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Abstract
Aim: Acoustic neuromas, also known as vestibular schwan-
nomas are benign and slow-growing tumors arising from 
neural crest-derived Schwann cells. Treatment of acoustic 
neuromas targets to achieve local control while preserving 
hearing without comprimising cranial nerve functionality. In 
this context, radiosurgery in the form of Stereotactic Ra-
diosurgery (SRS) or fractionated stereotactic radiotherapy 
(FSRT) offer viable therapeutic options for effective man-
agement. Multimodality imaging has gained utmost priority 
for improved target defnition for radiosurgery. In this study, 
we assessed the utility of Magnetic Resonance Imaging 
(MRI) for target volume definition for acoustic neuroma ra-
diosurgery.

Methods and materials: Twenty patients treated with radio-
surgery for acoustic neuroma at our institution were includ-
ed. Radiosurgery target definition was performed by using 
CT simulation images only or by using fused T1 gadolini-
um-enhanced MR images acquired within 1 week before 
treatment day. A comparative evaluation was made includ-
ing volumetric analysis of target volumes.

Results: Target volume definition based on CT-only imaging 
and CT-MR fusion based imaging were comparatively eval-
uated for 20 patients receiving SRS for acoustic neuroma 
at our institution. Mean target volumes were 5.7 cc (range: 
2.1-13.9 cc) and 6.2 cc (range: 2.3-14.1 cc) with CT-only 
imaging and CT-MR fusion based imaging, respectively.

Conclusion: MRI may be used as a viable imaging modality 
for acoustic neuromas and may improve target definition 
for radiosurgery despite the need for further supporting 
evidence.

Keywords 
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Introduction
Acoustic neuromas are benign tumors which are also 

named “vestibular schwannomas”. Acoustic neuromas 
commonly originate from the transition zone between 
central oligodendroglial cells and peripheral schwann 
cells within the vestibular part of cranial nerve VIII. 
Acoustic neuromas account for the overwhelming ma-
jority of tumors occurring in the cerebellopontine angle 
in the adult population [1-3]. Acoustic neuromas may 
be associated with neurofibromatosis type II in some 
patients who present with bilateral lesions and have a 
typically worse outcome [4,5].

Asymptomatic acoustic neuroma lesions are being 
increasingly detected by use of contemporary imaging 
techniques, increased adoption of magnetic resonance 
imaging (MRI) and high resolution CT [6,7]. Involvement 
of the cochlear nerve may result in hearing loss and 
tinnitus as common syptoms of acoustic neuroma.

Management of acoustic neuromas aims at main-
taining cranial nerve functions and hearing preservation 
while achieving improved local tumor control. Observa-
tion with serial imaging as a conservative management 
option has been suggested due to slow growth pattern 
of smaller acoustic neuromas [8-11]. Nevertheless, a 
considerable proportion of observed patients may re-
quire intervention during the course of their disease. 
Therapeutic modalities for management of acoustic 
neuromas primarily include radiosurgery and surgical 
resection. In the scarcity of highest level of evidence 
to dictate therapeutic decisions, deciding on optimal 
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a multidisciplinary team of experts on neuroradiology, 
radiation oncology and neurosurgery.

After fixing of the stereotactic head frame to the 
patients’ skull with 4 pins under local anesthesia, all 
patients underwent Computed Tomography (CT) sim-
ulation at CT simulator (GE Lightspeed RT, GE Health-
care, Chalfont St. Giles, UK) available in our institution. 
A slice stickness of 1.25 mm was used for acquisition 
of contrast-enhanced planning CT images, and acquired 
images were sent to the delineation workstation (Sim-
MD, GE, UK) for contouring of the acoustic neuroma 
lesion along with critical structures in close vicinity of 
the target. To make a comparison of target definition 
with CT only and CT-MR fusion, target volumes were 
determined by using CT simulation images only or by 
fusion of T1 gadolinium-enhanced MRI acquired within 
1 week before radiosurgical treatment. Target volumes 
generated by using CT-only imaging and CT-MR fusion 
imaging were comparatively evaluated. Definition of 
ground truth target volume was decided after colleague 
peer review and consensus of treating radiation oncol-
ogists for every patient. Radiosurgery planning system 
was ERGO ++ (CMS, Elekta, UK) and treatments were 
delivered with Synergy (Elekta, UK) Linear Accelerator 

management is typically based on individualized as-
sessment taking into account several factors including 
lesion size and growth pattern, presentation symptoms, 
age, patient preferences and availability of treatments. 
Although surgery remains to be a traditional therapeu-
tic option, complications may be substantial in some pa-
tients [12,13].

Stereotactic Radiosurgery (SRS) has been judiciously 
used for management of a variety of indications with 
considerable success [14-32]. Radiosurgery offers a via-
ble treatment modality for both primary or complemen-
tary management of acoustic neuromas [33-35]. Accu-
racy of radiosurgery for acoustic neuromas may be im-
proved with incorporation of MRI [36,37]. In this study, 
we assessed the utility of Magnetic Resonance Imaging 
(MRI) for target volume definition for acoustic neuroma 
radiosurgery.

Materials and Methods
Twenty patients treated with radiosurgery for 

acoustic neuroma at our institution were included in 
the study. All patients gave written informed consent 
for radiosurgical treatment, and decision for radiosur-
gery was taken after thorough evaluation of patients by 

 

Figure 1: Planning CT and MR images of a patient with acoustic neuroma showing the lesion (black arrow).
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sensus of treating radiation oncologists was identical 
to target determination based on CT-MR fusion based 
imaging in the overwhelming majority of the patients.

In conclusion, MRI may be used as a viable imaging 
modality for acoustic neuromas and may improve target 
definition for radiosurgery despite the need for further 
supporting evidence.
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Results
Twenty patients treated using SRS at our institution 
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Discussion
Target volume definition is a critical part of radiosur-

gery planning. Due to step dose gradients, part of the 
target lesion may be left outside of the target in case of 
incomplete target determination. While CT may typical-
ly be successful in evaluation of the bony anatomy and 
detecting larger acoustic neuroma lesions, some intra-
calicular lesions with smaller volumes may go unnoticed 
on CT. Improved contrast resolution of MRI renders it a 
viable imaging modality for definition of acoustic neu-
roma lesions. Contrast enhancement on T1 weighted 
MRI is typical for acoustic neuromas (Figure 1), howev-
er, inhomogeneous enhancement may be observed in 
the setting of larger acoustic neuroma lesions. Also, T2 
weighted MR images may be used for improved defini-
tion of the optic apparatus and cochlea.

There is extensive research on improving the toxicity 
profile of radiation delivery in the modern era. Contem-
porary imaging techniques improve delineation accura-
cy for a variety of tumor sites. In the context of acoustic 
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body of evidence supporting the use of MRI for target 
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