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Abstract
Background: Phase III superiority clinical trials have 
negative results (new treatment is not statistically better 
than standard of care) due to a number of factors, including 
patient and disease heterogeneity. However, even a 
treatment regime that fails to show population-level clinical 
improvement will have a subgroup of patients that attain a 
measurable clinical benefit.

Objective: The goal of this paper is to modify the Patient 
Rule-Induction Method to identify statistically significant 
subgroups, defined by clinical and/or demographic factors, 
of the clinical trial population where the experimental 
treatment performs better than the standard of care and 
better than observed in the entire clinical trial sample.

Results: We illustrate this method using part A of the 
SUCCESS clinical trial, which showed no overall difference 
between treatment arms: HR (95% CI) = 0.97 (0.78, 1.20). 
Using PRIM, we identified one subgroup defined by the 
mutational profile in BRCA1 which resulted in a significant 
benefit for adding Gemcitabine to the standard treatment: 
HR (95% CI) = 0.59 (0.40, 0.87).

Conclusion: This result demonstrates that useful 
information can be extracted from existing databases that 
could provide insight into why a phase III trial failed and 
assist in the design of future clinical trials involving the 
experimental treatment.
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Introduction
The drug development landscape is inundated 

with Phase III clinical trials where the primary efficacy 
endpoint was not met. Hay, et al., 2014 estimated that 
the likelihood of FDA approval for a drug already in 
Phase III development is 50%, which falls to 30% if we 
restrict to oncology [1]. Failed clinical trials have short- 
and long-term consequences for multiple parties. The 
patients who enrolled and took the experimental drug in 
the trial may have been exposed to an inferior treatment 
regime or experienced unnecessary toxicity without 
clinical benefit. They have also lost valuable time in 
their battle against their disease. Clinicians will not have 
an additional treatment option to manage the disease 
in their patients and may have treated patients with a 
sub- optimal treatment. Pharmaceutical companies will 
have invested years of research and multiple millions 
of dollars throughout the development of a drug that 
eventually fails to be approved for care. Most failed 
Phase III clinical trials are unsuccessful because efficacy 
of the new treatment was not established beyond the 
standard of care (SOC). Among the myriad of reasons (see 
Fogel, 2018 [2] for an extensive review) for the failure 
of these experimental treatments to become part of 
clinical practice, patient/disease heterogeneity stands 
out as a likely source. While every patient has a unique 
combination of genetic and environmental influences, 
historically the medical profession has treatment all 
patients as if they were the “average” patient even 
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for covariates included in the models. Interaction terms 
are used in these models to detect important subgroups 
but can have issues with empty/small N cells (including 
overfitting and lack of degrees of freedom) in higher 
dimensions and issues with multiple testing. Doove, et 
al. [7] provided a comparison of 5 recursive partitioning 
based methods for subgroup identification, including 
3 methods [8-10] that focus on interaction effects and 
2 methods [11,12] that focus on subgroups where 
the treated group outperforms the SOC. Bayesian 
approaches including the identification of credible 
intervals [13] utilize a similar objective as regression 
approaches: Interaction effects are modelled to identify 
subgroups where there is evidence of clinical benefit 
while accounting for multiple testing. A special issue on 
subgroup detection in clinical trials from the Journal of 
Biopharmaceutical Statistics [14] includes articles about 
the conceptual framework of subgroup detection and 
articles on different methodological approaches. These 
include a Bayesian approach utilizing a tree-based 
splitting process that results in predicted posterior 
probability of treatment effect [15] and a recursive 
partitioning based approach that screens for treatment 
by biomarker interaction effects to identify subgroups 
with a beneficial treatment effect with a multiple 
testing adjustment [16] (which is an extension of [12]). 
Other researchers have defined heuristics for evaluating 
a tree-based subgroup classification for a univariate 
response [6]. A statistical conundrum is that unless an 
exhaustive search of the space of all potential subgroups 
is explored important subgroups may be missed; but 
performing such a search may lead to overfitting and 
multiple testing concerns.

