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Abstract
The imbalance of cardiac autonomic nervous system (CANS) is 
one of the major causes of cardiac arrhythmias and several novel 
therapies of arrhythmias through modulating the activity of CANS 
have emerged. This review is aimed to address the relationship 
between the CANS and cardiac arrhythmias, and the present 
situation of novel therapies. 
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Cardiac autonomic nervous system

Heart is innervated by CANS, which mediates signals from 
physiologic “sensors” in the heart and great vessels, and can be divided 
into two components, extrinsic and intrinsic cardiac nervous system 
(Figure 1) [1,2]. 

Extrinsic cardiac nervous system

Extrinsic cardiac nervous system (ECNS) is composed of 
sympathetic cardiac nerves and parasympathetic cardiac branches. 
The former arises from the stellate ganglia and the caudal halves 
of the cervical sympathetic trunks, and is subdivided into 4 parts: 
superior, middle and inferior cervical ganglia and vertebral ganglia, 
communicating with the spinal nerves C1-4, C3-6, C5-T4, and C4-7 
respectively [3-5]. The cardiac nerves from these ganglia innervate 
the heart by following different courses [6,7]. Parasympathetic cardiac 
branches are derived from vagus nerves. Its efferent component to the 
heart includes preganglionic fibers and makes synaptic connections 
with ganglion cells in the cardiac ganglia [3-5,8]. 

Intrinsic cardiac nervous system

Intrinsic cardiac nervous system (ICNS) is a complex neural 
network formed by the nerves and ganglia located around the large 
vessels and on the heart itself all within the pericardium. Autonomic 
inputs to the heart converge at several locations and these convergence 
points form ganglionated plexi (GP) that contain interconnecting 
ganglia and nerves. The positions of GP are asymmetrical and 
extensive [3,9]. GPs contain afferent neurons from myocardium 
and from the extrinsic system [10] and function as the “integration 
centers” that modulate the interaction between ECNS and ICNS [11].

CNS has yin-yang nature in its physiological function. The 
activation of its sympathetic component is related to the increased heart 
rate and ventricular contraction, and the enhanced atrioventricular 
conductivity. However, its parasympathetic component functions in 
contrary to its sympathetic component [12].

Physiological Function of CNS
It is well known that the characteristic of physiological function 

of CNS is its ying-yang nature.  Its sympathetic influences on cardiac 
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Introduction
A host of studies on the cardiac innervation have found a complex 

link known as cardiac autonomic nervous system (CANS), connecting 
extracardiac nerves, intracardiac ganglia, and myocardial cells. Now 
it is well known that CANS plays a critical role in regulating the 
functions of the heart and its imbalance is regarded as one of the major 
causes of cardiac arrhythmias [1]. With the development of medical 
technology and the advancement of ideas, several novel therapies of 
arrhythmias through modulating the activity of CANS have emerged. 
This review is aimed to address the relationship between CANS and 
cardiac arrhythmias, and the present situation of novel treatment 
approaches.
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electrophysiology are similar on both atrial and ventricular myocytes. 
Electrophysiologically, sympathetic stimulation could shorten action 
potential duration and reduce transmural dispersion of repolarization 
[13,14]. Besides, sympathetic activation can also increase heart rate and 
ventricular contraction, and enhance atrioventricular conductivity 
[12,15]. In contrast, parasympathetic stimulation decreases heart rate 
and ventricular contraction, and slows atrioventricular conductivity 
[12]. In addition, parasympathetic stimulation prolongs action 
potential duration and effective refractory period in ventricles, 
while in atrium, reduces the effective refractory period, increases 
spatial electrophysiological heterogeneity, and promotes early after 
depolarization toward the end of phases 3 in the action potential [13, 
16-19], which is different with sympathetic activation.

Interaction between CANS and tachyarrhythmias

Atrial fibrillation: Although the mechanism responsible for atrial 
fibrillation (AF) has not been completely understood, it is well known 
that CANS plays an important role in its initiation and maintenance 
[20]. 

