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Abstract

Congestive Heart Failure (CHF) is among the heart diseases
which accounted for > 54% of deaths world-wide in 2013 in a
World Health Organizations report. CHF patients most often have
a more sensitized carotid body (CB) chemoreceptor than normal.
CB neural output stimulates output from the sympathetic nervous
system. Increased CB output in CHF has in animal models been
attributed to a loss of shear stress on the luminal surfaces of the
CBs’ vascular endothelial cells. This down regulates KLF2. Methods
to remove or attenuate the CB’s activity have been devised. These
and variations of them could be therapeutic for CHF patients.
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Introduction

The central nervous system (CNS) needs input from the peripheral
receptors to participate in maintaining appropriate homeostasis. And
sometimes the most critically important receptors malfunction. All
tissues, but especially neural tissue, needs oxygen and glucose in
constant supply. Human subjects can go without food for a month,
occasionally longer. They can survive without fluid for several days,
even a week. But they cannot survive without oxygen for more than
three to four minutes without initiating irreversible damage to the
tissues, especially neural tissue. Therefore, the receptor primarily and
uniquely responsible for detecting a want of oxygen in the circulating
blood would seem to be the most important interoreceptor in the
organism. In humans that receptor is the bilaterally located carotid
body (CB) found at the bifurcation of the common carotid arteries
into the internal and external carotid arteries.

Carotid body and carotid sinus

Stimulation of this structure with a lowered arterial partial
pressure of oxygen (P .O,), an increase in P .CO, or H*, or with
hypoglycemia can generate an impressive array of respiratory,
cardiovascular, endocrine, and renal reflex responses [1]. Involved
in several of these systemic reflex responses is the stimulation of the
sympathetic nervous system (SNS). Located at the base of the internal
arteries are the carotid sinuses, only millimeters away from the CBs,
housing the carotid baroreceptors, principal detectors and regulators

of arterial blood pressure. Noteworthy is the fact that the CBs and the
baroreceptors send their neural outputs via fibers in a branch of the
same nerve, the glossopharyngeal, through the petrosal ganglion and
on to the bilateral Nucleus tractus solitarii in the medulla. However,
whereas stimulation of the baroreceptors (e.g., in high blood
pressure) attenuates neural output from the SNS, stimulation of the
CBs increases output from the SNS.

Carotid body structure

Hypoxia depolarizes the glomus cells of the CB in most species
[2]. These cells contain neurotransmitters (NTs). This is accomplished
by a blocking of several types of K* channels, elevating the membrane
potential and activating voltage-gated calcium channels. Calcium
influx promotes the exocytosis of several NTs acutely from glomus
cell vesicles into the synaptic-type space between the glomus cell
and the abutting afferent chemosensitive neuron. The two essential
excitatory NTs are acetylcholine (ACh) and ATP [3]. Hypoglycemia
promotes the release of excitatory NTs with a different mechanism.
Though the transmembrane influx of extracellular calcium into the
glomus cells is an essential step for the release of the NTs. But it
appears that transient receptor potential channel C is involved [4].

Carotid body action in chronic heart failure

Recently CB behavior has become quite significant from a
clinical perspective. Patients suffering chronic heart failure (CHF)
have sensitized CBs which promotes bursts from the SNS. One study
showed patients suffering from CHF. The group was divided into
those with the sensitized CBs (Group 1; n = 27) and those with much
less sensitized CBs, relatively normal responders (Group 2; n = 53).
The survival rate of the Group 1 patients after three years was 41%
(11 of 27). Group 2 patients had a three- year survival rate of 77%
(41 of 53) [5]. A second study showed how CB removal improved the
condition of a patient with chronic systolic heart failure [6].

Dr. Harold D Schultz and his collaborators at the University of
Nebraska Medical Center in Omaha have conducted several seminal
studies attempting to identify mechanisms involved in the role of
the CBs in CHF using animal models. CHF was produced in rabbits
by the placement of a pacemaker, subjecting the animals to weeks
of a regimen of greatly increased heart rate, which resulted in severe
reduction in resting heart rate [7]. The rats had the anterior coronary
artery ligated [8].
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Well-known is the fact that CHF reduces blood flow throughout
the organism including the common carotid artery. With reduction
in blood flow in the common carotid artery there is reduction of
blood flow in the CBs. This produces a highly sensitive CB, more
easily made to increase its neural output to the CNS. In addition to the
malfunctioning heart in CHF, breathing is also affected as is kidney
function and the sympathetic branch of the autonomic nervous
system (SNS) [9-12]. CB denervation [13] attenuates these effects.

Decreased CB blood flow reduces the shear stress on the
endothelial cells in the CBs’ vasculature. Shear stress under normal
conditions is continually activating the transcription factor KLF2 via
a cascade of intermediate steps. KLF2 has several effects among which
are the endothelial nitric oxide synthase (eNOS)-generation of NO
[14]. NO in the feline model reduces the hypoxia- generated increase
in CB neural output [15].