Objectives
The objective of this paper is to use the Patient Rule-

Induction Method (PRIM) [17] to identify subgroups 
of patients based on pre-treatment clinical and 
demographic characteristics where the experimental 
treatment is more effective than the SOC treatment 
and better than observed in the entire clinical trial 
cohort with a time-to-event outcome. Our previous 
enhancements [18-20] to the original PRIM algorithm 
[17] were developed in part to overcome some of the 
challenges posed from recursive partitioning methods, 
albeit for binary or continuous endpoints. Incorporating 
the combinational partitioning method (CPM) [21] 
allowed for non-additive effects to be used to define the 
subgroups in a way that does not fall victim to issues 
with empty/small N cells. The method also incorporates 
an element of statistical rigorousness (hypothesis 
testing via permutations) that is absent from most 
recursive partitioning procedures, which utilize cross 
validation or bootstrapping [22]. Other research groups 
have applied a PRIM based idea to analysis of data with 
survival endpoints [23-27]. Of particular importance to 
this manuscript is the paper by Chen, et al. [25], which 
had the same objective: To utilize a PRIM approach 

though every case cannot have experienced the same 
genetic and environmental exposures. More recently 
the medical profession has acknowledged that disease 
and patient heterogeneity is an important element of 
disease management as biomarker-driven clinical trials 
have become more common [3].

Even a drug that has an overall benefit and has 
been approved for use in clinical settings may in fact 
only benefit a subset of patients. Conversely, there 
are patients who may respond to a treatment that was 
an overall failure in a phase III clinical trial. Even if a 
treatment is effective for a subgroup of patients, it may 
not be clinically viable due to other reasons, including 
toxicity and cost. Determining the clinically feasible 
treatment most likely to have a positive outcome for 
an individual patient is one of the biggest Western 
medical challenges. As proscribing a unique treatment 
plan for each individual patient is currently unrealistic, 
the medical profession will often base treatment 
decisions on historical outcomes from subgroups of 
patients defined by variables and their values, e.g., the 
aggressiveness of treatment received is often based upon 
age, performance status, etc., utilizing prior knowledge 
to inform decisions. Ideally, data science techniques 
could be applied to determine which subgroup of 
patients should receive which treatment. Paradoxically 
though, we often cannot identify appropriate subgroups 
until studies have competed on a population-based 
sample or samples. Subgroups of clinical significance to 
investigators are sometimes pre-specified in the clinical 
protocol to ensure the research objectives are focused 
and to mitigate concerns about post-hoc data mining, 
multiple testing, and lack of power [4]. A clinical trial 
report will typically include a forest plot, which details 
how the experimental treatment performs relative 
to the SOC in pre- and non-pre-specific subgroups of 
interest via interaction effects. Analysis of combinations 
of subgroups defined by multiple variables are usually 
not performed. Non-pre-specified subgroup analyses 
are deemed exploratory and frequently not given the 
same scientific importance as pre-specified ones [4].

As classification methods are designed to create 
subgroups, they would seem to be ideal to tackle this 
problem. Recursive partitioning methods including 
Classification and Regression Trees [5] have been used 
to create subgroups for a variety of outcome types 
including ordinal, Gaussian and time to event. However, 
these approaches (see [6] for a brief description of 
both regression based and tree-based methods) have 
issues with overfitting, selection of the number of 
groups and stability of the resultant classification. In 
addition, they use only one variable at each step to 
define a subgroup; thus, these methods cannot detect 
non-additive effects defined by two or more variables. 
Regression-based models including linear, logistic, and 
Cox regression utilize all available samples and do not 
create subgroups, instead estimating an average effect 
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applications of the peeling and pasting process on smaller 
subsets of the input database (those observations not 
already assigned to a partition). Briefly, peeling is an 
iterative process that creates a partition by excluding 
individuals with particular values of predictor variables 
(creating a peeling term), while pasting iteratively 
amends individuals to the partition, also based upon 
values of predictor variables (creating a pasting term), 
after the peeling stage has been completed [18]. Once 
an observation is assigned to a partition, it cannot be 
assigned to another. Both processes create terms 
(defined by the values of one or more variables) to 
define the subsets of observations with a better clinical 
outcome. Each peeling and pasting term is tested for 
statistical significance using 2000 permutations of the 
input data set, keeping the response variables constant 
and shuffling the potential predictor variables. Figure 
1 includes a graphic which gives an overview of the 
peeling and pasting processes.

