
PLM-50

Subjective 
questionnaire

Viewing stereoscopic images caused visual 
fatigue.

Moss [68] USA 10
2M
8F

20.6 ProView XL50 Simulator
Sickness 
Questionnaire

Peak Simulator
Sickness Questionnaire scores were 
significantly higher when wearing an HMD 
than when not wearing an HMD to view the 
laboratory.

Sharp-les 
[54]

UK 71
38M
33F

Not Given Virtual research 
V8

Simulator
Sickness 
Questionnaire

Higher reported symptoms in HMD 
compared with desktop viewing (nausea) 
and in HMD compared with reality 
theatre viewing (nausea, oculomotor and 
disorientation symptoms).

Kozulin
[21]

Australia 60
29M
31F

11
(5 - 16)

Micro-Optical 
Binocular Viewer

Subjective 
questionnaire

Objective 
measurent

In children aged 5 to 16 years, virtual 
imagery viewing with the Binocular Viewer 
had few additional adverse effects when 
compared to viewing a more conventional 
high definition television display.

Järven
Pää [38]

Finland 120 Not Given iTheater, MyVu, 
Vuzix, Zeiss

Simulator
Sickness 
Questionnaire

Visual
Symptom 
Questionnaire

Small interocular differences in biocular 
NEDs are not easily detected by humans, 
but may still create visual fatigue.

Järven
Pää [39]

Finland 232
123M
109F

34.5
(21 - 53)

Five unidentified 
Head Mounted 
Displays likely 
including HMDs 
from Järvenpää 
[38]

Simulator
Sickness 
Questionnaire

Visual
Symptom 
Questionnaire

The determination of NED’s characteristics 
helped to predict the subjective 
experiences, but the nature of the relation 
between subjective and objective findings 
was rather complex and depended on 
several NED-, user-, and task-related 
features.
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Table 5: Eye symptoms related to vection in a head mounted display environment.

Study HMD Vection Immersion
times (minutes)

Eye symptom

So [93] Virtual 
Research VR4

3D VEa viewing, E1: visual 
scene oscillation in the yaw 
axis (angular velocity was 
30°/second and the range 
of oscillation was ± 60°), E2: 
visual scene was stationary.

20 Total severity scores of SSb questionnaires and 
three SS Questionnaire sub-scores increased 
significantly after both conditions (with and 
without scene movement); with the absence 
of scene movement, these scores were 
significantly less.

Mourant [76] Virtual 
Research VR8

3D VE: virtual driving 
simulator three types: 
highway (60 mphc), rural (60 
mph), city (25 mph)

Participants in the highway (60 mph) or rural 
road (60 mph) virtual environments reported 
more symptoms than those in the city virtual 
environment (25 mph).

So [92] Virtual 
Research VR4

3D VE: Speeds of 3.3, 4.3, 
5.9, 7.9, 9.5, 23.6, 29.6, and 
59.2 m/sd RMSe in the fore-
and-aft axis

30 Vection sensation and sickness symptoms 
increased with increasing navigation speeds 
from 3 m/s to 10 m/s RMS. Beyond 10 m/s 
RMS, both vection and sickness stabilized and 
remained steady as speeds increased further to 
59 m/s RMS.

Lo [94] Virtual 
Research VR4

E1: Scene oscillations along 
different axes (pitch, yaw, 
roll or no oscillation), E2: 
Without scene oscillations

20 Nausea ratings and SS Questionnaire scores 
increased at higher rates in the presence of 
scene oscillations than with no oscillation. 
Overall effects of oscillations along different 
axes were not significant.

Kuze [17] Glasstron PLM-
50

E1: Shaky video, E2: 
Stabilized video

20 Change in eyestrain scores was higher when 
viewing shaky video.

Davis [90] Oculus Rift 
DK 1

Two virtual roller coasters 14 The more realistic roller coaster with higher 
levels of visual flow had a significantly greater 
chance of inducing sickness.

aVE: Virtual Environment; bSS: Simulator Sickness; cmph: Miles Per Hour; dm/s: Meters Per Second; eRMS: Root Mean Square.

