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Abstract
Receptor for advanced glycation end products (RAGE) activation 
is known to play an important role in the development of diabetes 
complications by amplifying the inflammatory process. Herein, we 
examined the effect of polyclonal antibodies against human RAGE 
(Ab anti-hRAGE) on “primed” peripheral blood mononuclear cells 
(PBMNC by hyperglycemia in type 2 diabetes mellitus (T2DM) 
patients in comparison to healthy control. ROS generation and IL-
1β, IL-6 and TNF-α secretion were studied.

PBMNCs were purified utilizing Ficoll-hypaque gradient. ROS was 
quantified by luminol-dependent chemiluminescence. Antibodies 
anti- human RAGE (AGE-like) was purched from Sigma Co. The 
cytokines were from PBMNC culture in presence or in the absence 
of anti-hRAGE. IL-1β, IL-6 and TNF-α were quantified in the 
supernatant of Ab anti-hRAGE-stimulated PBMNCs trough ELISA.

Ab anti-hRAGE (AGE-like) significantly inhibited ROS production 
in unstimulated or stimulated PBMNCs from T2DM and healthy 
controls in a similar way. The percentage of inhibition was greater 
in primed PBMNC by hyperglycemia in diabetes (T2DM patients). 
In contrast, anti-hRAGE increased secretion of IL-1β, IL-6 and 
TNF-α (p < 0.05) in the supernatant of Ab anti-hRAGE-stimulated 
PBMNCs from T2DM patients compared with healthy controls (p < 
0.05).

The effect of antibody anti-hRAGE (AGE-like) in primed cells by 
hyperglycemia in diabetes may activates different signaling network 
when interact with RAGE on cells surface. Dual results induced 
by anti-hRAGE (AGE-like) associated with oxidizing response 
and pro-inflammatory cytokine secretion suggest activation of 
several signaling network in AGE-RAGE interaction. It may have 
consequences on innate immunity. 
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Introduction
Diabetes mellitus is a immunological disease characterized by 

metabolic deregulation and inflammation [1]. Hyperglycemia of 
diabetes is associated with increase in the generation of reactive 
oxygen species (ROS) and the formation of advanced glycation end 
products (AGEs) [2-6]. AGEs interact with their respective receptors 
(RAGEs), a multiligand member of the immunoglobulin superfamily 
of cell surface molecules, inducing activation of cascade of several 
signaling pathways associated with diabetes vascular complications 
[7-10]. In addition to AGEs, RAGE is a receptor for amyloid fibrils, 
S100/calgranulins and high mobility group box 1 (HMGB-1) protein 
[11-13]. It is expressed in many types of cells at low levels, such as 
endothelium, monocytes, macrophages, T-lymphocytes, neuronal 
cells, and glomerular epithelial cells [14-16]. But, in pathological 
conditions, RAGE is upregulated after interaction with respective 
ligands [17]. Activation of RAGE transduces activating signals 
for: i) NADPH oxidase system; ii) reactive oxygen species (ROS) 
production; iii) p38 MAPK; iv) extracellular-signal-regulated 
kinase 1/2; v) Rac; vi) protein kinase C; vii) phosphatidylinositol-3 
kinase (PI3K); viii) intracellular calcium (Ca2+) mobilization; and 
ix) IκB kinase-β (IKKβ) in vascular endotheliums, smooth muscle 
cells and monocytes. These signaling pathways iniciate and sustain 
the activation NFkappaB target genes leading to the production 
and secretion of proinflammatory cytokines, chemokines and 
adhesion molecules, such as IL-1β, IL-6, TNF-α, E-selectin, vascular 
endothelial growth factor (VEGF), vascular cell adhesion molecule 
(VCAM)-1 and intercellular adhesion molecule (ICAM) [18-28]. 
There are few reports with cells directly associated with innate 
immunity and it is possible to suggest consequences on signaling of 
AGE-RAGE interaction induced by hyperglycemia in diabetes. RAGE 
activation is suggested to be associated with development of diabetes 
complications by amplifying the inflammatory process [10]. Soluble 
RAGE (sRAGE) and monoclonal antibodies anti RAGE have used as 
therapeutic resource for neutralize AGE and to block the interaction 
AGE-RAGE on cell surface. It has been suggested that hyperglycemia 
in diabetes may prime cells metabolically inducing altered cellular 
reactivity [29]. Herein, we examined peripheral blood mononuclear 
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cells (PBMNC) primed by hyperglycemia from T2DM patients in 
comparison to PBMNC from healthy non-diabetic control. We use 
polyclonal antibodies against human RAGE (Ab anti-hRAGE) as 
AGE-like. ROS generation and IL-1β, IL-6 and TNF-α secretion in 
hyperglycemia “primed” PBMNCs from Type 2 diabetes mellitus 
(T2DM) patients and healthy controls were studied.