Input variables used to define terms can be 
continuous, nominal or ordinal. While developing 
a mechanism for evaluating quantitative variables 
is feasible, to maintain the interpretability, we will 
convert continuous variables into ordinal ones. There 
are issues with using demarcation points (a BMI of 24.9 
is normal while a BMI of 25.1 is overweight, even though 
the absolute difference in the numbers is small), but 
they are easier for a non-statistician to interpret. The 
demarcation points can either be inputted by the analyst 
or the program itself will create a four level ordinal 
variable: Greater than the mean +1 standard deviation 
(SD), between the mean and the mean +1 SD, between 

to identify a signature positive subgroup which will 
have better survival outcomes. As their approach was 
more theoretical, they did not show the terms or rules 
used to define the subgroups and set the minimum 
partition size to be 5% of the total sample size, using 
cross validation as a means to evaluate their technique. 
Our PRIM method is more translational than others 
proposed, as we aim to produce fewer subgroups of 
larger size so that the results can be simpler and more 
applicable in clinical practice and drug development. 
With a larger minimum subgroup size, our result should 
be more robust and have a greater chance of being 
validated, as we had previously shown in an analysis of 
heart disease incidence [28]. PRIM can readily include 
constraints on the outputted subgroups, including 
effect size and sample size. In this paper, we apply 
incorporate these concepts (CPM, hypothesis testing, 
subgroup constraints) into a differential survival analysis 
framework, which is novel for a PRIM approach. We will 
use PRIM to identify subsets of the patient population 
where the experimental treatment is more effective 
in terms of survival than the SOC treatment and then 
observed in the entire cohort. The results of this 
hypothesis-generating PRIM analysis can lead to further 
non-clinical and clinical investigations into the resultant 
subgroups.

Methods
Mathematically, our objective is to determine which 

subgroup (if any) of observations of the input database 
has the smallest hazard ratio comparing the treatment 
(TRT) arm to the SOC arm. Multiple subgroups (or 
partitions) may be identified through repeated 

         

Figure 1: Graphic illustrating the PRIM algorithm including the peeling and pasting processes.
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via peeling and previous pasting steps is tested for 
significance. If it is significant, the algorithm adds those 
observations to the partition and looks for another 
pasting term. Once a pasting term is declared not 
statistically significant, the definition of that partition 
is complete. The peeling process will then begin again 
for the next partition, using only those observations 
not already in a previous partition. The algorithm stops 
whenever the first peeling term of any partition is not 
statistically significant.

Data

Simulation
A simulation study is undertaken to describe the 

operating characteristics of the method and explore 
the relationship between power and number of input 
variables. The simulation assumes that there are two 
treatment groups (treated and untreated), 1 biomarker 
of interest (not predictive of the response overall, 
predictive of response in the treated group, and not 
predictive of the response in the untreated group) and a 
variable number of null biomarkers. For the simulation, 
we assume that the hazard rate for the biomarker 
negative untreated is log(2)/10, biomarker negative 
treated is log(2)/8, and the biomarker positive untreated 
is log(2)/6. Both the biomarker positive treated hazard 
rate and the number of categorized random standard 
normal variables included in the analysis will be varied. 
The biomarker positive treated relative frequency is 
set at 30% for all simulations. The simulated treatment 
effect ranged from 0.90 to 1.25 in favor of the treated 
group, with 20 % of the simulations at the 0.90 hazard 
ratio showing an overall significant effect in favor of the 
treatment and less than 10% for all others. For each 
combination of biomarker positive median survival 
and number of null (no association with the outcome) 
continuous variables, 500 simulated clinical trials of 600 
patients are created. The faux patients are randomized 
to treated or untreated arms with uniform accrual 
over 12 months and a maximum follow-up time of 12 
months. Events time follow an exponential distribution, 
indexed by the above hazard rates and any patient 
alive without an event after 12 months post accrual is 
censored. We set the PRIM support parameter to 20% 
for all simulations and utilize a significance threshold of 
0.10. The proportion out of 500 realizations that PRIM 
yields a significant result will be tabulated and plotted 
as described above.

