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Abstract
Diverse groups of ototoxic agents and gene mutation 
induce hearing disorders. Several studies showed that 
increased oxidative stress, inflammation, and glutamate 
are involved in the initiation and progression of hearing 
disorders. Therefore, reducing these biochemical defects 
before and after exposure to ototoxic agents may prevent 
and improve the management of hearing loss. Previous 
studies with a single agent have yielded variable benefits 
in hearing disorders. This review briefly presents evidence 
for the involvement of oxidative stress, inflammation, and 
glutamate in the initiation and progression of hearing 
disorders. It proposes a novel concept that simultaneous 
elevation of the levels of antioxidant enzymes, dietary 
and endogenous antioxidant compounds, and reduction in 
the levels of glutamate may be necessary for the optimal 
benefits in prevention and improved management of 
hearing disorders. Supplementation with micronutrients can 
elevate the levels of antioxidant compounds and reduce 
the levels of glutamate. However, increasing the levels of 
antioxidant enzymes is complex requiring an activation of 
the nuclear transcriptional factor-2 (Nrf2). This review briefly 
describes the regulation of activation of Nrf2, and proposes 
a micronutrient mixture that can simultaneously activate 
Nrf2, enhance the dietary and endogenous antioxidant 
compounds levels, and inhibit the release and toxicity of 
glutamate for prevention and improved management of 
hearing loss.
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brations, gentamicin, ionizing radiation, cisplatin, large 
doses of aspirin, bacterial and viral infection, gene mu-
tations, and advanced age. In addition, health condi-
tions, such as ear canal obstruction, mechanical damage 
to the tympanic membrane, and ossicles of the middle 
ear and inner ear also contribute to the hearing loss. 
Approximately 48 million Americans have varying de-
grees of hearing loss. Among individuals of 65 years of 
age, one of every three people suffers from this disease. 
Among children, congenital hearing loss is a major hear-
ing disorder that is estimated to be 2-3 cases per 1000 
(Hearing Loss Association of America, 2015). Congeni-
tal hearing defects could be primarily due to cytomeg-
alovirus infection during pregnancy or gene mutation. 
Troops in combat zones, musicians or industrial workers 
are likely to develop varying degrees of hearing loss de-
spite the use of earplugs. Thus, hearing problems rep-
resent a major health concern both for the civilian and 
military in the USA.

Except for ear protective devices, there are no pre-
ventive strategies for reducing the risk of noise-induced 
hearing loss (NIHL). However, despite the use of ear-
plugs, the energy generated from the noise can pen-
etrate the inner ear damaging the hair cells. In order 
to develop an effective preventive strategy, the major 
cellular defects that initiate and promote hearing loss 
should be identified. Several studies of the past decades 
indicate that increased oxidative stress [1-6], inflamma-
tion [7-13], and glutamate [14-16] play a central role 
in the initiation and progression of hearing defects. 
Therefore, reducing these biochemical defects simulta-
neously may be one of the rational strategies for the 
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Introduction
Hearing disorders are caused by diverse groups of 

ototoxic agents, such as chronic and intense noise, vi-
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cytokines, adhesion molecules and prostaglandins, all 
of which toxic are to the cells. Oxidative damage to the 
auditory cells causes release of glutamate. Glutamate 
at high concentration is toxic to the hair cells. Several 
studies show that increased oxidative stress, chronic in-
flammation and glutamate play an important role in the 
initiation and progression of hearing disorders. These 
studies are described under separate sections.

Evidence for the Role of Oxidative Stress in 
Hearing Disorders

Exposure to high intensity noise decreased the levels 
of serum total antioxidant capacity and increased the 
levels of nitric oxide in guinea pigs [42]. Increased nitric 
oxide levels can form peroxynitrite that damages the 
hair cells. Impulse noise exposure also enhanced oxida-
tive stress in some animal studies. The levels of nitric ox-
ide, peroxynitrite, oxidative stress, nuclear factor-kap-
pa-beta (NF-kB), glutamate receptor (N-methyl-D-as-
partate), and calcium are elevated in patients with tinni-
tus [1-3,43-46]. Noise exposure induced approximately 
21 to 42% of tinnitus in humans [4,47,48]. About 34% 
of tinnitus patients had post-traumatic stress disorders 
(PTSDs) [49]. These studies suggested that some com-
mon biochemical defects that cause both tinnitus and 
PTSD might exist in these diseases. Indeed, a recent re-
view has shown that increased oxidative stress occurs in 
patients with PTSD and tinnitus [50].

