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Abstract
The apolipoprotein E4 (APOE4) allele represents the sin-
gle greatest risk factor for late-onset Alzheimer’s disease 
(AD) and accumulating evidence suggests that fragmenta-
tion with a toxic-gain of function may be a key molecular 
step associated with this risk. Recently, we demonstrated 
strong immunoreactivity of a 151 amino-terminal fragment 
of apoE4 (E4-fragment) within the nucleus of microglia in 
the human AD brain. In vitro, this fragment led to toxicity 
and activation of inflammatory processes in BV2 microglia 
cells. Additionally, a transcriptome analysis following exo-
genous treatment of BV2 microglia cells with this E4 frag-
ment led to a > 2-fold up regulation of 1,608 genes, with 
many genes playing a role in inflammation and microglia 
activation. To extend these findings, we here report a simi-
lar transcriptome analysis in BV2 microglia cells following 
treatment with full-length ApoE4 (FL-ApoE4). The results 
indicated that full-length ApoE4 had a very small effect on 
gene expression compared to the fragment. Only 48 diffe-
rentially expressed genes (DEGs) were identified (p < 0.05, 
and greater than 2-fold change). A gene ontology analysis 
of these DEGs indicated that they are not involved in inflam-
matory and activation processes, in contrast to the genes 
up regulated by the E4-fragment. In addition, genes that 
showed a negative fold-change upon FL-E4 treatment typi-
cally showed a strong positive fold-change upon treatment 
with the fragment (Pearson’s r = -0.7). Taken together, the-
se results support the hypothesis that a key step in the con-
version of microglia to an activated phenotype is proteolytic 
cleavage of FL-ApoE4. Therefore, the neutralization of this 
amino-terminal fragment of ApoE4, specifically, may serve 
as an important therapeutic strategy in the treatment of AD.
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Introduction
Harboring the apolipoprotein E4 (APOE4) allele 

represents the greatest genetic risk factor for late-onset 
Alzheimer’s disease (AD) [1]. In this respect, carrying 
a single APOE4 allele increases AD risk 3-fold while 
those who are homozygous for the gene have a greater 
than 10-fold risk of developing AD [2]. The function of 
ApoE4 involves lipid transport within the CNS, although 
multiple other roles have been postulated including 
signaling through cell surface receptors, and modulating 
synaptic function [3]. However, to date, none of the 
classic roles of ApoE4 have satisfactorily explained 
how this protein increases dementia risk. One possible 
mechanism is a toxic-gain of function of amino-terminal 
domains of ApoE4 following cleavage by extracellular 
proteases [4].

We have recently identified a 151 amino-terminal 
fragment of ApoE4 (E4 fragment) that is generated 
following cleavage of the full-length ApoE4 (FL-ApoE4) 
and localizes within the nuclei of microglia cells in the 
human AD brain [5]. In addition, we have shown that 
exogenous treatment of BV2 microglia cells with this 
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E4 fragment leads to the uptake and trafficking to the 
nucleus and cytotoxicity [5]. A transcriptome analyses 
following exogenous treatment with the E4 fragment 
resulted in the up regulation of almost 4,000 genes, 
with 20 of these genes up regulated 182- to 715-fold. 
The majorities of these genes have strong inflammatory 
properties and play a role in the polarization toward 
microglial M1 activation [6].

To extend these findings, we here investigated 
whether or not exogenous treatment of BV2 microglial 
cells with full-length apoE4 would lead to similar gene 
expression changes. Surprisingly, transcriptome analysis 
revealed little change in gene expression in cells treated 
with FL-ApoE4, relative to non-treated controls. In total, 
there were only 48 differentially expressed genes (DEGs, 
fold change > |2|, p < 0.05), many of which are known 
to carry out normal physiological roles. Importantly 
a comparison of differentially expressed genes in 
both studies showed that genes with a negative fold 
change upon FL-E4 treatment typically showed a strong 
positive fold change upon treatment with the fragment 
(Pearson’s r = -0.7). These anticorrelated genes, which 
were up regulated by the E4 fragment, included several 
inflammatory mediators such as Il27, Il23a, and Gdf15. 
Collectively, these data indicate that fragmentation 
of FL-ApoE4 is a key determinant to the activation of 
inflammatory pathways and thus may serve as the 
potential link to the enhanced dementia risk associated 
with this gene.

