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Deep Brain Stimulation (DBS) is an effective therapeutic
modality for patients with Parkinson’s Disease who have developed
complications from longstanding levodopa such as dyskinesias
and motor fluctuations. It produces robust responses to segmental
symptoms (ie, bradykinesia, tremor, rigidity) while attenuating
involuntary dyskinetic movements and smoothing out ‘on’ and ‘off
period cycling. The subthalamic nucleus and the globus pallidus
interna are widely accepted surgical targets for stimulation therapy,
with STN more commonly used, though superiority has not been
established [1-4].

Long-term outcome studies reveal sustained stable responses
to rigidity, tremor, motor fluctuations, and dyskinesias among
patients with bilateral DBS, mostly STN based [3,5-7]. Bradykinesia
improvement also persisted but trended upwards as time went on,
though remaining below preoperative baseline. Axial symptoms
such as gait, postural stability, freezing of gait, and speech oftentimes
transiently responded to stimulation and continued to deteriorate
over time. Despite many of the DBS outcome studies having been
conducted in patients with short disease duration, Merola and
colleagues [8] described the development of progressive axial
symptoms in patients treated with STN-DBS with more than 20
years disease duration. These symptoms globally lose any levodopa
responsiveness and the synergism of stimulation ON/medication ON
condition wanes as well, underscoring the likely contribution of non-
dopaminergic systems in their phenotype.

High Frequency Stimulation (HFS) and Temporal
Pattern Effects

The hypodopaminergic state changes the integrity of the intrinsic,
tonic neuronal activity in the basal ganglia producing excessive
synchronous neuronal activity in the beta frequency (13-30Hz) [9],
hence the reduction in beta oscillations observed with dopamine
replacement therapy [10]. This excessive beta synchrony is associated
with increased cortical phase-amplitude coupling between the STN
and cortex [11]. HFS-DBS mediates neuronal activity through
excitatory or inhibitory changes but also influences the pattern and
rates of neuronal firing— regularizing increased burst activity and
simultaneously suppressing synchronized oscillations [12-15]. In

addition, DBS reversibly reduces the strength of the cortical phase-
amplitude coupling [11].

Suppression of beta oscillations has been related to improved
motor performance, specifically bradykinesia and rigidity, and
reaction time [16,17] in Parkinson’s patients. Interestingly, rest
tremor response does not seem to be linked to attenuation of beta
oscillations suggesting a differential role of the cerebellar network
its pathophysiology. Mounting evidence suggests that the frequency
of deep brain stimulation governs much of the therapeutic gain
through attenuation of the pathological activity and regularization of
neuronal activity. Suppression of beta oscillatory activity in the STN
is achieved at 130Hz or 185Hz and in the GPi at >70Hz [12,13,18,19].
In addition to the frequency, the therapeutic effect may also depend
on the pattern of stimulation with worsening of tremor and UPDRS
motor scores observed when the pattern is irregular [20]. Birdno et
al. 2012 [21] showed that pauses in the stimulation pattern rather
than temporally non-regular DBS produces deleterious motor
effects. Bradykinesia and tremor improved above 50Hz with a ceiling
effect reached between 130-185Hz, highlighting the parallel clinical
correlation produced with continuous HFS [22]. Worsening of these
symptoms occurred when cycling settings [23] were used, supporting
the notion that disrupted, non-regular stimulation at a neuronal
level, whether generated from an externalized system or internalized
neurostimulator, parallels similar clinical outcomes.

The Paradox of Low FrequencyStimulation (LFS)

Low Frequency Stimulation, on the other hand, tends not to
only worsen motor symptoms such as akinesia and tremor [24,25],
but fails to override pathological oscillations [14]. It has been
posited that this is attributed to the long interpulse intervals failing
to mask intrinsic activity and/or facilitate rebound burst activity in
the target nuclei [14]. However, a recent study testing hand opening
and closing in PD patients, using an instrumented glove at multiple
frequencies (low and high) did not find worsening of bradykinesia
at low frequencies in a drug naive state with Total Electrical Energy
Delivered (TEED) kept constant, thus challenging the prevailing view
that LFS is inefficacious [26].