ACTG175 trial
We utilize an historical randomized clinical trial 

investigating AIDS treatments [29], available in the 
speff2trial package [30] in R to illustrate the utility of the 
CPM within a PRIM framework. The primary endpoint 
was a > 50% decline in the CD4 cell count, an event 
indicating progression to the AIDS, or death. The trial 
had four treatment arms: (0 = zidovudine, 1 = zidovudine 

the mean -1 SD and the mean, and less than the mean 
-1 SD. PRIM will evaluate ordinal variables, starting at 
either end of the distribution, ensuring that adjacent 
categories are considered in the correct order, even 
when considering terms built using multiple variables. 
Ideally, most of the continuous variables would have 
demarcation points that can be defined from external 
sources so notions of bias can be mitigated. The 
incorporation of the CPM into the PRIM allows terms 
to be defined by non-additive combinations of predictor 
variables [19]. To ease the computational burden and 
increase the interpretability of the results, we restrict 
the algorithm to evaluate two predictor variables at a 
time to define each term that characterizes a partition.

This partitioning is controlled by two parameters: 
The minimum fraction of follow-up time (β) and the 
maximum hazard ratio between the TRT and SOC arms 
(δ). We use the fraction of follow up time rather than 
fraction of sample size as that is how the hazard ratio is 
indexed. The maximum hazard ratio defines a clinically 
meaningful difference between the treatment arms. To 
make the results more applicable to clinical practice and 
drug development, we evaluate β’s only in the range of 
0.2 to 0.5, incremented by 0.005, forcing each partition 
to contain between 20% and 50% of the available 
samples. This will ensure that the resultant subgroups 
have sufficient coverage among the population of 
people with the given disease. The partitioning among 
those produced by each utilized β that results in 
the most significant Cox regression interaction term 
(with treatment group) is chosen as the outputted 
partitioning. We will use 75% of the hazard ratio 
observed in the entire cohort as the maximum hazard 
ratio, ensuring that the subgroups will result in at least 
a 25% improvement in the hazard of event as compared 
to the overall result. Taken together, these 2 constraints 
will ensure that created subgroups are adequately sized 
with a clinically meaningful effect size.

During the peeling process, all variables (one-at-a-
time analysis) or possible pairs of variables (two-at-a-
time analysis) are evaluated to identify a single term to 
define or further refine a partition. The term, among all 
potential terms that meets both the β and δ criteria, 
that has the smallest hazard ratio between the TRT and 
SOC arms is carried forward for hypothesis testing via 
permutations. If that term is statistically significant, the 
algorithm then tests another peeling term within the 
subset of observations already partitioned out. This 
continues until a peeling term is not significant; then 
pasting begins. During the pasting process, all variables 
(one-at-a-time analysis) or possible pairs of variables 
(two-at-a-time analysis) are evaluated to identify a 
single term to add to the current refine a partition, 
consisting of observations not already assigned to a 
partition. The term that results in the smallest hazard 
ratio between the TRT and SOC arms when amended 
to the observations already including in the partition 
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objective is to identify a clustering such that all elements 
within every cluster are highly correlated with the other 
elements in the same cluster.

The result will be n subgroup of SNPs where the r2 
is at least 0.95 for all SNP pairs in each subgroup. As 
the selected threshold is 0.95, we anticipate many 
more clusters than a selection algorithm would identify, 
which likely would include singleton clusters. From each 
of the subgroups, we will then select a representative 
SNP (based on the number of non-missing elements) 
that will be utilized in the downstream analysis. Given 
this reduced set of SNPs, a hierarchical clustering of 
the patient samples (using the number of concordant 
genotype calls as a distance metric) will be produced 
and cut at the position where the minimum group 
size contains at least 100 samples to make the genetic 
information broadly applicable.