Materials and Methods

Cell culture and treatment of BV2 cells
BV2, murine microglial cells, were maintained 

at 37 °C and 6% CO2 in a humidified incubator. Cells 
were maintained in RPMI 1640 Media (Hyclone) 
supplemented with 10% standard fetal bovine serum 
(Hyclone), 10% Cellgro MEM Nonessential Amino Acid 
(Corning) and 10% Penicillin streptomycin (Hyclone). 
Cells were cultured in 50 mL T25 Flasks. All supplies were 
purchased from Thermo Fisher Scientific Inc. (Waltham, 
MA). For immunocytochemical studies, cells were plated 
in Falcon chamber cell culture slides for 24 hours prior 
to treatment. Treatment consisted of addition of either 
25 µg/ml of full-length ApoE4 or nApoE41-151 for 24 hours 
in media. Control cells (untreated) had an equivalent 
level of conditioned media added to the wells.

For RNAseq experiments, treatment of BV2 cells 
was undertaken by incubation with the human FL-ApoE 
protein (Prosci Inc., Poway, CA) at a concentration 
of 25 µg/ml for 5 hours to assess changes in mRNA 
expression. Construction and purification of the amino-
terminal fragment 1-151 for ApoE4 (nApoE41-151) was 
contracted out to GenScript (Piscataway, NJ). For this 
protein, a 6X-His tag was coupled to the fragment to 
facilitate purification.

Immunocytochemical studies
Following treatment studies, BV2 cells were fixed by 

incubating cells in 4% paraformaldehyde for 23 minutes. 
For antibody labeling, cells were washed with 0.1M Tris-
buffered saline (TBS), pH 7.4, and pretreated with 3% 
hydrogen peroxide in 10% methanol to block endogenous 
peroxidase activity. Slides were subsequently washed in 
TBS with 0.1% Triton X-100 (TBS-A) and then blocked for 
thirty minutes in TBS-A with 3% bovine serum albumin 
(TBS-B). Slides were further incubated overnight 
at room temperature with anti-His rabbit antibody 
(1:2,000) or an anti-ApoE4 N-terminal antibody (1:500, 
Aviva Biosciences). Following two washes with TBS-A 
and a wash in TBS-B, slides were incubated in anti-rabbit 
HRP-Conjugated secondary antibody. Visualization was 
accomplished by using a tyramide signal amplification 
kit (Molecular Probes, Eugene, OR) consisting of Alexa 
Fluor 488-labeled tyramide (green, Ex/Em = 495/519). 
Slides were mounted using Prolong Gold Antifade 
Mountant with DAPI (Molecular Probes).

Total RNA extraction and cDNA synthesis in BV2 
microglia cells

Total RNA was extracted from cells with the Direct-
zol RNA MicroPrep Kit (Zymo Research Corp., CA, USA) 
according to manufacturer’s instructions. Genomic 
DNA was eliminated using TURBO DNAse as described 
by the manufacturer (Life Technologies, CA). RNA 
quality was assessed using spectrophotometry and gel 
electrophoresis. Total cDNA was generated from 1 µg 
of total RNA using qScript cDNA SuperMix (QuantaBio, 
MA, USA). Prior to use in qPCR, cDNA was diluted 1:2 
with water.