ECNS and AF: The interaction between ECNS and AF has been 
approved by several studies. Patients with idiopathic paroxysmal 
atrial fibrillation (PAF), most appear to be vagally dependent, while 
in most patients with structural heart diseases, PAF episodes appear 
more sympathetically mediated [21]. Besides, the incidence of AF in 
patients with increased sympathetic activity increased as well [22] and 
in some cases, variations of the autonomic tone were observed before 
the occurrence of PAF [23,24]. Several studies have shown that beta-
adrenergic agonists and the combination of sympathetic activation 
and acetylcholine infusion could facilitate the induction of AF [25-28] 
and beta-receptor blockade and atropine were effective in preventing 
recurrence of AF or decreasing AF inducibility [29-31]. Beside, it 
was also observed that in rapid atrial pacing induced AF models, 
simultaneous sympathovagal discharges were common triggers for 
AF and cryoablation of extrinsic sympathovagal nerves eliminated 
PAF, which further supported the interrelationship between ECNS 
and the initiation and maintenance of AF [32]. 

ICNS and AF: Previous studies provided substantial evidences of 

the interrelationship between ICNS and AF. The abnormal focal firing 
in PV is regarded as the major trigger of AF and the four of the left 
atrial GP each innervates one of the four PVs [9,33,34]. Related to this, 
a study demonstrated that stimuli applied to PVs would not induce 
AF unless there was simultaneous simulation of the adjacent GP [35]. 
Similarly, Po and colleagues showed that focal firing originating from 
the PV and AF could be induced by injection of acetylcholine into 
the adjacent GP [36]. It has also been shown that focal AF could be 
induced or eliminated by stimulating or interrupting the ICNS [37]. 
Besides, in animal models of AF, a significant increase of sympathetic 
and/or parasympathetic neurons was present in atrial intrinsic cardiac 
ganglia [22,38,39]. All these data approve that ICNS is a critical 
element in the genesis and maintenance of AF.

CANS and non-inherited ventricular tachyarrhythmias: 
Participation of CANS in the genesis of non-inherited ventricular 
tachyarrhythmias (VT) has been observed in several studies, most 
with elevated sympathetic activity that could reduce the ventricular 
fibrillation (VF) threshold and provoke VT [40-46]. The increased 
vagal activity seems to be protective in most cases, especially in 
the presence of elevated sympathetic tone [47-49]. Sympathetic 
hyperactivity may partly due to sympathetic nerve sprouting in heart. 
An association between a history of ventricular arrhythmias and an 
increase of sympathetic nerves in the heart of patients was discovered 
by Cao et al. [50], and was further approved by a experiment, which 
found the increased sympathetic nerve sprouting was along with a 
high-yield model of spontaneous VT [50,51]. Besides, an alteration 
in neurotransmitters also contributes to sympathetic hyperactivity. 
The impairment of catecholamine reuptake contributes to myocardial 
catecholamine overexposure and thus VT after experimental 
myocardial infarction [52]. As to the protective effect of increased 
vagal activity against VT, its evidences are mainly obtained by vagal 
nerve stimulation [53]. We will discuss it later.

CANS and inherited ventricular tachyarrhythmias: For the 
patients with catecholaminergic polymorphic ventricular tachycardia 
(CPVT) or long QT syndrome (LQTS), the occurrences of VT are 
often precipitated by increased sympathetic activity and could be 
prevented by beta-blockage. CPVT is associated with sympathetic 
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Figure 1: Scheme of autonomic innervation of the heart. The cardiac sympathetic ganglia consist of cervical ganglia, stellate (cervicothoracic) ganglia, and 
thoracic ganglia. Parasympathetic innervation comes from the vagus nerves. Reprinted from Shen et al. [2] with permission of the publisher. Copyright © American 
Heart Association, Inc.
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hyperactivity [54-56], and beta-blockage has great efficacy in 
preventing CPVT related cardiac events [57,58]. As for patients with 
LQTS, early after depolarization-induced triggered activity is thought 
to be the primary arrhythmogenic trigger of VT and sympathetic 
hyperactivity could create the substrate for this trigger and prolong 
the QT interval in LQTS type 1 and 2 [14,59-63]. However, LQTS 
type 3 has VT triggered by increased vagal tone [64]. Administration 
of beta-blockage and left cervicothoracic sympathetic denervation are 
effective in preventing VT in patients with LQTS type 1 and 2, but 
have no evident effect in type 3 [65].