Material and Methods
This study was approved through the Ethical Committee of 

Santa Casa Hospital (Belo Horizonte - MG, Brazil), and written 
informed consent was obtained from all participants prior to the 
commencement of the study.

Subjects
T2DM patients (n = 20), diagnosed according to the criteria of the 

American Diabetes Association [30], and healthy controls (n = 20), 
ranging 47–70 years of age, were recruited from the Endocrinology 
Department of Santa Casa Hospital. Type 2 DM patients were treated 
with statins and beta-blockers in addition to hypoglycemic drugs. Prior 
to the study, all volunteers received complete physical examinations, 
and detailed evaluations of medical histories and laboratory analyses 
were performed (Table 1). Pregnant women, individuals suffering 
from alcoholism, infection, inflammation, dementia or malignant 
diseases and smoking addictions were excluded from this study.

Reagents
The following reagents were purchased from Sigma-Aldrich 

(St. Louis, Mo, USA): Rabbit antibody anti-human RAGE (Ab anti-
hRAGE, cat. #SAB1401326, Lot. 09112), NADPH oxidase inhibitor 
[diphenyliodonium chloride (DPI); cat. # 43088] and Phorbol 
12,13-dibutyrate (PDB, cat. # P1269).

Preparation of peripheral blood mononuclear cells 
(PBMNC)

PBMNCs were purified from 10.0 mL of heparinized venous 
blood, using a Ficoll-Hypaque gradient as previously described [31], 
with slight modifications. The trypan blue exclusion test showed that 
the cell viability in all samples was of > 95%.

Determination of reactive oxygen species (ROS)
Modulations in the generation of ROS were estimated using 

the luminol quantitative chemiluminescence assay in a Magic Lite 
luminometer, (Ciba Corning Co., Medfield, MA, USA). The PBMNCs 
sample was washed in phosphate buffered saline (PBS) and a suspension 
containing 1 × 106 PBMNCs/mL PBS was transferred to an unsealed 
luminescence tube. Luminol (200 µL) dissolved in 0.4 M dimethyl 
sulphoxide was added to the sample, the final volume of the mixture 
was adjusted to 500 µL with PBS. The chemiluminescence [expressed in 
relative ligh units (RLU)/min] of each assay mixture was measured for 
15 min (basal ROS production), following which addition of the Ab anti-

hRAGE (100 ng/100 µL) to the reaction mixture and chemiluminescence 
measured for 40 min. Finally, NADPH oxidase inhibitor (DPI) (10 μM; 
100 μL) was added to the reaction mixture and chemiluminescence 
measured for additional 15 min. The chemiluminescence was also made 
in the presence of PDB. In this case, basal ROS production was measured 
for 15 min, following which 20 μL of 10−4M PDB was added and 
ascendant ROS production was determined for 25 min; finally Ab anti-
hRAGE (100 ng/100 µL) was added and chemiluminescence recorded 
for a further 20 min.