Results

Simulation study
Figure 2 displays the power curves from the 

simulation study, utilizing a Type I error rate of 0.10 
for all simulations. Recall that we solve for the median 
survival for the biomarker positive, treated subgroup 
while fixing the median survival for the biomarker 
positive, untreated subgroup at 6 months; biomarker 
negative, treated subgroup at 8 months; and biomarker 
negative, untreated subgroup at 10 months. Thus, 
the hazard ratio for the biomarker negative subgroup 
(comparing treated relative to untreated) is 1.25. To 
achieve 80% power with no other variables, the median 
survival would have to be 7.37 in the biomarker positive 
treated arm as compared to 6 months in the biomarker 
positive untreated arm (hazard ratio = 0.814). Once we 
include 100 null variables, the median survival required 
rises to 10.57 months in the biomarker positive treated 
arm as compared to 6 months in the biomarker positive 
untreated arm (hazard ratio = 0.568). By employing a 
permutation-based significance testing, we account for 
multiple testing, reflected in the smaller hazard ratio 
required to achieve 80% power when the number of 
input predictors is increased. Therefore, it is imperative 
that only predictors of interest are included in the PRIM 
model (like any other statistical data analysis), so that 
the significance threshold when accounting for multiple 
testing is not too extreme. Pruning heavily confounded 
variables and collapsing variable categories will help 
keep the required threshold manageable. This will be an 
acute issue when analyzing genomic mutation datasets, 
as the LD between variants is not typically adjusted for 
in the modeling. These results informed our decision to 
collapse the SNP information from the SUCCESS-A trial 
into a single multi-level factor. Changing the support 
parameter or significance threshold used will change 
the values observed in the simulation, but the pattern 
and conclusion remains the same.

and didanosine, 2 = zidovudine and zalcitabine, 3 = 
didanosine) and concluded that zidovudine alone was 
inferior to the other three treatment options [29]. We 
will compare (for illustrative purposes) arms 0 versus 1 
< effective of didanosine given zidovudine > and arms 
1 versus 3 < effective of zidovudine given didanosine >. 
The PRIM algorithm will choose the support parameter 
and variables will enter into the PRIM model two-at-a-
time.

SUCCESS trial
The SUCCESS trial [31] was designed to evaluate 

varying treatment regimens for high-risk breast cancer 
patients utilizing a two-stage randomization schema. 
The first randomization (denoted as SUCCESS-A) is study 
comparing disease-free survival of early primary breast 
cancer patients, who were randomized with standard of 
care (arm AB) or standard of care plus Gemcitabine (arm 
AA). The second randomization (SUCCESS-B) contrasted 
2 or 5 year of adjuvant Zoledronic acid treatment. 
Through the dbGaP data portal (phs000547.v1.p1), 
we are able to access the data only relating to the first 
randomization, as that is all the data that was publicly 
released. The primary outcome is disease-free survival. 
Demographic information, tumor characteristics, 
and imputed SNPs were downloaded for all 3,322 
participants. To keep the analysis simple and relevant to 
breast cancer, mutation information from only BRCA1 
was used (139 SNPs). Further details on the study 
including a detailed description of the trial arms are 
located in the above reference and the dbGaP webpage 
(https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000547.v1.p1) for this study.

Since markers located in the same gene are in linkage 
disequilibrium (LD), we need to select out a subset of 
markers to construct a genetic profile that is unaffected 
by the amount of LD.

If there are too many highly correlated elements, 
they could dominate the clustering result and miss 
other structure. Other methods have been developed 
(see [32] for a review), but we utilize a simple clustering 
routine to choose the SNP subset. First, we calculate 
and utilize the pairwise r2 between all 139 SNPs as a 
distance metric in hierarchical clustering algorithm. 
Consequently, at each potential cut or split in the 
tree construction (starting at the root of the tree) we 
compute the minimum pairwise r2 for among each SNP 
pair contained within in each subgroup. Then we take 
the minimum of those minimums across all subgroups 
created by that split. Once the minimum of minimums 
reaches a certain threshold, say 0.95, we halt this process 
and declare that the split is optimal. This approach is 
different than other metric of determining an optimal 
split in a clustering routine (e.g., Silhouette width [33] 
or Dunn index [34]) in that we are not concerned about 
whether an object could be better grouped in another 
cluster or separation between clusters. Instead, the 
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Figure 2: Power curves generated from a simulation study of the proposed method for a variety of null predictor variables 
and one true predictor variable. For the simulation, we assume that the hazard rate for the biomarker negative untreated is 
log(2)/10, biomarker negative treated is log(2)/8, and the biomarker positive untreated is log(2)/6. The median survival for 
the biomarker positive treated subgroup is plotted on the x-axis, with the resultant observed power from a PRIM analysis of 
detecting a significant effect from 500 simulated clinical trials of 600 patients on the y-axis.