Besides LQTS type 3, Brugada syndrome and idiopathic 
ventricular tachycardia (IVT) have also been reported to be associated 
with vagal hyperactivity. Most VT episodes in patients are observed 
during periods of high vagal tone [66-70]. A sudden increase of vagal 
activity before the onsets of VF was reported in patients with Brugada 
syndrome, and the ST-segment elevation could be augmented by 
parasympathomimetic agents, while be reduced by sympathomimetic 
agents [71,72]. For patients with IVT, J-wave elevation is associated 
with VF onsets and sudden cardiac death [73-75], and bradycardia 
could result in the augmentation of J-wave amplitude [76,77], while 
isoproterenol infusion may eliminate J-wave and suppress VF [78]. 
All these data demonstrate a critical role of vagal hyperactivity in the 
occurrence of VT in patients with Brugada syndrome or IVT.

Therapeutic Neuromodulation for Tachyarrhythmias
GP ablation

GP ablation is the major way to modulate intrinsic cardiac nervous 
system to treat cardiac tachyarrhythmias. For patients with AF, GP 
ablation alone could significantly decrease the occurrence of PV firing 
and inducibility of AF [10,79,80]. Its effect has been further supported 
by a meta-analysis and other clinical trials. In the treatment of AF, 
addition of GP ablation to PV isolation (PVI) confers better outcomes 
than PVI alone no matter during a short or long-term follow-up 
period, and GP ablation alone is inferior to PVI alone [79-82]. Of 
note, the identification of GP sites is very important. There are two 
main approaches to the GP sites: selective and anatomic location. The 
selective approach is performed by high-frequency stimulation, and 

GP sites were identified as sites showing a vagal response [79,83]. The 
latter was first reported by Katrisis and colleagues [84], based on the 
autonomic innervation of the heart, experiences of selective location, 
and then ablations were delivered to the presumed GP sites [84]. 
However, there is no available data of GP ablation in the treatment of 
patients with ventricular arrhythmias.

Vagal nerve stimulation (VNS)

Low-level vagal nerve stimulation (LL-VNS), defined as 
combination of intensity and frequency without effect on heart rate or 
atrioventricular conduction, has been found to be protective against 
cardiac tachyarrhythmias (Figure 2) [1].

For patients with AF, several studies have found that LL-VNS 
can prevent and reverse atrial remodeling, shorten AF duration and 
suppress the occurrence or inducibility [85-90]. The mechanism of 
LL-VNS may be very complex. It is reported that LL-VNS have both 
anticholinergic and antiadrenergic effects and its inhibition of the GP 
may be responsible for protective effect on AF [85,86,88,90]. 

For the treatment of VT, experimental studies showed that 
VNS could increase VF threshold, and protect against ventricular 
arrhythmias [53,91-93]. However, there is no available data on 
its performance in patients with ventricular arrhythmias, and the 
clinical trials designed to assess the efficacy of VNS among patients 
with heart failure didn’t provide positive results involving ventricular 
arrhythmias [94-96].

LL-VNS with the electrodes located in vagosympathetic trunk 
or cervical vagus nerve, is invasive and needs surgery. In 2013, a novel 
noninvasive approach of VNS by simulating the auricular branch of the 
vagus nerve at the anterior protuberance of the outer ear was reported 
by Yu and colleagues [97]. In several studies on animals or humans, LL-
TS has been shown to be effective in the prevention or treatment of AF 
[85,97-105], and may be a promising alternative to VNS.

