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has slowed further clinical development. The dual specificity small 
molecule inhibitor of ADAM17/ADAM10, INCB7839, was evaluated 
in phase II clinical trials for the treatment of Trastuzumab resistant 
breast cancer [21], and demonstrated reduced shedding of a number 
of evaluated substrates [22].

ADAM17 is the major inducible sheddase for the ErbB ligands; 
Amphiregulin [23], TGF-α [24], Epiregulin [25], Epigen [26], HB-
EGF [27] and certain members of the Neuregulin family [28], and 
thus implicates itself in a wide range of developmental and repair 
pathways. It is indeed the excessive shedding of certain ligands, in 
particular Amphiregulin [29], HB-EGF [30] and TGF-α [31] that 
are associated with a wide range of cancer pathologies through the 
downstream effect upon the ErbB receptors and in particular EGFR. 
The therapeutic potential for targeting ADAM17 in this context has 
been considered previously in excellent review articles and thus will 
not be repeated here [3,32,33]. Beyond the shedding of growth factors 
and the direct impact on neoplastic growth, ADAM17 is involved in 
the shedding of a broad range of factors implicated in the activation, 
recruitment and resolution of innate and adaptive immune responses. 
The shedding of these different factors is an intrinsic mechanism in 
the control of the immune and inflammatory response, however, in 
certain cancers this may be deregulated through the over expression 
[34-37] or over activation [38] of ADAM17.

The implication of the immune system in tumor surveillance and 
destruction has been a subject of debate for decades since the original 
hypothesis of immunosurveillance was proposed by Burnet [39,40] 
and Thomas [41]. More recently the concepts of T-cell exhaustion 
[42] and tumor immune evasion [43] have been added to this complex 
game of cat and mouse. The study of immune modulation has recently 
yielded new therapeutic options for health care practitioners and 
patients, through the approval of cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4) targeted by Ipilimumab [44] and more recently 
programmed cell death 1 (PD-1) targeted by Nivolumab [45] and 
Pembrolizumab [46]. These treatments have been approved for the 
use in the treatment of metastatic melanoma, Nivolumab also being 
approved for use in squamous non-small cell lung cancer (NSCLC) 
[47,48]. These targeted therapies represent only the first in a raft 
of products currently under evaluation that offer great potential to 
reactivate a suppressed or exhausted immune system. The number 
of receptors and ligands that mediate the migration, activation and 
maintenance of inflammatory and immune responses essential to 
the immune surveillance machinery that have been identified as 
substrates for ADAM17 is already long and probably incomplete.

Abstract
Recent therapeutics searching to reactivate and target the 
immune system to destroy tumors have demonstrated remarkable 
success in the treatment of patients with previously intractable 
disease such as metastatic melanoma. Current research is 
enlarging the spectrum of targets and strategies for enhancing 
the immune response against tumors, in order to further improve 
treatment efficacy. In that respect, ADAM17, has frequently been 
described for it’s over expression or over activation in the tumor 
microenvironment. ADAM17 is responsible for the shedding of a 
large number of receptors and ligands involved in immune tumor 
targeting and the deregulation of this activity should be considered 
when developing therapeutic strategies. The aim of this review is 
to summarize the spectrum of ADAM17 substrates and its potential 
role in tumor immune modulation.
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Introduction
A disintegrin and metalloprotease 17 (ADAM17) a cell surface 

protease of the metzincin family was discovered in 1997 as the protein 
responsible for the extracellular cleavage or shedding of TNF-α and 
was originally named TNF-α converting enzyme (TACE) [1]. A 
further twenty ADAMs have since been described in humans albeit 
that only thirteen have functional protease domains [2]. ADAM17 
and the closely related ADAM10 have been the most widely studied 
due to the large range and often overlapping substrate specificities 
of the two enzymes [2] and in particular due to their association 
with pathologies including cancer, inflammatory disorders and 
Alzheimer’s disease [3]. The biological activity of the two enzymes 
differ however, ADAM10 being constitutively active [4,5], whereas 
ADAM17 is an inducible sheddase [5-8]. The inducible nature of 
ADAM17 shedding activity corresponds to its role in inflammatory 
responses [9-12] and wound healing [13,14] responding to various 
upstream signals including lysophasphatidic acid (LPA) [15], 
bradykinin [16], lipopolysaccharide (LPS) [17] and through the 
activation of different protein kinase C sub classes [18,19].