This gasotransmitter balances CB neural output at least in part
by reducing the exocytotic release of the excitatory transmitter
ACh from the CB’s glomus cells [16,17]. At reduced levels of KLF2
a combination of molecules promote the lowering of NO and
activating of the angiotensinl receptor. This produces ROS which
blocks K channels in the glomus cells, depolarizing the cells, and
opening Ca channels. The influx of Ca promotes the release excitatory
transmitters [18].

Elimination of CHF-generated CB hypersensitivity

Several methods have been proposed to eliminate or reduce CB
input into the SNS during CHF. First, CB removal has been tried [5,6].
In the rabbit model once the CB was exposed, a metal rod, previously
soaking in liquid nitrogen, was placed against the CB, freezing the
structure and destroying the glomus cells [13]. This was seen to
reduce the CB-mediated ventilatory response to a 10% O, stimulus in
rabbits from 550 ml/min to 240 ml/min. Further, the Cheyne-Stokes
breathing pattern seen in the CHF rabbits was completely abolished
by the CB denervation (CBD). In the hearts of CHF rabbits CBD
restored left ventricular end systolic and end diastolic volumes to
the before-pacing values, and prevented the ejection fractions from
further deterioration [18]. Finally CBD improved kidney function
in the CHF rabbits. And, of course, CBD improved the survival rate
among the CHF animals, similar to the comparison of the two groups
of men mentioned above [18].

Effect of exercise

A second method for countering the effects of CHF was exercise
[19]. Since it had been shown previously that reducing blood flow in
the common carotid artery and, thus, in the carotid body produced
results in the CB very similar to the results seen in the CHF rabbits
[18], it was hypothesized that exercise with the increased cardiac
output would benefit the CHF rabbits. A group of normal rabbits was
compared with a group suffering from CHF. Each group was further
divided into sedentary and exercised. Neural output from the CB in
response to an increasing hypoxic challenge showed exercise had
no effect on the sedentary normal group, but did reduce the output
in the exercised CHF group so that it almost superimposed on the
normals’ responses. Not surprisingly renal sympathetic nerve output
was qualitatively the same as the CB neural output [20]. Exercise may
have acted via KLF2 as exercise in the CHF groups increases KLF2
whereas before there is very little KLF2 in the CBs [18].

Physical and molecular factors involved in CB activity in
CHF

Other studies have shown more directly the effect of carotid blood
flow on KLF2 which were corroborative of the role of vascular shear
stress in the CB [21]. This physical force acts upon a mechanoreceptor
in the luminal membrane of the endothelial cell which action activates
mitogen-activated protein kinase 5 (MEK5), then mitogen-activated
protein kinase 7 (ERK5), and finally myocyte- enhancing factor 2
(MEF2). This cascade up regulates KLF2. Shear stress and KLF2 are
closely linked in blood flow problems. For the CB KLF2 stimulates an

increase in eNOS and NO. Increased NO would attenuate CB neural
output as we have seen above. But in CHF with lowered CB blood flow
KLF2 levels drop resulting via the activity of several intermediates
in the generation of ROS. Superoxide depolarizes the transmitter-
containing glomus cells in the CB, generating the release of excitatory
neurotransmitters [22]. Since exercise increases blood flow in the
CB, the more normal shear stress would be reestablished. This would
make the KLF2 levels head up towards more normal values [18].

Statins

Since more normal levels of KLF2 operate to balance CB neural
output, methods to act on KLF2 were tried. A third method to quiet
the CBs in CHF via KLF2 used the administration of simvastatin.
In CHF rats this compound was included in their diet. The effect
was to abolish Cheyne-Stokes breathing, heart rate variability, and
significantly reduce the hypoxia-generated increase in CB neural
output [23]. At the molecular level in the CHF rats simvastatin
normalized KLF2, eNOS, and angiotensin II type 1 receptor protein
expression in both the CBs and nucleus tractus solitarii. Similar
effects were found in human aorta endothelial cells [24].

Summary and Conclusion

To maintain homeostasis the CNS needs input from peripheral
mechano- and chemo- receptors for regulating such variables as
blood pressure and quality of the circulating blood. Inasmuch as the
organism cannot survive without oxygen for more than 4-5 minutes
without doing irreversible damage to tissues, especially neural tissue,
it seems that the most important receptor is that for detecting oxygen
levels in the blood, the CB. Thus understanding how this structure
works and what it controls would be desirable, especially since
recently the CB has been found to become hypersensitive in patients
with chronic heart failure (CHF). CHF is a major killer world-
wide. After a review of basic CB physiology, a series of studies were
presented outlining how the hypersensitive CB was responsible for
cardiovascular, pulmonary, and renal malfunctioning. The absence of
shear stress on the luminal surface of the vascular endothelial cells
of the CB was the factor creating the problem. This absence reduced
KLF2, which promotes the production of NO in the CB, balancing
the CB’s neural output. Hyperactive CBs give phasic input into
the nucleus tractus solitarii and cause bursting of the SNS which
produces ventricular arrhythmias and poor cardiac performance. CB
malfunction in these CHF animals was eliminated or attenuated by
ablating (by freezing) the CB, by exercise, and by statin administration.

Inasmuch as over 50% of the deaths world-wide, as reported by
the World Health Organization in 2013, are due to cardiac problems,
these animal studies provide some insights into therapies for CHF
patients that might be considered.
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