NADPH (nicotinamide adenine dinucleotide) ox-
idases (NOXs) transport electron across the plasma 
membrane and produce superoxide radicals from oxy-
gen. Exposure to moderate or intense noise increased 
NOXs activities in the cochlea of rats. Treatment of rats 
with diphenyleneiodonium, an inhibitor of NOX, after 
noise exposure, prevented hearing loss [5]. Pravasta-
tin treatment also decreased NIHL by inhibiting NOX 
activity in mice [51]. Frequent exposure to vibration 
also produces hearing disorders. The older guinea pigs 
were two-fold more sensitive to vibration than young-
er animals [49]. The combination of noise and vibration 
during the use of hand-held vibrating tools increased 
the risk of hearing loss in industrial workers [6,52]. In-
creased oxidative stress and chronic inflammation are 
also associated with ageing [53], and age-related co-
chlear structural alterations and degeneration of sen-
sory and neural cells also occurred [54] that resembles 
normal aging. Hearing loss occurred due to increased 
oxidative stress in a model of aging rats. In addition, ac-
cumulation of mutated mitochondrial DNA was found in 
the peripheral and central auditory cells [55-57].

Cisplatin caused hearing loss by generating free rad-
icals. Treatment with this drug significantly depressed 
the levels of antioxidant enzymes, superoxide dismutase 
(SOD), glutathione peroxidase, glutathione reductase, 
glutathione transferase and catalase, and enhanced the 
levels of lipid peroxidation [58]. Carboplatin treatment 

prevention of hearing loss. Several animal studies [17-
24] showed that the use of primarily one antioxidant re-
duced the risk of developing hearing loss by decreasing 
oxidative stress; however, in a few human studies, the 
use of one or a mixture of a few antioxidants or steroid 
produced variable degrees of reduction in hearing loss 
with or without standard therapy [25-31]. The exact 
reasons for this discrepancy between animal and hu-
man studies are unknown. It is possible that a single an-
tioxidant alone may not be sufficient to simultaneously 
reduce oxidative stress, inflammation and glutamate in 
humans exposed to ototoxic agents. In addition, a sin-
gle antioxidant in a high oxidative environment found in 
patients with hearing loss is oxidized and then acts as a 
pro-oxidant rather than as an antioxidant.

The treatment of hearing disorders that includes 
steroids [32,33], glutamate antagonist [34,35], various 
types of hearing aids [36-38], and cochlear implants 
[39,40]. Although these treatments produce varying 
degrees of improvements but they are considered 
unsatisfactory. One of the reasons could be that none 
of these treatment modalities simultaneously reduce 
oxidative stress, chronic inflammation and glutamate 
levels.

A previous study has proposed that simultaneous 
elevation of the levels of antioxidant enzymes, and di-
etary and endogenous antioxidant compounds may be 
necessary for optimally reducing oxidative stress, in-
flammation and glutamate levels in humans [41]. Sup-
plementation with micronutrients can increase the lev-
els of antioxidant compounds and reduce the levels of 
glutamate; however, elevating the levels of endogenous 
antioxidant enzymes is complex that generally requires 
an activation of the nuclear transcriptional factor-2 
(Nrf2).

This review briefly presents evidence for the 
involvement of oxidative stress, inflammation, and 
glutamate in the initiation and progression of hearing 
disorders induced by diverse groups of ototoxic agents. 
This review briefly discusses the regulation of activation 
of Nrf2, and proposes a mixture of micronutrients that 
can simultaneously activate Nrf2, enhance the levels 
of antioxidant compounds, and reduce the levels of 
glutamate for prevention and improved management 
of hearing disorders.

Linkage between ROS, inflammation, and gluta-
mate

Low levels of reactive oxygen species (ROS) are essen-
tial for driving several biochemical reactions necessary 
for maintaining the cellular function; however, high lev-
els of ROS override cellular defense mechanisms against 
oxidative damage, and induce cellular injury including 
damage to DNA, RNA, lipid, and protein. If cellular dam-
age is not fully repaired, chronic inflammation sets in 
motion, which releases free radicals, pro-inflammatory 
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induced cochlear degeneration after bacterial menin-
gitis. Administration of TNF-α antibody reduced men-
ingitis-induced hearing loss in Mongolian gerbils [10]. 
Increased levels of TNF-α were also associated with 
trauma-induced hearing loss. Treatment with dexa-
methasone reduced TNF-α-induced damage to the or-
gan of Corti explants cultures [65]. A study has reported 
that otosclerosis-induced sensorineural hearing loss is 
due to the chronic release of TNF-α from the foci of otic 
capsule [11,66]. Chronic inflammatory reactions pro-
duce sac dysfunction leading to MD [67]. Increased in-
flammation in the elder individuals was associated with 
age-related hearing loss [12] and sensorineural hearing 
loss [13]. Polymorphism of interleukin-6 (IL-6) increased 
the sensitivity of noise-induced hearing disorders in in-
dividuals over the age of 60 years [68].