Pölönen [37] Finland 97
48M
49F

33.8
(23 - 45)

iTheater, MyVu, 
Vuzix, Zeiss 
Cinemizer Plus

Simulator
Sickness 
Questionnaire

Visual
Symptom 
Questionnaire

In general sickness levels remained low 
after 40 min of immersion. Better headset 
fit, and light structure were related to 
lower total workload, frustration and effort 
levels, and to positive opinion change. 
Higher visual quality and positive opinion 
change were related to more pleasant task 
experiences, whereas sickness and high 
workload led to less pleasant outcomes.

Pölönen [74] Finland 20
10M
10F

34.9
(23 - 53)

iTheater BP4L, 
Zeiss Cinemizer 
Plus, Vuzix Wrap 
920

Simulator
Sickness 
Questionnaire

Visual
Symptom 
Questionnaire

All near-to-eye displays induced eyestrain 
and sickness symptoms, but the magnitude 
of these symptoms varied according to 
the device. The adverse symptoms were 
related to problems with the display optics 
and design, text layout, headset fit, use 
context, and individual differences.

Vlad [75] France 102
65M
37F

25 Prototype HMDs Simulator
Sickness 
Questionnaire

Different stereoscopic displays generated 
different symptoms.

Aykent [66] France 14
12M
2F

24.4 ± 2 OCULUS Rift Subjective 
questionnaire

Objective 
measurement

Modified 
Simulator
Sickness 
Questionnaire

Oculus HMDs could cause more sickness 
in driving simulators, such as Eco2 
driving simulator, than medium field of 
view systems. However, this type of HMD 
may have provided better immersive 
impressions than medium to large files of 
view display systems.

aHMD: Head-Mounted Display; bCRT: Cathode Ray Tube.

https://doi.org/10.23937/2378-346X/1410085


ISSN: 2378-346XDOI: 10.23937/2378-346X/1410085

Yuan et al. Int J Ophthalmol Clin Res 2018, 5:085 • Page 12 of 19 •

sung Gear, FOVE and Google DayDream have already 
entered the market, thus highlighting the importance of 
further research about VIMS. In our meta-analysis and 
systematic review, we have demonstrated through our 
data analysis the presence of significant visual discom-
fort after exposure to HMDs, when compared to tradi-
tional displays, and identified the potential moderating 
factors for this visual discomfort. To our knowledge, this 
is the first comprehensive summary and meta-analysis 
to address this issue.

Although the evaluation methods of HMD-induced 
visual problems varied between studies and in some 
studies the details were not provided, the results of this 
meta-analysis showed that regardless of the evaluation 
methods, the exposure to HMDs has been associated 
with significant visual discomfort. This meta-analysis of 
pre- and post-exposure questionnaires demonstrated 
significant associations between visual impact and the 
mean change scores of total severities of SS, oculomo-
tor score of simulator sickness questionnaires scores 

Systematic review of the different influence fac-
tors of HMD-induced visual discomfort

The previous studies highlighted a number of factors 
that have the potential to cause stress to the visual sys-
tem in HMD-based VR. It seems that the stress on the vi-
sual system is multifactorial [63] (Table 3). We identified 
several studies that reported the effects of HMDs from 
different influence factors. Among these studies, HMDs’ 
optical characteristics (system features), participants’ 
gender (individual characteristics), duration, vection, 
and task content (task characteristics) were systemati-
cally reviewed respectively (Table 4, Table 5, Figure 8, 
Figure 9, and Figure 10).

