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a thymus, which would suggest the involution is an 
evolutionary and conserved event [6].

There are several diseases associated with thymus 
decline and increasing age such as diabetes and 
hypertension [7]. COVID-19 is the most recent pandemic 
which has a higher prevalence and severity in the 
elderly compared to young adults and children [5]. The 
thymus’ role in immune regulation and ageing could be 
key to understanding a range of pathologies including 
COVID-19. Furthermore, it can lead to the discovery and 
development of therapeutics to support healthy ageing.

The thymus is a primary lymphoid organ needed to 
produce self-restricted, self-tolerant immunocompetent 
T cells [6]. It is pyramidal in shape and consists of 2 
lobes connected by areolar tissue enclosed in a fibrous 
capsule. It is located in the mediastinum between 
the sternum and pericardium. Thymopoeisis - the 
development of new T cells, takes place in the thymic 
epithelial space (TES), here certain positive thymic 
epithelium enables the development of thymocytes, 
the thymus also contains the perivascular space/
stroma (PVS), which is keratin negative and where 
no thymopoiesis takes place. During thymopoiesis, 
pluripotent stem cells leave the bone marrow and 
enter the thymus. These cells are triple-negative (CD3-
CD4-CD8-) thymocytes. They enter the thymus where 
based on the microenvironment they differentiate into 
double-negative cells (CD3+CD4 -CD8-). These early 
progenitors migrate through different double negative 
subsets: DN I (CD44+CD25-) DN II (CD44+CD25+), DN III 
(CD44-CD25+) DN IV (CD44-CD25-). They then become 
double-positive thymocytes expressing CD4 and CD8, 
this is followed by rearrangement of their T cells antigen 
receptor genes [8]. Following this, central tolerance, 
where positive or negative selection takes place - so that 

Introduction
Ageing is a slow and continuous process that 

is associated with the decline in the functioning 
immune system. These changes are now recognized 
and appreciated under the canopy term ‘Immuno-
senescence’ [1]. Immuno-senescence is not due to a lack 
of immune cells but reduced diversity in the repertoire 
- with reduced naive cells and increased memory cells. 
Secondly, the ageing immune system is subject to 
inflammaging, elevated self-reactivity leading to chronic 
low-grade inflammation [2].

A healthy functioning immune system is needed for 
survival and crucially to defend against foreign antigens 
and pathogens. Immuno-senescence results in the 
reduced ability to fight infections, diminished vaccine 
immunity and reduced tumour clearance [3]. This is 
correlated with the increased mortality in the elderly 
population. Such issues with the immune system were 
not clear when the life expectancy of humans was lower. 
However, in the last century, we have experienced 
advances in both health care and public health that has 
led to increased longevity [4].

One of the key events in the ageing immune system 
is the involution of the thymus. The word thymus 
originates from the Greek word thymos which means 
‘principle of life’ [5].

In 1985 the morphology of the thymus was described 
and it was apparent that the immune organ started to 
decrease in size and function from the first year of life. 
This has been documented in all vertebrae that have 
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to produce new T cells at around the age of 105 years 
[19].

The ageing thymus has reduced the output of naive 
T cells and an increase in senescent peripheral memory 
cells. There is an overall decrease in TCR diversity and 
variation in T cell antigen receptors.

With increasing age, the involuted thymus has 
lower levels of T reg cells thus reducing the ability to 
control central tolerance and increasing the number of 
self-reactive T cells entering the periphery. These are T 
cells that would have normally been removed through 
negative selection. The latter promotes inflammaging. 
These cells can enter non-lymphoid tissue and lead 
to tissue damage. Inflammaging is also influenced 
by the increase in senescent cells which can change 
their phenotype/expression making them less likely to 
apoptose, instead increasing the release of cytokines 
[20].

There is also the release of pro-inflammatory 
cytokines mainly driven by the innate immune system 
with an upsurge of IL1, 6, TNF alpha and C reactive 
protein which spurs more cells to go into senescence 
[21].

Overall, the compromise is such that these changes 
preserve immunity against previously encountered 
antigens but weaken the response to new insults and 
vaccines.

Immuno-senescence and inflammaging are linked 
to several disease states that are associated with 
increasing age, including metabolic and cardiovascular 
diseases and may explain the higher mortality with the 
recent pandemic.

COVID-19 is caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and is a disease 
that has high mortality in the elderly, males and those 
with comorbidities such as obesity, diabetes and 
cardiovascular disease [20]. The virus is enveloped and 
made of single-strand RNA attacking the host through 
angiotensin-converting enzyme 2 receptors in the 
respiratory system [22]. Normally the immune system 
responds to viral infections through the innate system, 
via natural killer cells and macrophages which can 
produce cytokines and attract more immune cells. The 
adaptive system mainly responds through CD8 cytotoxic 
cells.