Quantification of pro-inflammatory cytokines (IL-1β, IL-6 
and TNF-α) in supernatant of PBMNCs

Aliquots (100μl) of PBMNCs suspension (1 × 106/ mL) from 
T2DM and healthy controls in Dulbecco’s modified Eagle’s medium 
(DMEM), supplemented with 10% fetal bovine serum (FBS), were 
incubated in the absence or presence of Ab anti-hRAGE (100 ng/100 
µL) for 72 hours at 37°C under 5% CO2. The final volume was adjusted 
to 300µL in DMEM supplemented with 10% FBS. After incubation, the 
cells were centrifuged and the supernatant collected. The interleukin 
(IL) 1-β (IL-1β human EIA Kit – Enzo Life Sciences, Inc., New York, 
USA ), IL-6 (IL-6 human EIA Kit – Enzo Life Sciences, Inc., New 
York, USA) and tumour necrosis factor-alpha (TNF-α human EIA 
Kit – Enzo Life Sciences, Inc., New York, USA) concentrations were 
determined through enzyme-linked immunosorbent assay (ELISA).

Statistical Analyses
The values are presented as the means ± standard deviation (SD). 

The nonparametric Kolmogorov-Smirnov test was used to assess 
the normal distribution of the continuous variables. Comparisons 
between groups were performed using unpaired Student’s t-tests. In 
some experiments, we also used the chi-square test. All analyses were 
considered significant at p-values < 0.05 using Origin 6.0 (Microcal 
Software Inc., Northampton, MA, USA).

Results
Suppression of ROS generation in PBMNCs from T2DM 
and healthy control by either antibody anti-hRAGE or 
NADPH-oxidase system inhibitior (DPI)

ROS, expressed as RLU/min, produced by unstimulated 
PBMNCs from T2DM patients produced higher levels of ROS (186.6 
± 39.0) compared to healthy controls (96.6 ± 11.0) (p < 0.05). The 
use of polyclonal antibodies against human RAGE suppressed ROS 
generation 29% and 19% in cells from T2DM and healthy controls, 
respectively (p > 0.05 by chi-square  test). Similar suppression of 
ROS production was observed in PBMNCs assayed in the presence 
NADPH oxidase inhibitor (DPI). The percentages of inhibition were 
48.0% for T2DM and 31.0% for healthy control (p > 0.05) (Table 2 
and Figure 1). PBMNC from patient were more sensitive to inhibition 
than that from healthy control.

Table 1: Clinical and biochemical characteristics of the studied population.

Parameters T2DM (n = 20) Healthy controls (n = 20) p
Female/Male ratio 14/6 12/8 NA

Age (years) 59.1 ± 11.4 57.1 ± 10.0 ns

Body mass index (kg/m2) 30.3 ± 7.6 25.0 ± 3.6 < 0.05

Disease duration (years) 4.5 ± 4.0 NA NA

Systolic pressure (mmHg) 126.0 ± 11.4 124.4 ± 12.1 ns

Diastolic pressure (mmHg) 85.0 ± 8.3 81.9 ± 4.3 ns

Fasting glucose (mg/dL) 135.2 ± 40.4 89.5 ± 8.5 < 0.05

Glycated hemoglobin (%) 8.1 ± 1.3 5.8 ± 0.3 < 0.05

Total cholesterol (mg/dL) 196.8 ± 43.7 167.7 ± 29.5 < 0.05

Low density lipoprotein (mg/dL) 124.0 ± 37.5 99.2 ± 25.4 < 0.05

High density lipoprotein (mg/dL) 45.8 ± 10.3 55.7 ± 17.6 ns

Triglycerides (mg/dL) 155.9 ± 45.1 113.2 ± 40.8 < 0.05

Data as means ± SD.
NA: not applicable; ns: not significant.
Significant differences between the groups were determined using Student’s t-test (p < 0.05).
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Antibody anti-hRAGE reduced ROS generation in PBMNCs 
PDB-stimulated from T2DM and healthy control