Discussion
Advances in HMD technology have provided the po-

tential for its widespread use in VR. However, VIMS, as 
an inherent problem, still remains an obstacle to public 
adoption and commercial development of this technol-
ogy. HMD devices, such as Oculus Rift, HTC Vive, Sam-

         

Figure 8: Mean SSQ scores by gender in different studies (higher scores = higher symptom severity). A: SSQT scores; B: 
SSQO scores. Error bars represent standard error of mean.

         

Figure 9: Mean SSQT scores by duration of exposure in different studies. A: SSQT score and exposure duration; B: SSQT 
score and post exposure duration.
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suggest a need for raising public awareness about the 
visual discomfort that individuals may suffer after expo-
sure to HMDs. We recommend that the HMD industry 
and manufacturers address the visual discomfort issue 
before their products become commonly used.

To date, no controlled studies have evaluated the ex-
tent to which user subjective responses are determined 
by characteristics resulting from pre- and post-test 
measures. Young gave subjects SSQ’s either pre- and 
post-VR immersion, or only post immersion. Participant 
reports of sickness after immersion in VR showed high-
er scores when both pre- and post-test questionnaires 
were given to the participants than when only a post-
test questionnaire was used [23]. These results are no-
table because measurements of sickness by both pre- 
and post-self-report questionnaires are significantly bi-
ased due to demand characteristics, and may substan-
tially overestimate the incidence of HMD-induced visual 
discomfort. We suggest that comparative studies of the 
visual effects of HMD-based VEs employ experimental 
designs that are not subject to such biases, or at least 
take measures to balance these biases. Alternatively, 
more objective measures could be used systematically 
in order to evaluate visual effects after HMD exposure.

User Settings Risk Factors
Our systematic review also shows that many factors 

impact HMD-induced VIMS. These factors include the 
characteristics of the device system, the participants in 
the studies we included, and the tasks they were asked 
to perform. Device system variables included viewing 
mode (e.g. monocular, binocular or dichoptic), headset 
design (e.g. fit, weight), optics (e.g. misalignment in the 
optics; contrast, luminance), Field Of View (FOV), and 
time lag (i.e. transport delay). HMD weight has been as-
sociated with the experience of visual discomfort and 

and visual strain questionnaires scores. Furthermore, 
HMD exposure was associated with higher scores of 
mean changes of SSQT and SSQO compared to other 
traditional displays, such as TV and desktop computer 
displays.

Theoretically, HMDs with sub-optimal designs were 
used in the earlier articles, i.e., those published before 
2000. The visual discomfort reported in those papers 
might have been a result of their poor design, rather 
than valid observations. Therefore, the meta-analysis 
from those papers published before 2000 may have sub-
stantially overestimated the incidence of HMD-induced 
visual discomfort. For example, the Virtual Research V6 
HMD used for Stanney’s 1998 study was a mid-range 
display made by the US-based Virtual Research System 
Inc. and had a lower brightness and poorer color pre-
sentation compared to the updated Virtual Research 
V8 HMD used for Sharples’ 2008 study [32,54]. These 
advancements in the manufacturer’s HMD technology 
may have produced a higher mean change of the ques-
tionnaire score when compared to scores from partici-
pants who had used the older Virtual Research V6.

In order to rule out any significant influence from 
the papers published prior to 2000, (i.e., to assess the 
reliability of our meta-analysis), our sensitivity anal-
ysis excluded the four studies published before 2000. 
This exclusion did not change the outcome of our me-
ta-analysis; i.e. the result after eliminating the old pa-
pers was statistically consistent with the result of orig-
inal meta-analysis. Even though these questionnaires 
are self-reported subjective evaluation methods, they 
provide converging evidence that HMD-based VR caus-
es visual discomfort. These findings are consistent with 
a cross-sectional survey of 953 questionnaires related 
to VIMS, in which almost 35% of the respondents re-
ported tired eyes during 3D movies [98]. The results 

         

Figure 10: SSQ and VSQ Change (Post - Pre) are demonstrated after performing different tasks in two studies (higher scores = 
higher symptom severity). A: SSQT change; B: SSQO change; C: VSQ change. Vertical lines represent standard error of mean.
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the type of optics used in HMD systems, single focus 
lens systems vs. multifocal lens systems, with the latter 
lending to more natural adaptive zones for multiple fo-
cal lengths typically encountered in VR environments, 
especially interactive experiences.