Evidence for the Role of Glutamate in Hearing 
Disorders

When the hair cells are injured, glutamate trans-
mission responsible for converting vibration sound into 
electrical signal, is enhanced. Glutamate at high con-
centrations is neurotoxic. Damage to the peripheral 
auditory and somatosensory systems causes imbalance 
between excitatory and inhibitory neurotransmitters in 
the mid brain auditory cortex and brain stem. This im-
balance in neurotransmission can cause hyperactivity in 
the auditory cortex leading to the perception of phan-
tom sounds (tinnitus). Intense noise causes release of 
excessive amounts of glutamate that damage the inner 
hair cells-auditory synapses. Kynurenate, a glutamate 
antagonist, protected guinea pigs against NIHL [14]. The 
glutamate-aspartate transporter (GLAST) that plays an 
important role in maintaining the normal levels of glu-
tamate was decreased in the cochlea after exposure to 
noise leading to increased accumulation of glutamate 
in the perilymphs. The resulting increased levels of glu-
tamate were associated with an enhanced rate of pro-

likewise decreased glutathione content [59]. Cisplatin 
treatment also reduced the intracellular levels of nico-
tinamide adenine dinucleotide (NAD+); thereby, inter-
fered with energy metabolism. Activation of NAD (P) H: 
quinone oxidoreductase 1 (NQO1) by beta-lapachone 
that exhibits antioxidant and anti-inflammation activi-
ties, protected against cisplatin-induced ototoxicity by 
increasing the levels NAD+ and sirtuin-1 protein [60].

A role for oxidative stress in Meniere’s disease (MD) 
is supported by the fact that free radical scavengers 
such as rebamipide, vitamin C, and glutathione, when 
administered orally for 8 weeks to patients with poorly 
controlled MD, improved tinnitus and prevented hear-
ing loss [61].

Evidence for the Role of Inflammation in 
Hearing Disorders

Inflammation also plays an important role in hearing 
disorders induced by noise, drugs, and advancing 
age. Noise exposure can damage cochlear function by 
inducing inflammation in animal models [7,62]. This is 
supported by the fact that exposure to noise increased 
the levels of intracellular adhesion molecules and 
migration of leukocytes. Intense noise exposure can 
also activate the nuclear transcription factor-kappaB 
(NF-kB) in the cochlea of mice that causes over-
expression of pro-inflammatory products including 
intracellular adhesion molecule-1 (ICAM-1) and vascular 
cell adhesion molecule-1 (VCAM-1) and inducible nitric 
oxide synthase (iNOS) in the inner ear that contribute to 
the hearing loss [8].

Aspirin and other anti-inflammatory drugs pre-
vented gentamicin-induced hearing loss and improved 
hearing ability [25,63]. Pro-inflammatory cytokines and 
activation of NF-kB contribute to the cisplatin-induced 
ototoxicity in mice and immortalized cochlear cells in 
cuture [9,64]. Tumor necrosis factor-alpha (TNF-α) also 
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Figure 1: Diagrammatic representation of noise-induced hearing loss pathways.
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[18,80] and gentamicin [81,82]. Alpha-lipoic acid treat-
ment protected against NIHL and carboplatin-induced 
hearing loss in animals [19,83,84]. The role of N-acetyl-
cysteine (NAC) in reducing NIHL has been reviewed [42]. 
Treatment with (NAC) significantly reduced noise-in-
duced hair cell loss in cochlear cells of rats and guinea 
pigs [20]. A combination of acetyl-L-carnitine and NAC 
also provided protection against hearing loss induced by 
noise, cisplatin, and aminoglycoside [85,86].