Spinal cord stimulation (SCS)

SCS of T1-T5 appears to have an antiarrhythmic effect on 
cardiac tachyarrhythmias [106,107]. For AF, SCS could prolong atrial 
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Figure 2: Schematic representation of various approach of neuromodulation. Solid lines indicate direct effects on cardiac autonomic nervous system, while dashed 
lines indicate effects on cardiac autonomic nervous system, possibly through neuroal reflexes involving the brain or spinal cord. The thick red arrow denotes that 
many of the beneficial effects of neuromodulation depend on the brain to process the neural inputs. Reprinted from Hou et al. [1] with permission of the publisher, 
Copyright © Elsevier.
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effective refractory periods and reduce AF burden and inducibility in 
animal models, suggesting that SCS may represent a treatment option 
[108,109]. Furthermore, a study indicates that long-term SCS shows 
sustained protection against AF and that the efficacy of arrhythmia 
stabilization increases with duration of treatment [110].

For the treatment of VT, it is reported that SCS could reduce the 
episodes of VT in animal model of post-infarction heart failure, acute 
myocardial infarction or ischemia-reperfusion [47,106,107,111]. 
However, there are limited clinical data on SCS. Grimaldi et al. 
demonstrated its effect on the occurrence of VT episodes in 2 patients 
[112]. More clinical studies on the protection of SCS against cardiac 
arrhythmias are needed to further confirm these findings mentioned 
above.

Cardiac sympathetic denervation (CSD)

CSD is mainly used to prevent the cardiac events in patients 
with inherited VT [113,114]. Several clinical studies have shown 
that CSD is associated with a significant reduction in the incidence 
of VT symptoms and the episodes of VT, especially in patients with 
LQTS or CPVT [57,115-119]. Besides, CSD has also shown benefits in 
treatment of patients with structural heart diseases. In a clinical study 
involving patients with VT storm and structural heart diseases, CSD 
could also reduce the burden of implantable cardioverter-defibrillator 
shocks [120]. However, although CSD has been approved to be highly 
effective in prevention of cardiac events of patients with VT, especially 
LQTS and CPVT, it is rarely used in clinical practice. The complex 
surgery of CSD or its high rate of complications, such as Horner 
syndrome may be the main reasons. Collura and colleagues reported 
a safe and effective video-assisted thoracoscopic surgery of CSD, with 
several important advantages, including a more accurate sympathetic 
chain resection and a lower risk of Horner syndrome [113,116]. 
Nagels et al. has also reported a percutaneous approach to CSD, and it 
may be an alternative to surgical intervention [116]. 

Renal denervation (RDN)

Originally used to manage the blood pressure in patients with 
hypertension, while in a large multicenter clinical trial, RDN doesn’t 
show benefit on systolic blood pressure in patients with refractory 
hypertension compared to control [121]. However, RDN may have 
protective effect on cardiac arrhythmias. In animal experiments, 
RDN could suppress the atrial remodeling after rapid atrial pacing 
and reduce the occurrence of VT during left ventricular ischemia 
and reperfusion [122,123]. Besides, there is also evidence indicating 
that RND reduces atrial sympathetic nerve sprouting, structural 
alterations in goats with persistent AF [124]. In patients with AF 
and refractory hypertension, RND has been reported to provide 
incremental AF suppressing after PVI or improve the outcomes of 
PVI [125,126]. These results indicate that an addition of RDN to PVI 
may be beneficial in patients with AF and/or refractory hypertension. 

Baroreceptor stimulation (BRS)

Although BRS is regarded as a new promising approach to control 
blood pressure and manage heart failure [127,128], there are interests 
in its impact on cardiac arrhythmias. Liao and colleagues have 
shown that low-level BRS could reduce the occurrence of ventricular 
arrhythmias during acute ischemia in dogs [129] and it has also been 
reported that low-level BRS prolonged the effective refractory period 
and attenuated rapid atrial pacing induced atrial remodeling in rabbits 
and could inhibit atrial fibrillation [130,131]. These data appear to 
indicate that low-level BRS may have protective effect on arrhythmias, 
while the related studies are rare and there are no clinical studies.

Conclusion
Comprehensive studies on the characteristics and mechanism 

of cardiac autonomic nervous system in initiating and maintaining 
arrhythmias have brought out several novel therapeutic approaches 
to arrhythmias. However, the related clinical trials are limited, and 
the mechanisms of these therapies are also not completely elucidated. 
More larger-scale clinical studies and animal experiments are 

necessary in the future.
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