High rates of ocular symptoms may be associated 
with certain device characteristics (Table 1). For exam-
ple, the VIMS experienced with the Vuzix may be attrib-
utable to the focal distance of the display (5 m/2.4 m), 
luminance level (24 cd/m2), and vertical misalignment 
(0.8°). Conversely, the low ocular symptom rate in the 
MyVu may be explained by its luminance level (97 cd/
m2), lack of vertical misalignment (0°), physical design 
and assigned tasks. It is essential to note that technical 
advances have reduced obvious problems such as phys-
ical ergonomic issues including HMD weight, system 
time delay, and luminance.

It is also important to note that the conflict between 
visual and vestibular input remains a significant prob-
lem. In other words, the VIMS from HMD exposure is 
not simply a “technical problem” that will be resolved as 
the technology advances. The discomfort from the ves-
tibular-visual mismatch will not resolve unless the mis-
match itself resolves, which may involve a multifactorial 
process of synchronizing sensory inputs dependent on 
hardware specifications and software/content design.

User Individual Risk Factors
Individuals differ in their susceptibility to VIMS [107]. 

Age has been shown to have a significant relationship 
with HMD-related eyestrain symptoms [70]. Children 
2-12 years of age have immature visual systems and 
binocular function that is worse than that of adults; 
this makes children more susceptible to both visual dis-
comfort caused by HMDs and oculomotor side effects 
including reduced visual acuity, amblyopia, or strabis-
mus [21,31,108,109]. Adults with limited fusional rang-
es experienced more visual discomfort, specifically with 
convergent eye movement in response to stimuli in VEs 
(Karpicka E, unpublished data). Therefore, age effect on 
HMDs needs to be further studied and taken into ac-
count in the design of future HMDs. In regard to gender, 
females reported more simulator sickness and more 
often withdrew from HMD-based VEs when compared 
to male participants [16,19,33,48,49,70]. This differ-
ence may be due to under-reporting of susceptibility on 
self-reports by males (so-called “macho effect”) or hor-
monal effects [110]. Other possible explanation for this 
gender difference is that females generally have a wider 
FOV than males, which increases the likelihood of flicker 
perception and sickness susceptibility [111].

People with visual deficits may have an increased 
susceptibility to oculomotor side effects compared to 
those without such deficits, although this has yet to be 
verified experimentally. A past history of motion sick-
ness has also been found to predict susceptibility to 

injury [99]. A key consideration for HMD design must 
be that weight is within the level of human tolerance 
to minimize head and neck fatigue. With the decrease 
in cost of components, HMD design has moved to more 
ergonomic HMD systems, which has been reflected in 
the adoption of mobile systems, such as Samsung Gear 
and Google DayDream.

Symptoms of eyestrain and blurry vision were signifi-
cantly higher in monocular mode than in other modes 
[18,67,72]. The use of HMDs in stereoscopic mode is less 
comfortable than in non-stereoscopic mode [14,17,69-
71]. Spatial properties of the display, i.e., Field of View 
(FOV), may be implicated in producing visual discomfort 
symptoms [34,51]. The FOV studies show that narrow 
FOV (< 50 degrees) reduces the perception of self-mo-
tion and wide FOV (> 100 degrees) may increase the 
presence and level of simulator sickness. Patterson, et 
al. recommend a minimum 60° FOV to achieve a full 
sense of immersion [100].