Coenzyme Q10 [21], Idebenone, a synthetic analog of 
coenzyme Q10 [87], and the soluble form of coenzyme 
Q10 were effective in reducing hypoxia-induced hear-
ing loss and in NIHL [88]. The combination of vitamin E 
and idebenone was additive in protecting against NIHL, 
suggesting that these two antioxidants act by different 
mechanisms [89]. Oral administration of MitQ, a mito-
chondria-targeted derivative of ubiquinone, reduced 
gentamicin-induced hearing disorders by protecting the 
cochlea [22].

Vitamin C also protected against NIHL in albino guin-
ea pigs [23]. D-methionine attenuated noise-induced 
oxidative stress and functional loss in the cochlea of 
mice [90]. Treatment with resveratrol reduced NIHL by 
decreasing cyclooxygenase-2 (COX-2) levels [24]. Folic 
acid deficiency induced premature hearing loss by in-
creasing the levels of oxidative stress and homocysteine 
in mice [91]. Indeed, supplementation with folic acid 
reduced hearing disorders by reducing oxidative stress 
and homocysteine levels [92].

Caloric restriction and treatment with individual 
antioxidants, such as vitamin E, vitamin C, acetyl-L-
carnitine, alpha-lipoic acid and melatonin improved 
auditory sensitivity to sound, reduced mitochondrial 
DNA deletion and loss of hair cells in aging rats [93-95]. 
In a mice model of premature aging, age-related hearing 
loss occurred. Treatment with n-acetyl-L-carnitine 
failed to protect against hearing loss in these animals 
[96]. Taken together these reports show that a marked 
degree of protection against NIHL can be attained by a 
variety of antioxidants and related compounds.

Human studies
In a prospective randomized study, intravenous ad-

ministration of magnesium sulfate improved hearing re-
covery in patients with idiopathic sudden sensorineural 
hearing loss [97]. Coenzyme Q10 delayed the progres-
sion of hearing loss in patients with a genetic defect, 
7445A→Gmitochondrial mutation [26]. The use of glu-
tamate antagonists, steroids and antioxidants may be 
useful in the management of hearing loss and tinnitus 
[98]. An oral supplementation with antioxidants (vita-
min E, vitamin C, beta-carotene and phospholipids) re-
duced the subjective discomfort and tinnitus intensity 
in patients with idiopathic tinnitus [27]. NAC protected 
against aminoglycoside-induced ototoxicity in hemodi-
alysis patients [99]. An antioxidant mixture containing 

gression of hearing loss [15]. Treatment with riluzole, 
an inhibitor of glutamatergic neurotransmission, pro-
tected guinea pigs against NIHL [69]. Treatment with 
D (-)-2-amino-5-phosphonopentanoic acid (D-AP5), a 
selective inhibitor of glutamate receptor N-methyl D-as-
partate (NMDA) receptor, attenuated noise-induced 
tinnitus [16]. Diagrammatic representation of noise-in-
duced biochemical events leading to hearing loss is rep-
resented in Figure 1.

Additional pre-clinical and clinical studies should 
be performed to substantiate the role of oxidative 
stress, chronic inflammation, and glutamate in hearing 
disorders, using exposure to noise as an example of 
the ototoxic agent. The levels of markers of oxidative 
damage, pro-inflammatory cytokines, and glutamate in 
the plasma of same subject before and after exposure 
to noise for the prevention studies, and in combination 
with standard care, for improving the management of 
hearing loss studies, should be measured.

Diverse Actions and Cellular Distributions of 
Antioxidants in the Body

The body protects against oxidative damage by an-
tioxidant compounds derived from the diet as well as 
made in the body, and antioxidant enzymes made in the 
body. Antioxidant compounds reduce oxidative stress by 
a mechanism in part different from that of antioxidant en-
zymes. They destroy free radicals by donating electron to 
unpaired state of the free radicals. On the other hand, an-
tioxidant enzymes destroy free radicals by catalysis con-
verting them to the harmless molecules (such as to water 
and oxygen). Some antioxidant compounds also reduce 
chronic inflammation [70-74]. Different antioxidants 
have different affinities for free radicals depending upon 
their location in the cellular compartments. Water-solu-
ble antioxidants such as vitamin C and glutathione pro-
tect molecules in the aqueous environment of the cells, 
whereas lipid soluble antioxidants such as vitamin A and 
vitamin E protect molecules in the lipid environment of 
the cells. Vitamin E was more effective in quenching free 
radicals in a reduced oxygenated cellular environment, 
whereas vitamin C and vitamin A were more effective in a 
higher oxygenated environment of the cells [75]. Vitamin 
C is important for recycling the oxidized form of vitamin 
E to the antioxidant form, [76]. In addition, antioxidants 
produce cell protective proteins by upregulating or down 
regulating different microRNAs [77]. For example, some 
antioxidants can activate Nrf2 by upregulating miR-200a 
that inhibits its target protein Keap1 [78], whereas others 
activate Nrf2 by downregulating miR-21 that binds with 
3-UTR Nrf2 mRNA [78].