Furthermore, several studies probed the therapeutic effects of low

Citation: Ramdhani RA (2014) Deep Brain Stimulation Frequency Modulation in Parkinson’s
Disease - One Size May Not Fit All. Int J Neurol Neurother 1:001e. doi.org/10.23937/2378-

3001/1/1/1001

ClinMMed

International Library o

Received: September 06, 2014: Accepted: September 09, 2014: Published: September 11,

Copyright: © 2014 Ramdhani RA. This is an open-access article distributed under the terms

of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.


https://doi.org/10.23937/2378-3001/1/1/1001
https://doi.org/10.23937/2378-3001/1/1/1001
https://doi.org/10.23937/2378-3001/1/1/1001

DOI: 10.23937/2378-3001/1/1/1001

ISSN: 2378-3001

frequency (60 - 80Hz) for gait disorders [27-30] among advanced
PD patients with severe axial and gait disturbance, which are often
refractory to HFS-DBS and L-Dopa. The results have been conflicting
and likely related to differences in methodology. For example, two
blinded studies examined changes in gait and axial symptoms on a
cohort of advanced PD patients and showed contrary results. In the
first study, the authors reported sustained clinical gait benefit in 13
patients over 8 months on 60Hz frequency with TEED controlled
and ventral contacts utilized in 10 of the 13 patients [27]. In the
second study, Sidiropolous et al.[28], while not controlling fully
for TEED, reported no benefits of frequency <80Hz in 45 patients.
In addition, a partially blinded study by Ricchi and colleagues [29],
showed transient benefits in axial symptoms at 80Hz frequency while
controlled for TEED, with majority of stimulation flowing through
dorsal contacts used in 10 of 11 patients. Khoo et al [31]. revealed that
the optimal contacts for 60Hz DBS were located ventrally and that
the randomized, double blinded, prospective crossover comparison
between 60-Hz and 130Hz yielded a better response of axial symptoms
to 60Hz frequency. Interestingly, the analyses were done in the ON
dopaminergic medication state, but were not controlled for TEED.

Though the efficacy of low frequency stimulation of the STN
remains undetermined, the suggestion that ventral lead contacts as
well as the ON-medication state are important for efficacy for this
type of stimulation require further investigation. In parallel, Moro
and colleagues [32] showed that stimulating the pedunculopontine
nucleus (PPN), which lies caudal to the STN, at 25Hz in advanced
PD patients with axial dysfunction and freezing improves their
gait. Steffani et al [33] demonstrated further synergism between
STN(HFS)-PPN(LES) in the ON-medication state with improvement
of axial symptoms produced beyond that of stimulating either target
individually. In addition, Weiss and colleagues [34] reported reduced
freezing with simultaneous stimulation of STN and SNr at 125Hz
from the same DBS lead. These studies underscore the concept of
different targets having their own unique intrinsic pathologic activity
being modulated by different frequencies to produce similar clinical
outcomes. This potentially implicates the mechanistic theory of
resonance interactions among various nested, oscillating circuits
subserving motor functions [35]. Biochemical studies reveal that such
resonance can impact the inhibitory or excitatory status of the target
nucleus based on the type of frequency modulation being delivered
[36].

Frequency-dependent modulation has also been reported to
ameliorate involuntary movements such as dyskinesias [37] and
improve intelligibility of PD patients with dysarthropneumophonia
[38] through low frequency STN stimulation. But, frequency
modulation is not restricted to the STN, as there is extensive experience
described with pallidal (GPi) stimulation in treating primary dystonia
with high frequency (130-185Hz) [39-43] and low frequency (60Hz)
[44,45] stimulation. Interestingly, bradykinetic movements (ie,
micrographia, hypomimia) and hypokinetic gait with freezing have
been reported as adverse effects of HFS in a number of case series [46-
49]. Schrader and colleagues [49] reported an incidence of 8.5% of a
new gait disorder among 71 patients with dystonia who underwent
DBS. Ventral contacts seemed to be related to the development of
this hypokinetic state. Reduction in frequency improved bradykinetic
movements among a cohort of cranial-segmental dystonia patients
that developed gait disorder on HFS, but the majority experienced
a worsening of dystonia symptoms [46]. There have been no reports
to date of hypokinesia in dystonia patients treated with LFS from the
outset.

Conclusion

Despite the wide spread use of HFS in treating Parkinson’s
motor symptoms, evidence of low frequency stimulation efficacy,
whether in the STN, PPN, or GPi, cannot be overlooked. It speaks to
the likelihood that pathological neuronal synchrony and oscillatory
patterns are not the only unique entities in the disease state, but are
features of altered large networks [50,51] that may have differential
responses at various nodes based on the frequency of stimulation

delivered. Further studies will need to investigate the role clinical (i.e.,
age, disease duration, phenotype), surgical targeting, and genetics
have in frequency modulation efficacy and how that relates to the
network changes being derived from a growing body of large scale
electrophysiological and neuroimaging evidence.
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