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Deep Brain Stimulation (DBS) is an effective therapeutic 
modality for patients with Parkinson’s Disease who have developed 
complications from longstanding levodopa such as dyskinesias 
and motor fluctuations. It produces robust responses to segmental 
symptoms (ie, bradykinesia, tremor, rigidity) while attenuating 
involuntary dyskinetic movements and smoothing out ‘on’ and ‘off’ 
period cycling. The subthalamic nucleus and the globus pallidus 
interna are widely accepted surgical targets for stimulation therapy, 
with STN more commonly used, though superiority has not been 
established [1-4].

Long-term outcome studies reveal sustained stable responses 
to rigidity, tremor, motor fluctuations, and dyskinesias among 
patients with bilateral DBS, mostly STN based [3,5-7]. Bradykinesia 
improvement also persisted but trended upwards as time went on, 
though remaining below preoperative baseline. Axial symptoms 
such as gait, postural stability, freezing of gait, and speech oftentimes 
transiently responded to stimulation and continued to deteriorate 
over time. Despite many of the DBS outcome studies having been 
conducted in patients with short disease duration, Merola and 
colleagues [8] described the development of progressive axial 
symptoms in patients treated with STN-DBS with more than 20 
years disease duration. These symptoms globally lose any levodopa 
responsiveness and the synergism of stimulation ON/medication ON 
condition wanes as well, underscoring the likely contribution of non-
dopaminergic systems in their phenotype.

High Frequency Stimulation (HFS) and Temporal 
Pattern Effects

The hypodopaminergic state changes the integrity of the intrinsic, 
tonic neuronal activity in the basal ganglia producing excessive 
synchronous neuronal activity in the beta frequency (13-30Hz) [9], 
hence the reduction in beta oscillations observed with dopamine 
replacement therapy [10]. This excessive beta synchrony is associated 
with increased cortical phase-amplitude coupling between the STN 
and cortex [11]. HFS-DBS mediates neuronal activity through 
excitatory or inhibitory changes but also influences the pattern and 
rates of neuronal firing– regularizing increased burst activity and 
simultaneously suppressing synchronized oscillations [12-15]. In 

addition, DBS reversibly reduces the strength of the cortical phase-
amplitude coupling [11].

Suppression of beta oscillations has been related to improved 
motor performance, specifically bradykinesia and rigidity, and 
reaction time [16,17] in Parkinson’s patients. Interestingly, rest 
tremor response does not seem to be linked to attenuation of beta 
oscillations suggesting a differential role of the cerebellar network 
its pathophysiology. Mounting evidence suggests that the frequency 
of deep brain stimulation governs much of the therapeutic gain 
through attenuation of the pathological activity and regularization of 
neuronal activity. Suppression of beta oscillatory activity in the STN 
is achieved at 130Hz or 185Hz and in the GPi at >70Hz [12,13,18,19]. 
In addition to the frequency, the therapeutic effect may also depend 
on the pattern of stimulation with worsening of tremor and UPDRS 
motor scores observed when the pattern is irregular [20]. Birdno et 
al. 2012 [21] showed that pauses in the stimulation pattern rather 
than temporally non-regular DBS produces deleterious motor 
effects. Bradykinesia and tremor improved above 50Hz with a ceiling 
effect reached between 130-185Hz, highlighting the parallel clinical 
correlation produced with continuous HFS [22]. Worsening of these 
symptoms occurred when cycling settings [23] were used, supporting 
the notion that disrupted, non-regular stimulation at a neuronal 
level, whether generated from an externalized system or internalized 
neurostimulator, parallels similar clinical outcomes.

The Paradox of Low FrequencyStimulation (LFS)
Low Frequency Stimulation, on the other hand, tends not to 

only worsen motor symptoms such as akinesia and tremor [24,25], 
but fails to override pathological oscillations [14]. It has been 
posited that this is attributed to the long interpulse intervals failing 
to mask intrinsic activity and/or facilitate rebound burst activity in 
the target nuclei [14]. However, a recent study testing hand opening 
and closing in PD patients, using an instrumented glove at multiple 
frequencies (low and high) did not find worsening of bradykinesia 
at low frequencies in a drug naïve state with Total Electrical Energy 
Delivered (TEED) kept constant, thus challenging the prevailing view 
that LFS is inefficacious [26].