The role of Ab anti-hRAGE on ROS production by PBMNCs 
PDB-stimulated is shown in table 2 and figure 2. The phorbol 
ester activated PBMNCs-ROS derived from T2DM and healthy 

contols, the results, expressed as percentage of activation, were 
166% and 67% respectively (p < 0.05). The PBMNCs-ROS derived 
PDB-stimulated was inhibited by Ab anti-hRAGE. The results 
expressed as percentage of inhibition were 55% and 53% for 
T2DM and healthy controls, respectively. However, the kinetics 
studies (Figure 1 and Figure 2) demonstrate that the effect of anti-

Table 2: Effect of human RAGE antibody and NADPH oxidase inhibitor diphenyliodonium chloride on reactive oxygen species (ROS) production in human peripheral 
blood mononuclear cells from T2DM and healthy controls.

Experiments
ROS production (RLU/minutes x 10-2 ± SD)

T2DM Inhibition (%) Healthy controls Inhibition (%)
1. PBMNCs + PBS 186.6 ± 39.0* 96.6 ± 11.0
2. PBMNCs + Ab anti-hRAGE 131.9 ± 50.0 29a 78.6 ± 16.8 19a

3. PBMNCs + Ab anti-hRAGE + DPI 68.0 ± 32.6 48b 53.9 ± 10.5 31b

n= 10 for each group; PBMNCs = peripheral blood mononuclear cells; Ab anti-hRAGE = polyclonal antibodies against human RAGE; DPI = diphenyliodonium chloride 
(NADPH oxidase inhibitor); RLU = Relative Light Units. *p < 0.05 vs. healthy controls (Student’s t-test) Percentage inhibition values were calculated from the expression 
[1 − R2/R1)] × 100:
aR1 and R2 represent ROS levels in the absence or presence of hRAGEab, respectively
bR1 and R2 represent ROS levels in the presence of DPI and hRAGEab, respectively. P > 0.05 when similar letters were compared.
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Figure 1: Effects of Rabbit antibody anti human RAGE (Ab anti-hRAGE) and NADPH oxidase inhibitor [diphenyliodonium chloride (DPI)] on ROS production 
by human peripheral blood mononuclear cells (PBMNCs) from Type 2 diabetes patients (T2DM) and healthy controls. Each point represents the average of 10 
experiments ± SD. RLU = Relative Light Units.
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Figure 2: Effects of Rabbit antibody anti-human RAGE (Ab anti-hRAGE) on ROS production in PDB-stimulated human peripheral blood mononuclear cells from 
T2DM and healthy controls.
Each point represents the average of 3 experiments ± SD. RLU = Relative Light Units, PDB = phorbol 12,13-dibutyrate ester.
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RAGE was more effective in PBMNC from patients, suggesting 
possible effect of hyperglycemia.

Antibody anti-hRAGE activated proinflammatory cytokines 
secretion in PBMNCs from T2DM

As depicted in figure 3, hRAGEab activated the secretion of IL-
1beta and IL-6 in PBMNCs from T2DM, and stimulated the secretion 
of TNF-alpha in cells from both studied groups (p < 0.05). The results 
of the induced effect of hRAGEab in PBMNCs, expressed as mean 
± SD, were: IL-1beta: 61.1 ± 13.0 and 22.8 ± 12.4; IL-6: 446.1 ± 71.0 
and 159.0 ± 59.9; TNF-alpha: 171.7 ± 42.0 and 108.7 ± 35.7, for 
T2DM and healthy controls, respectively. Figure 3 also demonstrated 
that PBMNCs from T2DM produced significantly (p < 0.05) higher 
amount of IL-1beta (33.9 ± 12.4), IL-6 (312.3 ± 81.2) and TNF-alpha 
(105.6 ± 13.1) as compared with cells from healthy control (IL-1beta: 
17.2 ± 5.0, IL-6: 128.1 ± 37.2, TNF-alpha: 68.9 ± 10.0).