Evidence for the Role of Antioxidants in 
Hearing Disorders

Animal studies
Vitamin E treatment reduced cochlear damage in 

NIHL [17,79], and in hearing loss induced by cisplatin 
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(ARE) in the nucleus for increasing the expression of 
its target genes. This binding ability of Nrf2 with ARE 
was impaired in aged rats and this defect was restored 
by supplementation with alpha-lipoic acid [106]. It is 
unknown whether the binding ability of Nrf2 with ARE is 
impaired in hearing disorders.

Activation of Nrf2 by a ROS-independent mecha-
nism

Activation of Nrf2 by ROS becomes impaired during 
chronic oxidative stress found in patients with hearing 
loss [107-109]. This is evidenced by the fact that 
increased oxidative stress occurs in hearing disorders 
despite the presence of Nrf2.

MIcroRNAs Regulating the Activation of Nrf2
Although changes in the expressions of microRNAs 

are being investigated in hearing disorders, this 
section focuses on the role of microRNAs in regulating 
Nrf2 activation. microRNAs (miRs) are evolutionarily 
conserved small non-coding single-stranded RNAs of 
approximately 22 nucleotides in length, and are present 
in all living organisms including humans [110-113]. Each 
micro RNA binds to its complimentary sequences in the 
3’- untranslated region (3’-UTR) of the target mRNA that 
prevents the formation of its protein, and thus, plays 
an important role in regulating cell function. It appears 
that specific microRNAs may regulate the activation of 
Nrf2 by decreasing the levels of Keap1. The complex 
of Keap1-Nrf2 in the cytoplasm prevents activation of 
Nrf2. Over-expression of miR-200a reduced Keap-1 
levels allowing Nrf2 to migrate to the nucleus where 
it binds to the ARE that enhanced the transcription 
of target cytoprotective genes including antioxidant 
enzymes [114]. Increased oxidative stress associated 
with hearing disorders enhanced the expression of miR-
153 and reduced the expression of Nrf2 by binding to its 
3’-UTR region of Nrf2 mRNA [115]. Mutation in miR-153 
restored the oxidative stress-induced reduction in Nrf2 
activity.

Antioxidant Compounds Regulating Activation 
of Nrf2

During chronic oxidative stress, activation of Nrf2 
becomes unresponsive to ROS. Antioxidant compounds 
activate Nrf2 by a ROS-independent mechanism. Some 
of them are listed here.

Antioxidant compounds that activate Nrf2 by a 
ROS-independent mechanism

Some examples are vitamin E and genistein [116], 
alpha-lipoic acid [106], curcumin [117], resveratrol 
[118,119], omega-3-fatty acids, glutathione [120,121], 
glutathione [122], NAC [123], coenzyme Q10 [124], and 
several plant-derived phytochemicals with antioxidant 
activities, such as epigallocatechin-3-gallate, carestol, 
kahweol, cinnamonyl-based compounds, zerumbone, 

reduced glutathione, alpha-lipoic acid, cysteine, and 
other antioxidants improved the symptoms of MD [100]. 
A combination of vitamins A, C and E, and selenium in 
combination with standard therapy improved hearing 
gain more that that produced by standard therapy alone 
in patients with idiopathic sensorineural hearing loss 
[28]. Intravenous administration of high dose vitamin C 
in combination with steroid therapy improved hearing 
gain more than that produced by steroid therapy alone 
[29]. Vitamin E supplementation and carbogen (5% CO2 
+ 95% O2) breathing reduced noise-induced hearing loss 
[30]. A commercial preparation of multiple micronutri-
ents reduced symptoms of tinnitus in humans [31].

In order to optimally reduce oxidative stress and 
inflammation in post-traumatic disorders (PTSDs) and 
traumatic brain injury (TBI), simultaneous elevation 
of the levels of antioxidant enzymes through an 
activation of the Nrf2/ARE (nuclear transcriptional 
factor-2/antioxidant response element) pathway, as 
well as enhancing the levels of dietary and endogenous 
antioxidant compounds may be essential [50]. A similar 
strategy may be needed for reducing hearing loss in 
humans.