Device Risk Factors
Resolution contributes to overall image quality but 

also directly affects the users’ experience of VIMS. It is 
often uncomfortable to view low-quality images that 
are noisy or blurry. Anatomically, the central retinal fo-
vea has the highest number of photoreceptors and the 
highest capacity for resolving an image [101]. While the 
limit of human visual resolution is 1 minute of arc at 
the central fovea, few HMDs can achieve this, primarily 
due to current technological limitations. The result can 
be a pixelated experience [101]. It is important to pro-
vide the highest possible resolution in the central field 
of view of the virtual environment to truly simulate a 
real-life experience and mimic the viewing characteris-
tics of human vision. Some devices attempt to achieve 
this by creating a gradient of resolution with the highest 
resolution in the central field of view and the lowest res-
olution at the periphery [101,102]. The potential trade 
off of higher resolution is the overexposure of energy 
from the display, given the proximal distance of the dis-
play to the eyes.

Time lag between an individual’s action and the 
system’s reaction potentially could influence a user’s 
experience of VIMS symptoms, as it affects human 
perception of visual and vestibular cues [33,51,64,65]. 
Therefore, reducing the sensor error of HMD systems 
may minimize the VIMS experience. HMD optical char-
acteristics, such as eye relief (a fixed distance from the 
eyepiece lens to its exit pupil), convergence demand, 
horizontal disparity, vertical misalignment of displays, 
inter-ocular rotation difference, vertical-horizontal 
magnification differences, luminance, focus differenc-
es, temporal asynchrony, focal distance, field curvature 
difference and Inter-Pupillary Distance (IPD), are all 
potential factors that can induce visual discomfort and 
headache when they are poorly aligned or adjusted [37-
39,66,68,73-75,100,103-106]. Another consideration is 
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to activation of different areas of the brain, which may 
make reading more complex than other tasks. Alterna-
tively, reading can affect attention and blink rate, which 
may also contribute to an increase in VIMS. Moreover, 
inappropriate vertical gaze angle may cause increased 
oculomotor changes and visual discomfort [30,97].

Conclusion
Our meta-analysis and systematic review confirms 

that visual discomfort occurs after exposure to current 
HMDs significantly more than after exposure to tradi-
tional displays. The visual discomfort induced by HMDs 
is influenced by the three categories of moderator fac-
tors, which indicates that the discomfort is multi-fac-
torial and poly-symptomatic. It is conceivable that the 
visual discomfort induced by HMDs will diminish gradu-
ally as the quality of design of HMDs improves and the 
technology of the components increases; however, the 
discomfort may not resolve completely until the visu-
al-vestibular mismatch is resolved. VIMS and visual dis-
comfort continue to be obstacles for widespread accep-
tance of HMDs; this increases the importance of further 
research into VIMS. More research is needed to resolve 
visual-vestibular mismatch, and to develop objective 
methods of evaluating and quantifying VIMS symptoms 
such as visual/ocular changes (e.g. ocular movements), 
physiological changes (e.g. changes in heart rate, blink 
rate, EEG [electroencephalography]), and vestibular 
changes (e.g. perceived spatial velocity). More research 
focusing on the user experience is necessary, with rec-
ommended expansion of subjective assessment meth-
ods such as questionnaires (e.g. the SSQ and VSQ).

Furthermore, as the VR market expands from ear-
ly consumer adoption, a burgeoning environment for 
VR-related software has developed. While the emphasis 
of our paper relates to the current hardware limitations 
of HMDs, the authors recommend future research also 
focus on the relationship of software implementation to 
simulation/VR sickness. For example, perceived motion 
in virtual environments is affected by how head motion 
or controls are mapped into the graphical representa-
tion of the virtual environment. To limit some of the 
effects of software-related VIMS, developers may lim-
it movements in certain directions or provide a frame 
of reference. Recent advancements include the usage 
of eye tracking with foveal rendering to simulate re-
al-world object focus in virtual environments [101].