RNA-sequencing and mapping
RNA-sequencing

RNA-sequencing was performed by the Molecular 
Research Core Facility at Idaho State University 
(Pocatello, ID). All samples were sequenced using an 
Illumina HiSeq4000 Sequencer. Library preparation was 
carried out using NEBNext Ultra II Directional RNA Library 
Prep Kit. Reads of 1 × 76 bp were assessed for quality 
using FASTQC v0.11.8. No sample reads were flagged 
for poor quality and all passed adapter content analysis 
indicating adapters were sufficiently removed from 
the reads during sequence processing. Consequently, 
no read trimming was applied to the samples. Using 
Hisat2 v2.2. 1 [7] a mouse reference genome (GRCm39 
obtained from NCBI) was built and reads were mapped 
to this reference. Gene counts were determined using 
HTSeq v0.13.5 [8] (with parameters: '--type=gene 
--idattr=Name --stranded=no') after which, read counts 
were normalized using the median-of-ratios method 
implemented within Deseq2 v1.30.1 [9]. Deseq2 was 
then employed to calculate p-values using a Wald test 
with a Benjamini-Hochberg post hoc correction. Genes 
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Results

Cellular localization of exogenous full-length 
ApoE4 versus the amino-terminal fragment, 
nApoE41-151

As an initial approach, we examined the subcellular 
localization of ApoE4 in BV2 microglia cells following 
exogenous treatment. In this case, BV2 cells were treated 
with either a sublethal concentration of nApoE41-151 (25 
µg/ml) and an equivalent concentration of full-length 
ApoE4 for 24 hours prior to immunocytochemical 
studies. As shown in Figure 1, strong nuclear localization 
of the nApoE41-151 was evident (Figure 1C), while 
localization of full-length ApoE4 appeared to be more 
cytoplasmic although some nuclear staining was also 
evident (Figure 1E). These results confirm our previous 
findings in vitro [5].

with an adjusted p-value < 0.05 and fold change ≥ |2| 
(log2 fold change ≥ 1) were considered to be differentially 
expressed. For down regulated genes, fold change was 
reported as -(2|log2 fold change|). The specific codes and 
implementation steps are available for review at https://
gitlab.com/bsu/biocompute-public/apoe4_fl. The data 
discussed in this publication have been deposited 
in NCBI’s Gene Expression Omnibus (GEO) with the 
identification number of GSE173381: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE173381.

Gene ontology analysis

A list of all DEGs and their respective fold changes was 
imputed into the PANTHER classification system [10,11]. 
This process was performed for biological processes and 
pathways [10], and the respective outputs were used. 
All presented data were statistically significant with a 
corrected p-value < 0.05.

         

Figure 1: Nuclear localization of nApoE41-151 in BV2 microglia cells. Panel A is a representative phase-contrast, bright field 
image depicting characteristic morphology of healthy BV2 cells used in this study. Panels B-E depict representative double-
label, fluorescence staining following treatment of BV2 cells with either 25 µg/ml nApoE41-151 (B and C, green) or full-length 
ApoE4 (D and E, green) for 24 hours. Nuclear staining with DAPI is indicated in blue with overlap images of both markers 
shown in either Panel C or E. Detection of 25 µg/ml nApoE41-151 was obtained using an anti-His antibody while detection of full-
length ApoE4 was carried out using anti-ApoE4 N-terminal antibody. Strong nuclear localization of nApoE41-151 was evident 
(Panel C) following exogenous treatment, while the majority of labeling of full-length ApoE4 appeared to be cytoplasmic 
(Panel E). All scale bars represent 10 µm.
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Figure 2: Few genes with large fold changes following exogenous treatment of BV2 microglial cells with full-length 
ApoE4. Shown is a MA-plot depicting the fold change (y-axis) over average expression for all differentially expressed 
genes in assessed BV2 microglia cells following FL-ApoE4 treatment at 25 µg/ml. Each log2 fold integer increment 
indicates a doubling of expression, with up-regulation noted as positive and down-regulation as negative. RNAseq 
analysis revealed that 48 genes experienced log2 fold changes > |1| when compared to the mean of normalized counts 
for genes from all samples. The points highlighted in blue indicate gene expression considered significant (p-values < 
0.05) with two genes within the red circle exhibiting the greatest differential expression (Gm3366 and Pcsk5 at 154- and 
22.5-fold increase, respectively).