Regulation of Activation of Nrf2
Since an elevation of the levels of antioxidant 

enzymes and other cytoprotective enzymes requires 
activation of Nrf2, this factor is briefly reviewed. The 
nuclear transcriptional factor, Nrf2 (nuclear factor-
erythroid-2- related factor 2) belongs to the Cap 
´N´Collar (CNC) family that contains a conserved basic 
leucine zipper (bZIP) transcriptional factor [100]. Under 
physiological condition, Nrf2 is associated with Kelch-
like ECH associated protein 1 (Keap1), which acts as 
an inhibitor of Nrf2 [101]. Keap1 protein serves as an 
adaptor to link Nrf2 to the ubiquitin ligase CuI-Rbx1 
complex for degradation by proteasomes and maintains 
the steady levels of Nrf2 in the cytoplasm. Nrf2-keap1 
complex is primarily located in the cytoplasm. Keap1 
acts as a sensor for ROS/electrophilic stress.

Activation of Nrf2 by a ROS-dependent mechanism
Normally, during acute oxidative stress, ROS is need-

ed to activate Nrf2 which then dissociates itself from 
Keap1- CuI-Rbx1 complex and translocates in the nucle-
us where it heterodimerizes with a small Maf protein, 
and binds with the ARE (antioxidant response element) 
leading to increased expression of target genes coding 
for several cytoprotective enzymes including antioxi-
dant enzymes [102-105]. Thus, activation of Nrf2 during 
acute oxidative stress is likely to protect the cochlea 
from oxidative damage.

Binding of Nrf2 with ARE in the nucleus
Activation of Nrf2 alone may not be sufficient to 

increase the levels of antioxidant enzymes. Activated 
Nrf2 must bind with antioxidant response element 
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antioxidant compounds reduced chronic inflammation 
[70-74,136,137].

Activation of Nrf2 in auditory cells
In Nrf2 deleted mice (-/-) hair cells become more 

sensitive to noise-induced oxidative damage in compar-
ison to wild-type mice. Pre-treatment with an activator 
of Nrf2 preserved integrity of hair cells and improved 
hearing levels in wild-type mice but not in Nrf2 delet-
ed mice (-/-). These results suggest that high activity of 
Nrf2 in chochlear protects against noise-induced hear-
ing loss [138].

Cisplatin can cause hearing loss by increasing levels 
of oxidative damage and pro-inflammatory cytokines 
in hair cells. Pre-treatment with an activator of Nrf2, 
such as Erdosteine [139], flunarizine [140], Ebselen 
[141], Ginkgolide B, a major component of Ginkgo bilo-
ba [142], and phloretin [143] protected hair cells (HE1-
OC1) by reducing oxidative damage, pro-inflammatory 
cytokines, inhibition of pro-apoptotic expression, and 
enhancing the levels of cytoprotective enzymes includ-
ing antioxidant enzymes.

lycopene and carnosol [125,126], genistein [116], 
allicin, a major organosulfur compound found in garlic 
[127], sulforaphane, a organosulfur compound, found 
in cruciferous vegetables [128], and kavalactones 
(methysticin, kavain and yangonin) [129]. The steps 
whereby ROS-independent activation of Nrf2 may be 
protective against hearing loss are depicted in Figure 2.

L-carnitine activates Nrf2 by a ROS-dependent 
mechanism

L-carnitine activates Nrf2 by a ROS-dependent mech-
anism [130], probably by generating transient ROS.

Reducing Oxidative Stress Levels
Activation of Nrf2 may not be sufficient to optimal-

ly reduce oxidative stress, because antioxidants com-
pounds are also decreased during chronic oxidative 
stress [131-133]; therefore, their levels must also be 
simultaneously elevated.

Reducing Inflammation levels
Activation of Nrf2 [134,135] and some individual 

         

Antioxidant
compounds

Activation of ROS independent Nrf2

Binding to and derepression of ARE suite

Increased transcription of genes for
antioxidant and cytoprotective enzymes

Reduced oxidative stress and
inflammatory activity

Hearing protection

Figure 2: Proposed pathway of protection against hearing loss by antioxidant micronutrients.
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of hearing loss in individuals with mutated genes. The 
proposed mixture of micronutrients may be effective 
in preventing or delaying the onset of symptoms of 
hearing disorders in these individuals. This possibility is 
indirectly supported by an experiment on the fruit flies 
described here.