The exact role of the aged immune system in the 
pathogenesis of COVID-19 is not clear, yet all theories 
point towards the aged involuted thymus. This is notably 
characterized by the mechanisms explained above - 
immuno-senescence with senescent memory cells in 
the periphery and reduced naive T cells. Also, alterations 
in the T reg cells lead to reduced surveillance of self-
reactive cells. Lastly, there is inflammaging which could 
potentiate the inflammation and damage and reduce 
the ability to mount a T cell response to vaccination. The 

thymocytes become single positive naive T cells that can 
enter the periphery - then ensues. Negative selection 
leads to T cells that recognise self-antigens too strongly 
being removed from circulation through apoptosis [9]. 
Positive selection is where T cells recognise self-proteins 
with moderate strength and are allowed to continue 
developing.

There is also the generation of single-positive CD4 T 
regulatory (T reg) cells which function to suppress self-
reactivity and compensate for imperfections yielded 
from negative selection [10].

There were several theories regarding the 
mechanisms of the ageing immune system, including 
reduced and/or defective stem cells from the bone 
marrow, with a consequently diminished number of 
early T cell progenitors entering the thymus. However, 
it was studies such as those that demonstrated mice 
had increased susceptibility to infections, impaired 
immune response following thymectomy was crucial in 
highlighting the role of the thymus in immune function 
[11]. Furthermore, the importance of the thymus is 
evident in congenital disease states such as DiGeorge 
Syndrome, which is due to deletions of the 21q11.2 
chromosome, which leads to an underdeveloped or 
absent thymus. The result is a decrease in T cell number 
and increased infection risk. Malnutrition [12] and 
emotional stress [13] can also cause acute strain on 
the thymus and make the host more susceptible to 
infection.

The thymus is under the influence of the 
hypothalamic-pituitary-gonadal system; this association 
is identified by the presence of receptors for sex 
hormones found on thymocytes and thymic epithelial 
cells (TECs) [14]. There is evidence to suggest that 
the female thymus is larger than the male, moreover, 
during puberty, the thymus may be subjected to more 
sex hormones and it is during this period that thymic 
involution is very apparent [15]. These sex differences 
are also illustrated with the finding of Williams, et al., 
whereby male rodents experienced an increase in the 
size of their thymus following castration [16].

As research has progressed it is apparent that 
morphological and histological changes in the thymus 
play a significant role in thymic involution. Steinmann, et 
al., showed that the lymphoid cells within the TES began 
to decrease and involute shortly after birth, during the 
middle ages (35-45 years) it decreases at a rate of 3% 
per year, decreasing to 1% per year for the rest of the 
life course [17]. There is an expansion of the PVS shifting 
the ratio of TES to PVS, with the TES shrinking to less 
than 10% by the age of 70 [18]. With the decrease in 
TES, there is a decreased output of naive T cells. Single 
joint T cell receptor excision circles (sjTRECs) can be 
used to follow the creation of naive cells. A decline 
in sjTRECs has been found with increasing age. When 
extrapolated, it is estimated that the thymus would fail 
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reduce the mortality of patients with severe disease by 
up to 60%. It has exhibited restoration of CD4 and CD8 
in patients with severe COVID disease [30].

A simple, less invasive way of rejuvenating the 
thymus may be diet and exercise to reduce adiposity. 
Obesity has been implicated in thymic involution and 
also comorbidity related to COVID-19; Dixit reported 
that increased thymic adiposity may decrease the 
function of the thymus [31]. Furthermore, a study 
by Yang, et al. demonstrated that inducing obesity in 
rodents increased thymic involution, decreased naive 
T cells and increased memory cells [32]. This may 
be because the adipose tissue acts as a reserve for 
cytokines and inflammation. The reverse effect was 
seen when rodents were subjected to caloric restriction 
which revealed increased cellular density in the thymus 
and less deterioration of the TCR repertoire diversity in 
older animals [33].

In addition, Duggal, et al. found a correlation 
between physical exercise and healthy thymic function 
in the elderly. Older individuals who cycle had higher 
numbers of naive T cells, IL7, and lower IL6 compared to 
non-active controls [34].

Conclusively, age-related changes in the immune 
system, specifically the thymus is one is thought to 
contribute to immuno-senescence and inflammaging, 
placing the elderly at risk of being in a pro-inflammatory 
state and at risk of several diseases, including COVID-19. 
Understanding the thymus and its decline may provide 
useful therapeutic targets and help the plight of 
rejuvenating the immune system.
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