The role of ADAM17 in the release of soluble TNF-α led 
to considerable interest and numerous clinical trials have been 
conducted of small molecule inhibitors for the treatment of 
rheumatoid arthritis [20], however, lack of specificity and toxicity 
coupled with the development of TNF targeting immunotherapies 
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The following sections will expand on the implications of the 
deregulated shedding by ADAM17 of immune regulatory substrates 
in the tumor environment.

NK Cell Tumor Targeting
Epithelial tumors have been found to express MHC class I chain–

related molecules (MICs) [49] that act as ligands for NKG2D on γδ 
and CD8+αβ T cells and NK cells and elicit cytolytic targeting of the 
tumors [50]. The presentation of MICA and MICB results from the 
stress induced state of the tumor and targets these cells for destruction. 
Elevated levels of MICA/B have been described in a wide range of 
solid tumors including breast, lung, ovarian, prostate, renal and colon 
carcinomas [51]. Further investigation demonstrated that tumors 
positive for MICA/B expression demonstrated a 60-70% decrease 
of the NKG2D expression in tumor infiltrating lymphocytes (TILs) 
and peripheral blood mononuclear cells (PBMCs) and this is believed 
to contribute to the loss of NKG2D mediated tumor targeting [52]. 
Tumors positive for MIC expression demonstrated measurable levels 
of soluble MIC in the serum of patients that is absent in the serum 
of MIC-tumors. The protein disulfide isomerase ERp5 [53,54] has 
been shown to modulate the configuration of cell surface MICA/B 
and renders them susceptible to shedding by ADAM17 and to a lesser 
extent ADAM10 [50,55]. The extracellular shedding of MICA and 
MICB is not exclusive to ADAM17 and ADAM10 and indeed their 
secretion in exosomes has been observed in certain tumor cell lines 
[55] thus the specific targeting of MICA and or B may provide a more 
precise therapeutic outcome [56] than inhibiting their shedding. The 
NKG2D ligands expressed on tumors are not restricted to the MIC as 
indeed UL16 binding proteins (ULBP) are also presented and shed 
from tumors. The presentation and shedding of NKG2D ligands be 
they MIC or ULBPs represents a primary mechanism of lymphocyte 
tumor targeting, however, shedding is not the only regulatory device 
controlling this interaction, down regulation of the receptor or the 
ligand by a myriad of strategies can have the same net effect, these 
alternative strategies were detailed in a recent review [57].

Recently an additional tumor expressed ligand for NK cell 
engagement has been described, a member of the B7 family of 
immune regulatory proteins, B7-H6 [58]. Tumor expressed B7-H6 
has been shown to engage with the activating receptor NKp30 on NK 
cells to enhance anti tumoral cellular. Preclinical evidence suggests 
that T-cell recruitment through B7-H6 addressed BiTes [59] and NK 
recruitment via bispecific tumor antigen/B7-H6 fusion proteins [60] 
demonstrate that the potential of B7-H6 to recruit an anti-tumor 
immune response is significant. The presentation of B7-H6 at the 
tumor cell surface is controlled as with MICA/B through extracellular 
shedding by ADAM17 and ADAM10, siRNA inhibition implicating 
a greater role for ADAM17 [61]. The detection of elevated levels of 
soluble B7-H6 in the serum of a subset of melanoma patients [61] 
suggests that NK cell targeting via B7-H6 can be silenced through 
the down regulation of NKp30 similar to the effect observed with 
MICA/B and NKG2D and may further contribute to the attenuation 
of innate anti tumoral cellular cytotoxicity. The full scope of proteases 
capable of shedding B7-H6 has yet to be fully explored, however, at 
present the targeted inhibition of ADAM17 represents a potentially 
important mechanism to reactivate B7-H6 mediated NK cell tumor 
targeting.

Fas/FasL and ADAM17
The Fas receptor (Fas, CD95) /Fas ligand (FasL, CD95L) 

interaction is a key mediator of cellular apoptosis and is essential to 
the regulation of the adaptive immune response, failures in this system 
resulting in autoimmune lymphoproliferative syndrome [62]. In the 
tumor environment compromised Fas signaling renders cells resistant 
to immune surveillance and induced apoptosis [63], the expression of 
Fas and FasL by tumor cells being shown to promote tumor growth 
[64]. The tumor counter attack hypothesis promotes the possibility 
that the expression of FasL by tumors results in the apoptosis of 
infiltrating lymphocytes either through cell contact or the release of 
FasL presenting microvesicles [65]. At present the distribution of FasL 

on certain tumor types appears ambiguous [66] and its activity when 
present has been described as either the induction of T-cell apoptosis 
or the down regulation of the T-cell receptor(TCR) component CD3ε 
[67]. ADAM10 has been shown to mediate the constitutive shedding 
of FasL from T lymphocytes [5] potentially maintaining lymphocyte 
homeostasis, whereas ADAM17 has been shown to be rapidly up 
regulated upon cellular activation along with recruitment of FasL to 
the cell surface [68]. The deregulated shedding activity of ADAM17 
described in the tumor environment coupled with tumor expressed 
FasL create the potential for a potent inhibition of T-cell induced 
apoptosis of tumor cells through competition for Fas binding.