The gene HOP (TUM-1) is essential for the 
development of Drosophila melanogaster (fruit fly). 
A mutation in this gene markedly increases the risk of 
developing a leukemia-like tumor in female flies. In 
collaboration with Dr. Bhattacharya of NASA Moffat 
Field, CA, we observed that whole-body irradiation of 
these flies with proton radiation dramatically increased 
the incidence of cancer compared to that observed in 
un-irradiated female flies. Treatment with a mixture 
of multiple antioxidants before and after irradiation 
blocked the incidence of proton radiation-induced 
cancer in female fruit flies [150].

Secondary prevention
The purpose of secondary prevention is to stop or 

slow the progression of hearing disorders after expo-
sure to ototoxic agents. Individuals who have been 
exposed to such agents, but have not developed any 
hearing problems, and are not taking any medication, 
are suitable subjects for the secondary prevention of 
hearing disorders. The micronutrient mixture suggested 
for the primary prevention studies is also proposed for 
the secondary prevention studies.

Proposed micronutrients mixture in combination 
with standard care

The patients with hearing disorders who are 
receiving standard care are suitable for this study. 
The micronutrient mixture suggested for the primary 
prevention studies is also proposed in combination with 
standard care for the improved management studies.

Conclusions
Published studies suggest that increased oxidative 

stress, chronic inflammation, and glutamate play a key 
role in the initiation and progression of hearing dis-
orders, irrespective of the types of ototoxic agents or 
health conditions. Some antioxidant compounds used 
in animal and human studies to prevent or treat hear-
ing loss may activate Nrf2, but this may not be sufficient 
to optimally reduce oxidative stress, chronic inflam-
mation, and glutamate release. This may be due to the 
fact that the levels of dietary and endogenous antiox-
idant compounds are also depleted in a high oxidative 
environment found in patients with hearing disorders. 
Their levels cannot be increased by supplementation 
with one or two antioxidant compounds. The proposed 
micronutrient mixture may serve to optimally reduce 
oxidative stress and chronic inflammation by simulta-
neously enhancing the levels of antioxidant enzymes 
through activating the Nrf2/ARE pathway, and dietary 

Increased oxidative stress contributes to cochlear 
damage, including age-related hearing loss and gen-
tamicin-induced ototoxicity. The Nrf2-knockout mice 
maintained normal auditory thresholds at an their age 
of 3 months; however, their hearing ability was signifi-
cantly impaired as they grow older (6 and 11 months) 
in comparison to age-matched wild type mice [144]. In 
addition, the number of hair cells and spiral ganglion 
cells was markedly decreased in Nrf2-knockout mice. In 
the explants culture of Corte, treatment with gentami-
cin ehanced the loss of hair cells in Nrf2-deficient tis-
sue more than that found in wild-type mice. Activation 
of Nrf2 occurred only in the wild-type mice, but not in 
Nrf2-knockout mice. These results further suggest im-
portance of Nrf2 in the auditory for protection of hear-
ing disorders.

Reducing Glutamate Levels
Some antioxidants decrease the release of gluta-

mate as well as its neurotoxicity [145-147]. In addition, 
certain B-vitamins can also decreased the release of glu-
tamate [148,149].

Proposed Micronutrients for Reducing Hearing 
Disorders

Because of failure to produce consistent benefit in 
improving the symptoms of hearing disorders with one 
or two micronutrients, a comprehensive micronutrient 
mixture is proposed. This mixture contains multiple di-
etary antioxidant compounds (vitamin A, natural mixed 
carotenoids, vitamin C, vitamin D, vitamin E, curcum-
in, resveratrol), endogenous antioxidants (alpha-lipoic 
acid, L-carnitine, and coenzyme Q10), and a synthetic 
antioxidant N-acetylcysteine (NAC), omega-3-fatty ac-
ids, and all B-vitamins. This mixture of micronutrients 
may optimally reduce oxidative stress and chronic in-
flammation by simultaneously enhancing the levels of 
antioxidant enzymes through activation of the Nrf2/ARE 
pathway, and elevating the levels of antioxidant com-
pounds. The same micronutrient mixture may also re-
duce the release and toxicity of glutamate.

Prevention of Hearing Disorders

Primary prevention

The purpose of primary prevention is to protect 
healthy individuals from developing hearing disorders. 
Older individuals, musicians, industrial workers, troops 
who are likely to be employed in the war zones, 
individuals who are likely to receive certain antibiotics 
for their health conditions, and individuals carrying 
mutations in genes responsible for hearing loss, are 
suitable subjects for the primary prevention studies.