Table 1: The twenty most up-regulated genes and their functions following treatment of BV2 microglia cells with FL-ApoE4 
(Greater than > 2-fold change, p < 0.05).

Gene Symbol Gene Name Fold Change Function
Gm33661 Predicted Gene, 33661 154
Pcsk5 Protein Convertase Sub-tilisin/

Kevin Type 5
22.5 Among its related pathways are lipoprotein 

metabolism
Serpina3f Serpin Family A Member 3 4.66 Plasma protease inhibitor and inhibits neutrophil 

cathepsin G
Gm35200 Predicted Gene, 35200 3.15 
Gm36319 Predicted Gene, 36319 2.77 
Serpina3g Serine Protease Inhibitor A3G 2.71 Serine and cysteine protease inhibitor

Slfn5 Schlafen Family member 5 2.63 May have a role in hematopoietic cell 
differentiation

Adam33 ADAM Metallopeptidase Domain 
33

2.62 Membrane-anchored disintegrin involved in cell-
matrix interactions

Gm32124 Predicted Gene 32124 2.41 
Siglece Sailic Acid-binding Ig-like Lectin 12 2.35 Adhesion molecule that may be an inhibitory 

receptor in immune cells
Cx3cr1 CX3C chemokine receptor 1 2.32 In immune cells, mediates both adhesive and 

migratory functions
Gcm2 Glial Cells Missing Tran-scription 

Factor 2
2.30 Acts as a binary switch between neuronal and 

glial cell determination
P2ry6 Pyrimidergic Receptor P2Y6 2.28 P2 receptor that mediates inflammatory 

responses
Usp18 Ubiquitin Specific Peptidase 18 2.24 Cleaves ubiquitin on protein substrates and 

downregulates interferon responses
Oas2 2’-5’-Oligoadenylate Synthetase 2 2.19 Essential protein involved in the innate immune 

response to viral infection

https://doi.org/10.23937/2643-4539/1710020
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regulated are listed in Table 2. The top three down 
regulated genes were Il27 (-5.69-fold), Il23 (-4.00-fold), 
and Gdf15 (-3.69-fold). Notably, all three genes have 
functions involving inflammatory pathways. Moreover, 
of the 14 most down regulated genes of known function, 
9 of these genes either play a role in the immune system 
or are involved in cellular growth and differentiation. 
This data suggests that the extracellular treatment with 
FL-ApoE4 actually diminishes inflammatory and growth 
processes in microglial cells, in contrast to previous 
results with the E4-fragment.

Enrichment pathways modulated by treatment of 
BV2 microglial cells with FL-ApoE4

In order to better understand the functional role of 
the differentially expressed genes, we performed a GO 
enrichment analysis to identify overrepresented and 
underrepresented biological processes in the DEGs. 
We used the Panther Classification System to compare 
our list of DEGs to the Mus musculus genome (Figure 
3). We note that this analysis is difficult to interpret 
because there were so few differentially expressed 
genes. Nevertheless, the most overrepresented process 
was “Negative regulation of multicellular organismal 
processes”. The underrepresented categories included 

Transcriptome analysis of BV2 microglia cells 
following treatment with FL-ApoE4

To test whether or not FL-ApoE4 leads to the 
induction of inflammatory genes or other pertinent 
genes similar to our previously reported results for the 
E4-Fragment [6], we performed a transcriptome analysis 
of BV2 microglia cells with and without exogenous 
treatment with human recombinant FL-ApoE4 and 
identified differentially expressed genes (DEGs). We 
used experimental conditions identical to our previous 
study, including the concentration of exogenous protein. 
We found that treatment with FL-ApoE4 led to only 48 
DEGs (fold-change > |2|, p < 0.05) (Figure 2, blue data 
points). This is in clear contrast with the E4-Fragment 
data in which 2,718 DEGs were identified as differentially 
expressed at the same significance level [6]. There 
were twenty genes with increased expression, which 
are listed with their functions in Table 1. Two genes 
stand out as obviously more up regulated (Figure 2, red 
circle). Gm33661 showed a 154-fold increase and Pcsk5 
showed a 22.5-fold increase relative to the untreated 
control cells. The remaining genes were induced in the 
range of about 2-4-fold. There were also 28 genes with 
decreased gene expression. The top fifteen most down 