Antibody Dependent Cellular Cytotoxicity Regulation
Perhaps of immediate clinical relevance is the capacity of 

immunotherapies targeting tumors to illicit antibody dependent 
cellular cytotoxicity (ADCC) such as is observed with Her2 targeting 
Trastuzumab and Pertuzumab [69] and the CD20 targeting 
Rituximab [70]. Antibody bound to its target tumor antigen ligates 
the FcγRIII and invokes cytokine release and degranulation of NK 
cells. Two isoforms of FcγRIII exist CD16a and CD16b, the first a 
trans membrane protein the second attached to the membrane via 
a glycophosphatidylinositol anchor. CD16a is found predominantly 
on NK cells [71], whereas CD16b is found exclusively on neutrophils 
[72]. Extensive research has been performed to enhance antibody 
CD16a activation of cellular cytotoxicity through modulation of 
the primary protein sequence of the antibody or modification of the 
post translational glycosylation [73]. Obinutuzumab a monoclonal 
antibody targeting CD20 developed by GlycArt/Roche that relies 
on reduced fucosylation to enhance its ADCC activity was the first 
approved antibody using enhanced ADCC for the treatment of 
chronic lymphocytic leukemia [74]. The ligation of CD16a to tumor 
bound antibody Fc domains results in the release of INFγ and TNFα 
from NK cells, however it has recently been observed that this is 
accompanied by a proportional loss of CD16a and the adhesion 
molecule L-selectin (CD62L) [71]. Inhibiting ADAM17 was shown 
to reduce CD16a and CD62L shedding from NK cells upon cytokine 
activation or through Rituximab ligation to Raji cells [75]. The 
inhibition of ADAM17 also provoked an increase in intracellular 
INFα and TNFα in the activated NK cells although there was no 
increase in Raji cell lysis [76].

The potential therapeutic impact of inhibiting ADAM17 in this 
context remains unclear as no enhanced cell lysis by ADCC was 
observed, however, the increased levels of TNFα and INFγ may 
indeed impact the immune surveillance response in a heterogeneous 
and intact lymphatic system. The murine CD16 orthologue is not 
shed [75] and thus limits the study of this potential activation at 
present. The significance of CD62L shedding will be considered in a 
later section of this review.

Neutrophil Mediated Antibody Targeted Tumor 
Destruction

The efficacy of therapeutic monoclonal antibodies in the 
elimination of tumors is largely attributed to their direct effect 
on the target antigen and the induced elimination by ADCC and 
Complement Dependent Cytotoxicity (CDC), somewhat less 
well defined is the implication of Neutrophils in the elimination 
of tumors. Indeed the observation that elevated neutrophil to 
lymphocyte ratios in cancer patients is prognostic for shorter 
overall survival [77] an effect suspected to be mediated via the 
maintenance of a chronic inflammatory state and the production 
of angiogenic factors. None the less it has recently been 
demonstrated that neutrophils alone, at least in the experimental 
conditions tested, were sufficient to mediate an antibody targeted 
anti tumoral immune response [78]. The Fcγ receptor CD16b is 
shed from the cell surface of neutrophils by ADAM17 following 
cell activation via IgG immune complex or during apoptosis. The 
cleavage site of CD16a and b have been shown to be conserved 
and are located in the membrane proximal domain of each protein 
[75] despite the different membrane attachment mechanisms of 
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these receptors. Circulating levels of soluble CD16b are high due 
presumably to the high daily turnover of neutrophils by apoptosis, 
in the order of 10 [11] cells per day in a healthy adult [72]. The 
targeted inhibition of ADAM17 and ADAM10 in patients treated 
with INCB7839 demonstrated an almost two fold decrease in 
circulating CD16 [72] although the study did not discriminate 
between CD16a and b. Selective inhibition of ADAM17 and 
ADAM10 was able to determine that ADAM17 is principally 
responsible for the shedding of CD16b from neutrophils. As 
with NK cells, neutrophils shed CD62L via ADAM17 [79], and 
conditional knock out models demonstrated that the loss of 
ADAM17 resulted in up to ten times more CD62L on neutrophils, 
resulting in slow rolling [79] and more rapid infiltration to sites 
of inflammation [9,79], albeit that overall infiltrating neutrophil 
levels were lower [9]. Soluble CD62L has been described at 
relatively high levels in normal serum, the mean value determined 
as 1.6 µg/ml [80], in vitro experiments demonstrated that this 
physiological level was already sufficient to reduce leukocyte 
binding.