Prevention of hearing loss in individuals carrying 
mutated genes

At present, there are no strategies to delay the onset 
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13.	Masuda M, Kanzaki S, Minami S, Kikuchi J, Kanzaki J, et 
al. (2012) Correlations of inflammatory biomarkers with the 
onset and prognosis of idiopathic sudden sensorineural 
hearing loss. Otol Neurotol 33: 1142-1150.

14.	Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) 
Excitotoxicity and repair of cochlear synapses after noise-
trauma induced hearing loss. Neuroreport 9: 2109-2114.

15.	Hakuba N, Koga K, Gyo K, Usami SI, Tanaka K (2000) 
Exacerbation of noise-induced hearing loss in mice lacking 
the glutamate transporter GLAST. J Neurosci 20: 8750-8753.

16.	Brozoski TJ, Wisner KW, Odintsov B, Bauer CA (2013) 
Local NMDA receptor blockade attenuates chronic tinnitus 
and associated brain activity in an animal model. PLoS One 
8: e77674.

17.	Hou F, Wang S, Zhai S, Hu Y, Yang W, et al. (2003) Effects 
of alpha-tocopherol on noise-induced hearing loss in guinea 
pigs. Hear Res 179: 1-8.

18.	Kalkanis JG, Whitworth C, Rybak LP (2004) Vitamin E 
reduces cisplatin ototoxicity. Laryngoscope 114: 538-542.

19.	Husain K, Whitworth C, Somani SM, Rybak LP (2005) 
Partial protection by lipoic acid against carboplantin-
induced ototoxicity in rats. Biomed Environ Sci 18: 198-206.

20.	Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, et 
al. (2007) NAC for noise: From the bench top to the clinic. 
Hear Res 226: 114-125.

21.	Sato K (1988) Pharmacokinetics of coenzyme Q10 in 
recovery of acute sensorineural hearing loss due to 
hypoxia. Acta Otolaryngol Suppl 458: 95-102.

22.	Ojano-Dirain CP, Antonelli PJ, Le Prell CG (2014) 
Mitochondria-targeted antioxidant MitoQ reduces 
gentamicin-induced ototoxicity. Otol Neurotol 35: 533-539.

23.	McFadden SL, Woo JM, Michalak N, Ding D (2005) Dietary 
vitamin C supplementation reduces noise-induced hearing 
loss in guinea pigs. Hear Res 202: 200-208.

24.	Seidman MD, Tang W, Bai VU, Ahmad N, Jiang H, 
et al. (2013) Resveratrol decreases noise-induced 
cyclooxygenase-2 expression in the rat cochlea. Otolaryngol 
Head Neck Surg 148: 827-833.

25.	Wang X, Truong T, Billings PB, Harris JP, Keithley EM 
(2003) Blockage of immune-mediated inner ear damage by 
etanercept. Otol Neurotol 24: 52-57.

26.	Angeli SI, Liu XZ, Yan D, Balkany T, Telischi F (2005) 
Coenzyme Q-10 treatment of patients with a 7445A---
>G mitochondrial DNA mutation stops the progression of 
hearing loss. Acta Otolaryngol 125: 510-512.

27.	Savastano M, Brescia G, Marioni G (2007) Antioxidant 
therapy in idiopathic tinnitus: Preliminary outcomes. Arch 
Med Res 38: 456-459.

28.	Kaya H, Koc AK, Sayin I, Gunes S, Altintas A, et al. (2015) 
Vitamins A, C, and E and selenium in the treatment of 
idiopathic sudden sensorineural hearing loss. Eur Arch 
Otorhinolaryngol 272: 1119-1125.

29.	Kang HS, Park JJ, Ahn SK, Hur DG, Kim HY (2013) Effect 
of high dose intravenous vitamin C on idiopathic sudden 
sensorineural hearing loss: A prospective single-blind 
randomized controlled trial. Eur Arch Otorhinolaryngol 270: 
2631-2636.

30.	Kapoor N, Mani KV, Shyam R, Sharma RK, Singh AP, et al. 
(2011) Effect of vitamin E supplementation on carbogen-
induced amelioration of noise induced hearing loss in man. 
Noise & Health 13: 452-458.

and endogenous antioxidant compounds. Such a micro-
nutrient mixture may also reduce the release and toxic-
ity of glutamate. The efficacy of this mixture of micro-
nutrients should be tested in the primary prevention, 
secondary prevention, as well as in combination with 
standard care in improved management studies.
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