Irf7 Interferon Regulatory Factor 7 2.14 Plays a critical role in the innate immune 
response against viruses

Gm32006 Predicted Gene, 32006 2.11 
Gm5431 Programmed Cell Death 1 2.10 
Pdcd1 Kinesin Family Member 5C 2.08 Cell surface protein that plays a role in 

maintenance of immune tolerance to self
Kif5c 2.01 Involved in the transport of cargo within the CNS

         

Figure 3: Enriched biological processes following treatment with full-length ApoE4. BV2 cells were plated onto 6-well plates to 
confluency and treated with FL-ApoE4 for 5 hours. Following treatment, total RNA was extracted and transcriptome analysis 
was carried out as described in the Materials and Methods. Data are expressed as fold enrichment of biological processes in 
BV2 microglia cells in the presence of FL-ApoE4. Up-regulated processes are involved in negative regulation of multicellular 
organismal processes and catalytic activity of BV2 microglia, while down-regulated processes are involved in germ layer 
development and cell signaling processes.
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fold change in the E4-fragment treated cells. 
Surprisingly, of these 10 most down regulated genes, 9 
actually showed significant up regulation in cells treated 
with the E4-Fragment. In addition, many of these genes 
showed very large increases in gene expression in the 
E4-Fragment treated cells. For example, Nfkbiz, Gdf15 
and Il23a all showed greater than 10-fold increases, 
Mir155hg showed a 68.2-fold increase, and Il27 showed 
a 183-fold increase in the E4-fragment treated cells, but 
all showed ~2-5-fold decreases in the FL-E4 treated cells. 

“Mesoderm formation”, “Endoderm formation”, 
“Ectoderm formation” and “Negative regulation of MAP 
kinase activity”. Notably, several processes that were 
enriched following treatment with the E4-fragment are 
not enriched in our FL-E4 data, including “inflammatory 
response”, “activation of innate immune response”, 
and several responses to interferons and cytokines.

Transcriptome comparison of FL-ApoE4 with E4-
Fragment

To further assess differences in gene expression 
between treatment with the FL-ApoE4 and the E4-
fragment, we directly compared the DEGs from the 
current study with our previously published data [6]. In 
total, there were only 34 DEGs in the FL-E4 data that 
matched the DEGs in the E4-Fragment data with the 
same significance criteria (fold-change > |2|, p < 0.05). 
Table 3 lists the 10 genes with the largest increase in 
expression following treatment with FL-ApoE4 and 
their corresponding fold change following treatment 
with the E4-Fragment. Only four genes matched in 
this comparison, with one gene Slfn5 showing a much 
higher increase in the fragment treated cells (31.3-fold) 
compared to the FL-ApoE4 treated cells (2.63-fold). 
Table 4 shows the 10 genes most down regulated upon 
treatment with the FL-ApoE4 and their corresponding 

Table 3: Fold change of the Top 10 most up-regulated genes 
following treatment of BV2 microglia cells with FL-ApoE4 and 
their fold change following treatment with nApoE41-151 (p < 0.05).

Increase FL E4 E4 Fragment
Gm33661 154 -
Pcsk5 22.5 -
Serpina3f 4.66 4.85
Gm35200 3.15 -
Gm36319 2.77 -
Serpina3g 2.71 1.54
Slfn5 2.63 31.3
Adam33 2.62 -
Gm32124 2.41 -
Siglece 2.35 3.58

Table 2: The fifteen most down-regulated genes and their functions following treatment of BV2 microglia cells with FL-ApoE4 
(Greater than < 2-fold change, p < 0.05).