Adaptive and Innate Immune Targeting of Tumors
Whereas NK cells have a range of targeting receptors that 

recognize damaged or infected cells that are subsequently targeted 
for destruction, the adaptive cellular immune response functions 
through a separate system of cellular markers and receptors that 
normally differentiate self from non-self and in the case of tumor 
immune targeting recognize aberrant cell surface markers including 
phosphatidylserine or major his to compatibility (MHC) presented 
tumor specific peptides. The functioning of the T cell response to 
tumors has been recently reviewed [81] as has the exhaustion of T 
cells that leads to tumor progression [82] and how current immune 
checkpoint inhibitors are redressing this [83], and as such will not be 

discussed here. There are however, a number of additional immune 
checkpoints that are involved in T cell tumor targeting that are once 
again targets for shedding.

Activated T cells and NK cells express Lymphocyte-activation 
gene 3 (LAG-3, CD223), a receptor that binds MHC class II proteins 
on antigen presenting cells (APCs) [84] and is a negative regulator of 
activated T cell proliferation and cytokine production. LAG3 has been 
shown to be constitutively shed from the surface of cells by ADAM10 
[84] the absence of constitutive LAG-3 shedding through ADAM10 
knock down or the expression of non-cleavable LAG-3 resulting 
in reduced T cell proliferation or cytokine release [84]. ADAM17 
shedding of LAG-3 has been shown to be induced as a result of T 
cell receptor (TCR) activation via protein kinase θ signalling. T cell 
activation has been shown to increase 12 fold the level of shedding of 
LAG-3 [84]. Myeloid derived suppressor cells (MDSC) have recently 
been shown to up regulate cellular LAG-3 levels in exhausted CD4+ 
and CD8+ T cells [85], although it was not described in this study if 
the shedding of LAG-3 was modulated.

The inhibitory immune check point receptor, T-cell 
immunoglobulin and mucin-domain containing-3 (TIM-3) is 
expressed on effector and regulatory T cells, tumor associated 
dendritic cells (TADCs) and macrophages [86,87]. The ligand for 
TIM-3, the C type lectin galectin-9, itself expressed on tumor cells and 
MDSCs, induces cell death and exhaustion of CD8+ T cells. TADC 
expressed TIM-3 has also been shown to bind free high mobility 
group protein 1 (HMGB1) preventing the transport and presentation 
of DNA released from dying tumor cells and preventing activation of 
the innate immune response [87]. TIM-3 has recently been identified 
as a substrate for ADAM17 and ADAM10 [86] with ADAM10 being 
demonstrated as the physiologically induced sheddase of TIM-
3 in LPS activated CD14+ monocytes. The precise role of TIM-3 

Figure 1: Substrates of ADAM17 in the tumor microenvironment. Substrates of ADAM17 are indicated in colored, molecules not shed by ADAM17 are in grey. 
CD62L; L-seclectin, CD16b; Fc gamma receptor III B, CD16a; Fc gamma receptor IIIA, MICA/B; MHC class I chain–related molecule A/B, NKG2D; Killer cell 
lectin-like receptor subfamily K member 1, B7-H6; Natural cytotoxicity triggering receptor 3 ligand 1, NKp30; Natural cytotoxicity triggering receptor 3, LAG-3; 
Lymphocyte activation gene 3 protein, MHCII; HLA class II histocompatibility antigen, AREG; Amphiregulin, Tim-1/3/4; T-cell immunoglobulin and mucin domain-
containing protein 1/3/4, CD40; Tumor necrosis factor receptor superfamily member 5, CD40L; CD40 ligand, Fas; Tumor necrosis factor receptor superfamily 
member 6, FasL; Tumor necrosis factor ligand superfamily member 6, CD36; Platelet glycoprotein 4.



• Page 4 of 6 •ISSN: 2378-3419Lowe et al. Int J Cancer Clin Res 2016, 3:058

shedding in the attenuation or activation of an anti tumoral immune 
response remains to be further qualified as indeed would the impact 
of inhibiting over active ADAM17 in the tumor microenvironment.