Table 1: Sample description of the ACTG175 study variables considered by the PRIM algorithm. The arms are labeled as 0 = 
zidovudine, 1 = zidovudine and didanosine, 2 = zidovudine and zalcitabine, 3 = didanosine.

Treatment Group
Variable 0 (n = 532) 1 (n = 522) 2 (n = 524) 3 (n = 561) P-value
Age

≤ 30
(30,40]
(40,50]
> 50

166 (0.31)
237 (0.45)
102 (0.19)
27 (0.05)

164 (0.31)
233 (0.45)
101 (0.19)
24 (0.05)

164 (0.31)
235 (0.45)
95 (0.18)
30 (0.06)

177 (0.32)
251 (0.45)
111 (0.20)
22 (0.04)

0.984

Weight (kg)
≤ 60
(60,70]
(70,80]
> 80

44 (0.08)
138 (0.26)
177 (0.33)
173 (0.33)

63 (0.12)
126 (0.24)
175 (0.34)
158 (0.30)

58 (0.11)
132 (0.25)
172 (0.33)
162 (0.31)

66 (0.12)
132 (0.24)
192 (0.34)
171 (0.30)

0.749

Hemophilia
No
Yes

490 (0.92)
42 (0.08)

479 (0.92)
43 (0.08)

478 (0.91)
46 (0.09)

512 (0.91)
49 (0.09)

0.946

Homosexual activity
No
Yes

191 (0.36)
341 (0.64)

176 (0.34)
346 (0.66)

176 (0.34)
348 (0.66)

182 (0.32)
379 (0.68)

0.679

Karnofsky score
70
80
90
100

4 (0.01)
17 (0.03)
197 (0.37)
314 (0.59)

0 (0.00)
22 (0.04)
189 (0.36)
311 (0.60)

3 (0.01)
18 (0.03)
180 (0.34)
323 (0.62)

2 (0.00)
23 (0.04)
221 (0.39)
315 (0.56)

0.500

Prior antiretroviral therapy
No
Yes

516 (0.97)
16 (0.03)

513 (0.98)
9 (0.02)

511 (0.98)
13 (0.02)

552 (0.98)
9 (0.02)

0.350
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There is strong LD among the selected SNPs because 
of the high r2 threshold used. Hierarchical clustering 
applied to these 33 SNPs resulted in the creation of 
nine mutually exclusive subgroups, containing at least 
100 participants (the 10-subgroup split resulted in a 
subgroup with less than 100 members). In addition to 
the 9-level genetic variable, the traditional risk factors 
under consideration by the PRIM model are described 
in Table 2 on the 3,214 samples with complete data 
for these traditional risk factors. None of the variables 
were significantly different between the two treatment 
groups using a chi-squared test.

There were 342 progression events and the hazard 
ratio (95% CI) of the patients treated with Gemcitabine 
(arm AA) versus those without (arm AB) was 0.97 
(0.78, 1.20), indicating a lack of benefit of adding 
Gemcitabine. PRIM identified one significant partition 
(partition 1), defined by as [genomic cluster = 3 or 6] 
that indicated a better survival outcome for patients 
randomized to the Gemcitabine arm. The PRIM analysis 
used a support parameter of 0.32 and that term had a 
permutation-based p-value of 0.020. The subsetted-out 
samples had a HR (95% CI) of 0.59 (0.40, 0.87) in favor 
of the including Gemcitabine (Cox regression p = 0.007). 
The remainder partition (partition R) still indicated no 
survival difference (Cox regression p = 0.11) between 
the two arms, HR (95% CI) = 1.24 (0.96, 1.61). The 
Kaplan-Meier curves for the four groups are shown in 
Figure 3.