We have proposed recommended guidelines below, 
in part for both hardware and software developers, to 
design accordingly to minimize VIMS. Although there 
are still hurdles related to creating seamless virtual 
environments, there is a lot of promise. Continued re-
search and development of both hardware features and 
software implementation will continue to improve the 
VR experience.

Our meta-analysis has led us to propose a few key 

sickness in HMD-based VEs [49]. Individuals also differ 
in their ability to habituate or adapt to HMD-based VEs 
(i.e. plasticity), with some individuals adapting much 
more readily than others after repeated exposures to 
stimuli [50,81-84,87].

It has been suggested that those with greater plas-
ticity may be less susceptible to VIMS, although the time 
course to adapt may vary. Greater plasticity is associ-
ated with faster symptom reduction on repeated ex-
posures rather than with reduction of initial symptoms 
[81-84]. Thus far, the characteristics of individuals with 
greater levels of plasticity have not been identified, and 
this will require further study.

Other Risk Factors
An individual’s posture may also contribute to VIMS. 

The postural instability theory states that motion sick-
ness occurs with a loss of postural control [112]. In a 
virtual environment setting, there is a sensory conflict 
between the virtual image and the real-world pos-
ture that increases the body’s risk for motion sickness 
[70,77-80,112]. Postural stability relies on input from 
the visual, somatosensory, and vestibular systems. This 
input is processed and then controls two major reflexes, 
including the Vestibular Ocular Reflex (VOR) that main-
tains stability of visual objects on the retina as well as 
the vestibular spinal reflex that maintains body postur-
al stability while an individual is in motion. Conflict be-
tween the visual and vestibular sensory inputs can give 
rise to postural instability (ataxia) as well as to VIMS 
[79]. Postural instability, which has been reported as a 
symptom of HMDs exposure, may last for several hours 
after exposure [70,77-80,85,88]. Special consideration 
for HMD user safety, as related to the risk of postural in-
stability, must be kept in mind. For instance, HMD users 
should allow for adaptation and recovery time before 
engaging in potentially dangerous activities such as driv-
ing, or sports may be in order.

Task characteristics have been also identified as po-
tentially affecting VIMS. The most important of these is 
the duration of exposure to VE. As shown in Figure 9, 
longer exposure to VE increases the incidence of VIMS. 
These symptoms may persist up to 60 minutes after ex-
posure [17,21,24-26,32,34,39,48,70,84,95,96]. Another 
important factor shown to influence VIMS is vection (i.e. 
an illusion of self-motion; Table 5), with faster vection 
resulting in greater sickness symptoms [17,77,91,93] 
Viewing HMD-based VR in a sitting position may reduce 
symptoms, as sitting reduces the demands on postural 
control [22,53,78,113]. More complicated tasks, such as 
reading, may induce total symptom severity scores and 
oculomotor-related symptom scores that are signifi-
cantly higher than those observed with movies or games 
(Figure 10) [39,52,64]. These findings imply that more 
demanding tasks probably will create some degree of 
eyestrain. Increased reading sensitivity, when compared 
to watching a movie or playing a game, might be due 
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2.	 Sutherland IE (1968) A head-mounted three-dimensional 
display. American Federation of Information Processing So-
cieties (AFIPS) Fall Joint Computer Conference Proceedings, 
Thompson Book Company, Washington, USA, 33: 757-764. 

3.	 Kennedy RS, Hettinger LJ, Lilienthal MG (1990) Simulator 
Sickness. In: Crampton GH, Motion and Space Sickness. 
CRC Press, Boca Raton, USA, 317-341. 

4.	 Kennedy RS, Drexler J, Kennedy RC (2010) Research in 
visually induced motion sickness. Appl Ergon 41: 494-503.

5.	 Ukai K, Kibe A (2003) Counterroll torsional eye movement 
in users of head-mounted displays. Displays 24: 59-63. 

6.	 Bles W, Wertheim AH (2001) Appropriate use of virtual en-
vironments to minimise motion sickness. In: Werkhoven P, 
Breaux R, What is essential for virtual reality systems to 
meet military human performance goals? Soesterberg, The 
Netherlands. 