In addition to TIM-3 the remaining human TIMs 1 and 4 have 
also been described as substrates for ADAM17 [88]. Expression 
of TIM-1 has been described on a number of immune cell types 
including activated T cells (preferentially Th2 cells), mast cells, 
natural killer cells, dendritic cells and B cells, the expression of TIM-
4 is restricted to antigen presenting cells [88]. TIM-1 and 4 serve as 
phosphatidylserine receptors to engulf apoptotic cells, they are also 
known to interact with each other and regulate T cell proliferation 
[89]. The shed forms of TIM-1 and 4 are still capable of binding 
phosphatidylserine and it has been suggested that the presence of 
soluble receptors may inhibit engulfment and potentially attenuate 
an anti tumoral response through the non-proliferation of T helper 
cells and presentation of tumor antigens by dendritic cells.

In addition to TIM-3 macrophages express CD36 a receptor for 
phosphatidylserine that is necessary for efficient efferocytosis and the 
resolution of inflammation [90]. ADAM17 has been demonstrated 
to shed CD36 from macrophages, inhibition of this shedding leading 
to enhanced efferocytosis. The inflammatory state of the tumor 
microenvironment is considered a hallmark of tumor development 
[91] and the inflammatory state is dependent at least in part on 
ADAM17 mediated shedding of TNFα from macrophages [92]. 
The elevated shedding of TNFα in parallel to CD36 due to aberrant 
ADAM17 activation would promote the inflammatory state and 
prevent the removal of phosphatidylserine presenting cells, the 
inhibition of this shedding would potential resolve both of these 
situations.

A final activating receptor ligand pair in the form of CD40/CD40L 
is also involved in the activation of T cells that would ordinarily 
participate in the targeting of tumor cells for destruction by the 
immune system. Upon ligation of CD40L to its receptor CD40 pro 
inflammatory signals are induced with the concomitant shedding of 
CD40L by ADAM17 or ADAM10, the precise nature of the sheddase 
involved being cell type dependant [93]. The shedding of CD40 by 
ADAM17 has also been described in hemodialysis patients [94] 
and thus creates perhaps the only ligand receptor pairing for which 
ADAM17 regulates the shedding of both receptor and ligand. Soluble 
CD40L is capable of binding CD40, however, with greatly attenuated 
capacity to activate and thus this shedding event potentially attenuates 
normal T cell activation to prevent over activation. The heightened 
activity of ADAM17 in the tumor microenvironment may, through 
elevated CD40L shedding, prevent the successful activation of CD40. 
The development of CD40 agonists may serve to compensate this 
deficit although consideration should be given to the shedding of 
CD40 itself and its potential impact upon this therapeutic approach 
(Figure 1).

T Regulatory Cells
Although no receptor or ligand pairs have currently been 

identified that influence the proliferation or activation of regulatory 
T (Treg) cells to inhibit the antitumoral immune response, a more 
classical proliferative mechanism that is itself dependent upon 
ADAM17 has been described. Tregs infiltrate and proliferate in to the 
tumor microenvironment and participate in the attenuation of the 
anti tumoral immune response. Tregs express the epidermal growth 
factor receptor (EGFR) and it has been shown that Amphiregulin 
(AREG)can induce proliferation and activation of the T-cell 
suppressive functions [95] of Tregs. AREGis produced by multiple 
tumor types [29,96], but also immune cells including mast cells [95], 
macrophages [97], dendritic cells [98] and Tregs themselves [99], 
ADAM17 being responsible for the shedding of the functional serum 
form. Targeting the EGFR receptor has demonstrated therapeutic 
efficacy, the possibilityof targeting the ligands of EGFR including 
AREG have also been explored as therapeutic targets [100-103]. The 
inhibition of AREG shedding may in particular offer the additional 

advantage of reducing Treg activity.

Conclusion
A wide range of immunotherapies are currently being developed 

to enhance the capacity of the immune system to through the 
activation of receptors such as CD40 or the inhibition of others 
such as TIM-3. A second family seeks to enhance the formation of 
immunological synapses between immune and tumor cells through 
the engagement of tumor antigens and immune receptors such as 
NKG2D. It is worthy of note that the natural regulation of a wide 
range of these systems for immune tumor targeting and activation 
are under the control of a small number of regulatory sheddases. 
The sheddase is itself, in particular ADAM17, a potential source of 
deregulation in the tumor environment and adds an additional level 
of complexity to the manipulation of these natural systems. When 
one considers the natural role of ADAM17 is restricted to the wound 
healing response and the resolution of inflammation it’s therapeutic 
targeting when over activated in the tumor environment either alone 
or in combination with other immune modulating therapies merit 
investigation.
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