Gene Symbol Gene Name Fold Change Function
Il27 Interleukin 27 -5.69 Cytokine that is known to synergize with IL12B 

to trigger IFNG production
Il23a Interleukin 23 Subunit Alpha -4.00 Cytokine that is important part of the 

inflammatory response against infection 
Gdf15 Growth Differentiation Factor 15 -3.69 Ligand of the TGF-beta super-family that 

regulates inflammatory pathways
Dmd Dystrophin -3.40 Cytoskeletal protein in muscle cells that 

provides for tensile strength
Nr4a3 Nuclear Receptor Subfamily 4 

Group A Member 3
-3.38 Protein that is a member of the thyroid 

hormone receptor and may act as a 
transcriptional activator

Mir155hg MicroRNA Host Gene 2 -3.22 Non-protein coding microRNA
Dusp8 Dual Specificity Phophatase 8 -3.13 Phosphatase that negatively regulates 

members of the MAP kinase family.
Nfkbiz NF-Kappa-B Inhibitor Zeta -2.91 Plays a role in inflammatory responses to LPS
Chac1 Glutathione-specific Gamma-

glutamylcyclotransferase 1
-2.90 Catalyzes the cleavage of glutathione

Gm40447 Predicted Gene 40447 -2.88 No known function at this time
Ptprd Receptor-type Tyrosine-protein 

Phosphatase delta
-2.85 Involve in neuronal differentiation and may act 

as a tumor suppressor
Sstr5 Somatostatin Receptor Type 5 -2.76 May increase cell growth inhibition
Tnfsf9 Tumor Necrosis Factor Ligand 

Superfamily 9
-2.75 Cytokine that Induces proliferation of activated 

peripheral blood T-cells
Ddit4 DNA Damage-inducible Transcript 

4 Protein
-2.66 Regulates cell growth, proliferation and survival 

via inhibition of mTORC1
Phlda1 Pleckstrin Homology-like Domain 

Family A1
-2.64 Mediates apoptosis via increased sensitivity to 

chemotherapeutic agents

https://doi.org/10.23937/2643-4539/1710020


ISSN: 2572-3243DOI: 10.23937/2643-4539/1710020

Rohn et al. Int J Neurodegener Dis 2021, 4:020 • Page 7 of 9 •

to the E4-Fragment.

To assess this possibility, we performed a 
transcriptome analysis in BV2 microglia cells following 
exogenous treatment with FL-ApoE4 and compared 
the results to E4-Fragment previously reported [6]. 
Treatment with FL-ApoE4 led to a much lower impact 
on gene expression. Indeed, a total of only 48 DEGs (fold 
> 2, p < 0.05) were identified for FL-ApoE4 as compared 
to 2,718 DEGs for the E4-Fragment. Specifically, the top 
3 genes induced by FL-ApoE4 were Gm33661 (154-fold), 
Pcsk5 (22.5-fold), and Serpina3f (4.66-fold). Gm33661 
was by far the most significantly up regulated gene but 
unfortunately, very little is known about this predicted 
gene. Although no known function has been assigned 
to Gm33661, bioinformatics analysis indicates that 
this putative gene most likely represents a long non-
coding RNA (lncRNA). In an effort to obtain additional 
information about this gene, we employed the use of 
the SEEKR algorithm that used relative frequencies of 
short motifs called k-mers to infer function based on 
similarity to other lncRNAs [21,22]. K-mer profiles were 
tested for similarity using Pearson correlations. The 
output of such an analysis indicated that the majority of 
putative functions that align with Gm33661 fall under 
the categories of maintenance of pluripotency and 
regulation of nervous system development through 
methylation. In this regard, Gm33661 likely is down 
regulated during differentiation (Pearson correlation > 
0.9).