7.	 Peli E (1990) Visual issues in the use of a head-mounted 
monocular display. Opt Eng 883-892. 

8.	 Kooi FL, Toet A (2004) Visual comfort of binocular and 3D 
displays. Displays 25: 99-108. 

9.	 Ukai K, Howarth PA (2008) Visual fatigue caused by view-
ing stereoscopic motion images: Background, theories, and 
observations. Displays 29: 106-116. 

10.	Menozzi M (2000) Visual ergonomics of head-mounted dis-
plays. Japanese Psychological Research 42: 213-221. 

11.	Urvoy M, Barkowsky M, Le Callet P (2013) How visual fa-
tigue and discomfort impact 3D-TV quality of experience: 
a comprehensive review of technological, psychophysical, 
and psychological factors. Ann Telecommun 68: 641-655. 

12.	Howarth PA (2011) Potential hazards of viewing 3-D ste-
reoscopic television, cinema and computer games: a re-
view. Ophthalmic Physiol Opt 31: 111-122. 

13.	Bando T, Iijima A, Yano S (2012) Visual fatigue caused by 
stereoscopic images and the search for the requirement to 
prevent them: A review. Displays 33: 76-83. 

14.	Peli E (1998) The visual effects of head-mounted display 
(HMD) are not distinguishable from those of desk-top com-
puter display. Vision Res 38: 2053-2066.

15.	Mon-Williams M, Wann JP, Rushton S (1993) Binocular vi-
sion in a virtual world: visual deficits following the wearing 
of a head-mounted display. Ophthalmic and Physiological 
Optics 13: 387-391. 

16.	Lampton DR, Rodriguez ME, Cotton JE (2000) Simulator 
sickness symptoms during team training in immersive virtu-
al environments. SAGE 44: 530-533.

17.	Kuze J, Ukai K (2008) Subjective evaluation of visual fa-
tigue caused by motion images. Displays 29: 159-166. 

18.	Sheedy J, Bergstrom N (2002) Performance and comfort on 
near-eye computer displays. Optom Vis Sci 79: 306-312.

19.	Howarth PA, Costello PJ (1997) The occurrence of virtual 
simulation sickness symptoms when an HMD was used as 
a personal viewing system. Displays 18: 107-116. 

20.	Howarth PA (1999) Oculomotor changes within virtual envi-
ronments. Appl Ergon 30: 59-67.

21.	Kozulin P, Ames SL, McBrien NA (2009) Effects of a 
head-mounted display on the oculomotor system of chil-
dren. Optom Vis Sci 86: 845-856.

22.	Nichols S (1999) Physical ergonomics of virtual environ-
ment use. Appl Ergon 30: 79-90.

observations and recommendations. Our observations 
are as follows:

1.	 Lighter HMDs are associated with a decrease in dis-
comfort;

2.	 Monocular presentations should be avoided, as they 
are associated with more discomfort compared to 
binocular and dichoptic presentations;

3.	 Exposure to VR in sitting position may decrease VIMS;

4.	 Complex visual tasks and reading may increase VIMS 
severity;

5.	 Rapid vection results in an increase in VIMS symptoms.

Our recommendations are as follows:

1.	 Manufacturers need to be attentive to system char-
acteristics of the devices they develop and market;

2.	 Users should be advised that children, women, users 
with visual field defects, postural instability, or past 
history of motion sickness may be especially prone 
to VIMS;

3.	 Inexperienced users are especially susceptible to de-
veloping VIMS, and users are different in their adap-
tation to HMDs;

4.	 Users should be warned to not use HMDs for a long 
period of time, and to take frequent breaks;

5.	 Users should avoid driving or operating heavy ma-
chinery after exposure to VR until VIMS and postural 
instability resolve.
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