Discussion
The present study demonstrated that polyclonal antibodies 

against human RAGE (AGE-like) enhanced cytokines secretion and 
inhibited ROS generation in PBMNC from type 2 diabetic patients. It 
has been reported that the pathological consequences of interaction 
between RAGE with respective ligand leads to the generation of 
oxidative stress and upregulation of inflammatory pathways [9,32-
34]. The blockade of RAGE with ligands has been suggested as a 
possible therapeutic target for controlling inflammatory process. 
In diabetic animal models, the blockade of RAGE, using soluble 
RAGE (sRAGE), demonstrated reduction in vascular inflammation 
and atherosclerotic lesion area and suppression in periodontitis-
associated alveolar bone loss [10,35-37]. RAGE deficient animal 
models showed improvement of nephropathy, suppression of kidney 
injury and diabetes-accelerated atherosclerosis [38-40]. Moreover, 
anti-RAGE antibodies increased survival in experimental models of 
severe sepsis, protected against AGE-mediated podocyte dysfunction 
and suppressed pro-inflammatory activities of human umbilical 
venular endothelial cells (HUVECs) induced by HMGB1 [41-44]. 
Thus, theoretically, the use of antibodies anti-RAGE could down-
regulate inflammatory signaling pathways.

ROS overproduction hyperglycemia-induced result in oxidative 
stress and it plays a central role in the pathogenesis of diabetes 
complications [5,6]. Activation of RAGE results in the generation 
of ROS in dependence of NADPH oxidase [45]. Our results (Table 
2 and Table 3) are not in agreements with other authors [18,27,45]. 
Antibodies anti-hRAGE down-regulated ROS production in PBMNC 
either from T2DM or from healthy controls (Table 2, Table 3, Figure 
1 and Figure 2). It can be due to experimental design we have used. 
Polyclonal antibodies anti-hRAGE could interact simultaneously 
with several epitopes on RAGE molecule while monoclonal 
antibodies or natural AGE interacts with a specific region or epitope. 
Several metabolic signaling simultaneously activated resulted in 
different metabolic response. In order to confirm our present results, 
we performed experiments using an NADPH inhibitor (DPI). The 
addition of NADPH oxidase inhibitor to PBMNC challenged with 
antibodies anti-hRAGE showed an addictive effect in reducing 
ROS production in PBMNC (Table 2 and Figure 1). Both PBMNC 
from T2DM patients and from healthy controls showed similar and 
comparable metabolic response in the presence of Ab anti-hRAGE. 
However the inhibition in hyperglycemia primed PBMN showed 
greater when compared to healthy control (p < 0.05) It suggests that 
the effect of Ab anti-hRAGE on RAGE can affected by hyperglycemia 
in diabetes. We studied down regulation of ROS production 
mediated by anti-hRAGE on PBMNC previously stimulated with 
a protein Kinase C (PKC) activator. Our results demonstrated that 
the activation of ROS production induced by PDB ( phorbol ester) 
was greater in PBMNMC from patients and was fully reversed by 
Ab anti-hRAGE in cells from T2DM and healthy controls in similar 
percentage of inhibition (55 and 53%, respectively) (Table 3 and 
Figure 2). It may suggests that the effect of antibodies anti-hRAGE 
(AGE-like) depends on PKC and /or NADPH-oxidase signaling 
pathways. Our present data demonstrated that polyclonal antibody 
anti-hRAGE induced ROS (oxidizing response) inhibition and 
increased cytokine secretion by PBMNC from T2DM. It suggests a 
dual effect for antibodies anti-hRAGE (AGE-like). Inflammatory 
changes observed in the presence of hyperglycemia have been 
associated with NF-kappaB activation [46,47]. It is also described 
that RAGE activation leads to sustained and chronic activation of 

Table 3: Effect of human RAGE antibody on reactive oxygen species (ROS) production in PDB-stimulated human peripheral blood mononuclear cells from T2DM and 
healthy controls.