Furthermore, several studies probed the therapeutic effects of low 
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frequency (60 - 80Hz) for gait disorders [27-30] among advanced 
PD patients with severe axial and gait disturbance, which are often 
refractory to HFS-DBS and L-Dopa.  The results have been conflicting 
and likely related to differences in methodology.  For example, two 
blinded studies examined changes in gait and axial symptoms on a 
cohort of advanced PD patients and showed contrary results. In the 
first study, the authors reported sustained clinical gait benefit in 13 
patients over 8 months on 60Hz frequency with TEED controlled 
and ventral contacts utilized in 10 of the 13 patients [27]. In the 
second study, Sidiropolous et al.[28], while not controlling fully 
for TEED, reported no benefits of frequency <80Hz in 45 patients. 
In addition, a partially blinded study by Ricchi and colleagues [29], 
showed transient benefits in axial symptoms at 80Hz frequency while 
controlled for TEED, with majority of stimulation flowing through 
dorsal contacts used in 10 of 11 patients. Khoo et al [31]. revealed that 
the optimal contacts for 60Hz DBS were located ventrally and that 
the randomized, double blinded, prospective crossover comparison 
between 60-Hz and 130Hz yielded a better response of axial symptoms 
to 60Hz frequency. Interestingly, the analyses were done in the ON 
dopaminergic medication state, but were not controlled for TEED.

Though the efficacy of low frequency stimulation of the STN 
remains undetermined, the suggestion that ventral lead contacts as 
well as the ON-medication state are important for efficacy for this 
type of stimulation require further investigation. In parallel, Moro 
and colleagues [32] showed that stimulating the pedunculopontine 
nucleus (PPN), which lies caudal to the STN, at 25Hz in advanced 
PD patients with axial dysfunction and freezing improves their 
gait. Steffani et al [33] demonstrated further synergism between 
STN(HFS)-PPN(LFS) in the ON-medication state with improvement 
of axial symptoms produced beyond that of stimulating either target 
individually. In addition, Weiss and colleagues [34] reported reduced 
freezing with simultaneous stimulation of STN and SNr at 125Hz 
from the same DBS lead. These studies underscore the concept of 
different targets having their own unique intrinsic pathologic activity 
being modulated by different frequencies to produce similar clinical 
outcomes. This potentially implicates the mechanistic theory of 
resonance interactions among various nested, oscillating circuits 
subserving motor functions [35]. Biochemical studies reveal that such 
resonance can impact the inhibitory or excitatory status of the target 
nucleus based on the type of frequency modulation being delivered 
[36].

Frequency-dependent modulation has also been reported to 
ameliorate involuntary movements such as dyskinesias [37] and 
improve intelligibility of PD patients with dysarthropneumophonia 
[38] through low frequency STN stimulation. But, frequency 
modulation is not restricted to the STN, as there is extensive experience 
described with pallidal (GPi) stimulation in treating primary dystonia 
with high frequency (130-185Hz) [39-43] and low frequency (60Hz) 
[44,45] stimulation. Interestingly, bradykinetic movements (ie, 
micrographia, hypomimia) and hypokinetic gait with freezing have 
been reported as adverse effects of HFS in a number of case series [46-
49]. Schrader and colleagues [49] reported an incidence of 8.5% of a 
new gait disorder among 71 patients with dystonia who underwent 
DBS.  Ventral contacts seemed to be related to the development of 
this hypokinetic state. Reduction in frequency improved bradykinetic 
movements among a cohort of cranial-segmental dystonia patients 
that developed gait disorder on HFS, but the majority experienced 
a worsening of dystonia symptoms [46]. There have been no reports 
to date of hypokinesia in dystonia patients treated with LFS from the 
outset.

Conclusion
Despite the wide spread use of HFS in treating Parkinson’s 

motor symptoms, evidence of low frequency stimulation efficacy, 
whether in the STN, PPN, or GPi, cannot be overlooked. It speaks to 
the likelihood that pathological neuronal synchrony and oscillatory 
patterns are not the only unique entities in the disease state, but are 
features of altered large networks [50,51] that may have differential 
responses at various nodes based on the frequency of stimulation 

delivered. Further studies will need to investigate the role clinical (i.e., 
age, disease duration, phenotype), surgical targeting, and genetics 
have in frequency modulation efficacy and how that relates to the 
network changes being derived from a growing body of large scale 
electrophysiological and neuroimaging evidence.
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