Pcsk5, on the other hand is a well characterized 
gene having major roles in lipoprotein metabolism [23]. 
Interestingly, a recent genome-wide association study 
(GWAS) identified single nucleotide polymorphisms 
(SNPs) linked to cognitive impairment and hypotension 
[24].

The induction of Serpina3f by FL-ApoE4 is of 
significance as this gene is a member of the serpin 
family of proteins, a group of proteins that inhibit serine 
proteases. This gene is one in a cluster of Serpin genes 
located on the q arm of chromosome 14. Another 
member of this class, Serpina3g was also significantly up 
regulated by FL-ApoE4 (2.71-fold) (Table 1). Variations 
in the Serpina3 gene have been implicated in AD 
affecting both age-at-onset and disease duration [25]. 
Molecularly, it has recently been shown that Serpina3 
SNPs can prolong toxic oligomeric forms of beta-amyloid 
leading to neuronal cell death, in vitro [26].

Overall, it appeared that FL-ApoE4 was a stronger 
suppressor of gene expression. This seemed to 
be the case for enrichment pathways. In terms of 
enriched pathways, strong negative-fold enrichment 
was observed for tissues involved in germ layer 
development including mesoderm, endoderm, and 
ectoderm. This may be linked to the down regulation 
of several members of the Dusp gene family including 
Dusp1, 2, 4, 5, 8, 14, and 18 (the raw data file can be 

Further, when analyzing all the genes down regulated 
by the full-length protein, we found a strong negative 
correlation between the fold-change in the FL-E4 data 
and the E4-fragment data (Pearson’s r = 0.7, p < 10-16). 
From these reversals in the direction of gene expression, 
in addition to the different functional categories of 
DEGs, we conclude that the full-length ApoE4 protein 
has activity that is both diminished and opposing to the 
action of the E4-fragment when they are exogenously 
added to cultured BV2 cells.

Discussion
The exact mechanism by which the ApoE4 

protein enhances dementia risk has been extensively 
investigated and the general consensus to date is 
ApoE4 is less effective in promoting the clearance of 
beta-amyloid deposits, one of the hallmark molecular 
signatures of AD [12]. In this regard, both pathological 
and neuroimaging studies have indicated that beta-
amyloid deposition occurs to a greater extent and 
earlier in the disease process in APOE4 carriers [13-15]. 
However, alternative mechanisms have recently come 
to light including accumulating evidence that ApoE4 is 
more susceptible to proteolytic cleavage and amino-
terminal fragments obtain a toxic-gain of function [16]. 
In support of this hypothesis is the presence of major 
ApoE4 fragments in ApoE4 transgenic mice [17] as well 
as in the human AD brain [5,18,19].

In a previous study, we reported that an amino-
terminal fragment of ApoE41-151 (E4-Fragment) is taken 
up by microglia cells, traffics to the nucleus and changes 
gene expression culminating in cellular toxicity and an 
M1 activated phenotype [5,6,20]. In addition, it was 
shown that while the E4-Fragment can specifically bind 
to the TNF-α promoter region and causes significant 
toxicity, FL-ApoE4 was without effect in either regard 
under identical experimental conditions [5,20]. These 
data suggest a novel role of fragmented ApoE4 beyond 
lipid metabolism. In the present study, we examined 
whether this function extends to FL-ApoE4 or is specific 

Table 4: Fold change of the Top 10 most down-regulated 
genes following treatment of BV2 microglia cells with FL-ApoE4 
and their fold change following treatment with nApoE41-151 (p < 
0.05).

Decrease FL E4 E4 Fragment
Il27 -5.69 183
Il23a -4.00 14.1
Gdf15 -3.69 18.6
Dmd -3.40 -
Nr4a3 -3.38 6.42
Mir155hg -3.22 68.2
Dusp8 -3.13 45.6
Nfkbiz -2.91 16.1
Chac1 -2.90 3.57
Gm40447 -2.88 6.93

https://doi.org/10.23937/2643-4539/1710020
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