Experiments
ROS production (RLU/minutes x 10-2 ± SD)

T2DM Activation (↑)a Inhibition (↓)b (%) Healthy controls Activation (↑)a Inhibition (↓)b (%)
1. PBMNC + PBS 177.8 ± 23.2* 85.8 ± 8.6
2. PBMNC + PDB 472.4 ± 44.2 166 (↑) 143.3 ± 10.3 67 (↑)
3. PBMNC + PDB + Ab anti-hRAGE 210.3 ± 29.4 55 (↓) 67.2 ± 8.5 53 (↓)

n = 3 for each group; PBMNCs = peripheral blood mononuclear cells; PDB = phorbol 12,13-dibutyrate ester; Ab anti-hRAGE = polyclonal antibodies against human 
RAGE; RLU = Relative Light Units.
aPercentage activation (↑) values were calculated from the expression [(R2/R1 ) − 1] × 100: R1 and R2 represent ROS levels in the absence or presence of PDB, 
respectively
bPercentage inhibition (↓) values were calculated from the expression [1 − (R2/R1)] × 100: R1 and R2 represent ROS levels in the presence of PDB and PDB + Ab 
anti-hRAGE, respectively. *p < 0.05 vs. healthy controls (Student’s t-test).

   
A – IL 1β

IL
-1

be
ta

 (p
g/

m
L)

IL
-6

 (p
g/

m
L)

TN
F-

al
ph

a 
(p

g/
m

L)

B – IL-6 C – TNF-α
p<0.05 p<0.05

*
80

70

60

50

40

30

20

10

0

600

500

400

300

200

100

0

250

200

150

100

50

0

*
p<0.05

*

*

T2DM Healthy controls T2DM Healthy controls T2DM Healthy controls

Unstimulated Ab anti-hRAGE

Figure 3: Effects of Rabbit antibody anti human RAGE (Ab anti-hRAGE) on the secretion of IL-1β (A), IL-6 (B) and TNF-α (C) by human peripheral blood 
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NF-kappaB [32-34]. Surprisingly, our results showed that antibodies 
anti-hRAGE (AGE-like) increased secretion of pro-inflammatory 
cytokines (IL-1β, IL-6 and TNF-α) in cultured PBMNCs from 
T2DM, but inhibited ROS generation. Secretion of TNF-alpha was 
stimulated in cells from both studied groups (Figure 3). The increase 
of IL-1β may suggest the involvement of inflammasome in diabetic 
complications. It has been reported that increased levels of TNF, 
IL-1β and expression of NRLP3-inflammasome are associated with 
endothelial dysfunction and progression of atherosclerosis [48-50]. 
Ruscitti et al. [50] demonstrated that patients with diabetes and 
Rheumatoid Arthritis (T2D/RA) increase IL-β when compared with 
other groups. Antibodies anti-RAGE has no effect on periodontitis, 
but down-modulated renal complication in diabetic rats and improves 
neovascularization in the ischemic leg treatment in diabetic mice [50-
52]. The use of antibodies anti-RAGE leads to a controversial results 
and needs further studies.

Our results suggests that antibodies anti-hRAGE act as AGE-like 
ligand potentiating the inflammatory response activating different 
signaling pathways associated to cytokine secretion in cells from 
patients in comparison to that from healthy control.

It suggests a very complicated phenomenon with mechanism 
still not fully known. Thus, the use of experimental and therapeutic 
antibodies, such as, mono or polyclonal antibodies anti-RAGE, need 
to be used carefully and reinforce the suggestion that the role of AGE-
RAGE in pathogenesis of diabetic complications is more complex 
than it seems.

In conclusion, the effect of antibody anti-hRAGE (AGE-like) in 
primed cells by hyperglycemia in diabetes may activates different 
signaling network when interact with RAGE on cells surface 
leading to a dual results associated with oxidizing response and 
pro-inflammatory cytokine secretion. It may have consequences on 
innate immunity.
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