Figure 4 illustrates the two-way clustering result for 
the 33 selected SNPs and all patients. Each SNP for each 
sample was color coded as gray (major homozygote 
[major allele based upon the study sample]), blue 
(heterozygote) or yellow (minor homozygote [major 
allele based upon the study sample]). Using this graph, 
we can select out five SNPs that can determine most 
of samples in clusters 3 and 6: rs3950989, rs799923, 
rs10445318, rs8176190, and rs8176215. If a patient is 

ACTG175 trial
Table 1 displays a summarization of the variables 

that will be used in the construction of the PRIM 
subgroups. There was no difference in any baseline 
factor identified among the four groups using a Chi-
square test. Overall the combination of zidovudine 
and didanosine was superior (p < 0.001) to zidovudine 
alone, hazard ratio (95% CI) = 0.49 (0.39, 0.63). PRIM 
identified one significant partition (partition 1, p-value 
= 0.08), defined by as [age ≥ 40 & Karnofsky score ≥ 
90] that indicated a better survival outcome [HR (95% 
CI) = 0.23 (0.13, 0.42)] for patients randomized to the 
combination. The remainder partition (partition R, 
consisting of patients with age < 40 or Karnofsky score 
< 90) still showed a survival benefit (Cox regression p 
< 0.001) for the combination HR (95% CI) = 0.60 (0.46, 
0.79). The combination of zidovudine and didanosine 
was not superior (p = 0.18) to didanosine alone overall, 
hazard ratio (95% CI) = 0.84 (0.65, 1.09). PRIM identified 
one significant partition (partition 1) that included 
a peeling (p = 0.09) and a pasting term (p = 0.08), 
defined as [white females and non-white males] or 
[homosexual activity and weight ≤ 60 kg] that indicated 
a better survival outcome for patients randomized 
to the combination. The subsetted out partition of 
samples had a HR (95% CI) of 0.36 (0.21, 0.62) in favor 
of the combination (p < 0.001). The remainder partition 
(partition R) still indicated no survival benefit (p = 0.42) 
for the combination versus didanosine alone, HR (95% 
CI) = 1.14 (0.88, 1.54).

SUCCESS-A trial
Among the 3,322 patients enrolled in the SUCCESS-A 

trial, 3,312 had complete data for the progression 
endpoint, including both event status and time-to-
progression. Following the algorithm outlined in the 
methods section, we utilized 33 BRCA1 SNPs out of the 
139 (using 0.95 as the r2 threshold) to further analyze. 

Race
White
Non-white

376 (0.71)
156 (0.29)

384 (0.74)
138 (0.26)

374 (0.71)
150 (0.29)

388 (0.69)
173 (0.31)

0.452

Gender
Female
Male

100 (0.19)
432 (0.81)

88 (0.17)
434 (0.83)

89 (0.17)
435 (0.83)

91 (0.16)
470 (0.84)

0.708

Baseline CD4 count
≤ 15.3
(15.3,18.4]
(18.4,21.6]
> 21.6

75 (0.14)
182 (0.34)
197 (0.37)
78 (0.15)

98 (0.19)
175 (0.34)
171 (0.33)
78 (0.15)

88 (0.17)
175 (0.33)
173 (0.33)
88 (0.17)

86 (0.15)
197 (0.35)
201 (0.36)
77 (0.14)

0.528

Baseline CD8 count
≤ 6.32
(6.32,6.79]
(6.79,7.26]
> 7.26

72 (0.14)
197 (0.37)
190 (0.36)
73 (0.14)

79 (0.15)
173 (0.33)
183 (0.35)
87 (0.17)

69 (0.13)
181 (0.35)
195 (0.37)
79 (0.15)

88 (0.16)
192 (0.34)
203 (0.36)
78 (0.14)

0.813
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Table 2: Sample description of the SUCCESS-A study variables considered by the PRIM algorithm, including the BRCA1-defined 
cluster id. Patients were randomized to either standard of care (arm AB) or standard of care plus Gemcitabine (arm AA).

Variable Treatment
AA (n = 1590) AB (n = 1624) P-value

ER status
Positive
Negative

1086 (0.68)
504 (0.32)

1132 (0.70)
492 (0.30)

0.411

HER2 status
Positive
Negative

509 (0.32)
1081 (0.68)

484 (0.30)
1140 (0.70)

0.188

PR status
Positive
Negative

1003 (0.63)
587 (0.37)

1046 (0.64)
578 (0.36)

0.456

Menopause status
Premenopausal
Postmenopausal

667 (0.42)
923 (0.58)

653 (0.40)
971 (0.60)

0.334

Grade
G1 (well differentiated)
G2 (moderately differentiated)
G3 (poorly differentiated)

81 (0.05)
763 (0.48)
746 (0.47)

68 (0.04)
778 (0.48)
778 (0.48)

0.451

T stage
pT0
pT1
pT2
pT3
pT4

1 (0.00)
657 (0.41)
830 (0.52)
81 (0.05)
21 (0.01)

0 (0.00)
672 (0.41)
838 (0.52)
90 (0.06)
24 (0.01)

0.823

N stage
pN0
pN1
pN2
pN3

570 (0.36)
697 (0.44)
229 (0.14)
94 (0.06)

561 (0.35)
747 (0.46)
213 (0.13)
103 (0.06)

0.487

Tumor type
Invasive ductal
Invasive lobular
Other invasive epithelial breast cancer

1252 (0.79)
165 (0.10)
173 (0.11)

1278 (0.79)
175 (0.11)
171 (0.11)

0.899

Age categorized
(-Inf,50]
(50,65]
(65, Inf]

654 (0.41)
693 (0.44)
243 (0.15)

639 (0.39)
727 (0.45)
258 (0.16)

0.583

BMI categorized
(-Inf,25]
(25,30]
(30, Inf]

739 (0.46)
537 (0.34)
314 (0.20)

771 (0.47)
513 (0.32)
340 (0.21)

0.387

CLUSTER ID
1
2
3
4
5
6
7
8
9

144 (0.09)
150 (0.09)
353 (0.22)
139 (0.09)
156 (0.10)
169 (0.11)
254 (0.16)
155 (0.10)
70 (0.04)

159 (0.10)
123 (0.08)
345 (0.21)
142 (0.09)
185 (0.11)
161 (0.10)
265 (0.16)
172 (0.11)
72 (0.04)

0.538
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Figure 3: Kaplan-Meier curves illustrating the resultant partitions and treatment assignment relationship for the SUCCESS-A 
trial, which testing the inclusion of Gemcitabine to standard of care breast cancer therapy. Overall there was no difference 
in survival time between the study arms AA (with Gemcitabine) and AB (without Gemcitabine), HR (95% CI) = 0.97 (0.78, 
1.20). Within partition 1 (defined as BRCA1 cluster id = 3 or 6) we find a significant improvement in survival for those 
randomized to the Gemcitabine arm: HR (95% CI) = 0.59 (0.40, 0.87). The remainder partition indicated no difference 
between the treatment arms: HR (95% CI) = 1.24 (0.96, 1.61).

         

Figure 4: Two-way clustering diagram of the 33 selected SNPs from BRCA1 across all analyzed samples from the 
SUCCESS-A trial. Each SNP for each sample was color coded as gray (major homozygote [major allele based upon the 
study sample]), blue (heterozygote) or yellow (minor homozygote [major allele based upon the study sample]). Patients in 
clusters 3 and 6 were identified by PRIM as being indicative of better survival when randomized to the Gemcitabine arm.

https://doi.org/10.23937/2469-5831/1510038


ISSN: 2469-5831DOI: 10.23937/2469-5831/1510038

Dyson. Int J Clin Biostat Biom 2021, 7:038 • Page 10 of 11 •

Software
An R package for the data analysis methods used in 

the paper is available for download at https://github.
com/sigpvalue/PRIMsurvdiff
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