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Abstract
This paper proposes a new biased estimator for estimating 
the regression parameters for the multiple linear regression 
models when the regressors are correlated. Theoretical 
comparisons and simulations results show that, the pro-
posed estimator performs better than other existing estima-
tors under some conditions in the smaller mean squares 
error sense. A real-life dataset is analyzed to illustrate the 
findings of the paper.
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The main objective of this paper is to propose a new 
two parameter biased estimator for the regression co-
efficients and then to compare the performance of the 
new estimator with the OLS, the ordinary ridge regres-
sion (ORR) of Hoerl and Kennard [1], the Liu of Liu [6] 
and the Kibria-Lukman (KL) of Kibria and Lukman [8] es-
timators. The rest of the paper is organized as follows: 
Some estimators and their statistical properties are 
given in Section 2. In section 3, the theoretical compar-
isons among the proposed estimator and existing esti-
mators and the biasing parameters k and d are given. A 
Monte Carlo simulation study is performed in section 4. 
A real-life data are analyzed in section 5. Finally, Some 
Conclusions are given in section 6.

The Model and Estimators
Consider the following linear regression model:

,y X β ε= +  				         (2.1)

where y is an n × 1 vector of the response variable, 
X is a known n × p full rank matrix of the explanatory 
variables, β is an p × 1 vector of unknown regression 
coefficients, ε  is a n × 1 vector of disturbance assumed 
to be distributed with mean vector 0 and variance co-
variance matrix σ2I, and I is an identity matrix of order n 
× n. To define various estimators, canonical form of the 
model (2.1) is given by:

2,  ~ (0, )ny Z N Iα ε ε σ= + 		      (2.2)

where, Z = XC, α = C'β, and C is an orthogonal matrix 
such that 1 2( , , , ).pZ Z C X X C U diag u u u′ ′ ′= = = …

Introduction
The ordinary least squares (OLS) estimator is the 

best linear unbiased estimator and has been used to 
estimate the parameters of the linear regression model 
since its inception. One of the important assumptions 
for the linear regression model is that the regressors 
(independent variables) are independent. However, 
in practice the regressors may or may not be indepen-
dent, which causes the problem of multicollinearity. In 
the presence of the multicollinearity, the OLS estima-
tor is inefficient and gives wrong sign of the parameters 
in the multiple linear regression models [1]. To handle 
these problems, many authors have given different 
types of estimators, to mention a few, [1-7], and recent-
ly [8], for one parameter biased estimator. However, to 
refer for two parameters mode, the following authors 
are notable, [9-15], among others.
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Then, the OLS estimator of α is given as:
1ˆ ,U Z yα − ′=  				         (2.3)

and then the mean squared error matrix (MSEM) of α̂  is given by 
2 1ˆ( ) .MSEM Uα σ −=  			        (2.4)

The ORR of α [1] is

ˆ ˆ ,k N Uα α=  				         (2.5)

where, 1[ ]pN U k I −= +  and the MSEM of ˆkα  would be 
2ˆ( ) ( ) ( ) .k p pMSEM NU N NU I NU Iα σ α α′ ′ ′= + − −  (2.6)

Hoerl, et al. [16] defined the biasing parameter k for ˆkα  as follows:
2

2

1

ˆˆ .
ˆ

HM p

i
i

pk σ

α
=

=

∑
 				         (2.7) 

The Liu estimator of α [6] is

ˆ ˆ ,d Fα α=  					          (2.8)

where, 1[ ] [ ]p pF U I U d I−= + +  and the biasing parameter d of ˆdα  is given by

2 1
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1

1/ ( ( 1))
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 = −
 +  

∑

∑
 		       (2.9)

2 1 2 1 1ˆ( ) (1 ) ( ) ( ) .d p pMSEM F U F d U I U Iα σ αα− − −′ ′= + − + +     (2.10)

If ˆ
optd  is negative, Ozkale and Kaciranlar [9] adopt the alternative biasing parameter below:

2

2 2
1

ˆˆ min .
ˆˆ( / )

p

i
alt

i i i

d
u
α

σ α
=

 
=  + 

 		     (2.11)

The recently proposed KL estimator by Kibria and Lukman [8] is defined as,

ˆ ˆ ,KL NMα α=  				       (2.12)

where, ( )pM U k= − Ι  and the biasing parameter k of the KL estimator is defined by
2

min 2 2

ˆˆ ( ) min ,
ˆ ˆ2 ( / )i i

k KL
u

σ
α σ

 
=  + 

 	    (2.13)

2 1ˆ( ) [ ] [ ] .KL p pMSEM NM U M N NM I NM Iα σ α α− ′ ′ ′ ′= + − −  	     (2.14)

The new biased (NB) estimator of α is obtained by minimizing ( ) ( )y Z y Zα α′− −  subject to 
ˆ ˆ( (1 ) ) ( (1 ) )k k d k k d cα α α α′+ + + + =  where c is a constant,

ˆ ˆ( ) ( ) [( (1 ) ) ( (1 ) ) ].y Z y Z k k d k k d cα α α α α α′ ′− − + + + + + −  	 (2.15)

Here, k and d are the Lagrangian multipliers.

The solution to (2.15) gives the new estimator as follows:
1ˆ ˆ ˆ( ) ( (1 ) )NB p pU k U k d NBα α α−= + Ι − + Ι =     	 (2.16)

where ( (1 ) ),  0pB U k d k= − + Ι ≥  and 0 < d < 1.

Moreover, the proposed NB estimator is also obtained by augmenting ˆ(1 )k d kα α ε ′− + = +  to equation 
(2.2) and then using the OLS estimate.

The proposed NB estimator is a general estimator which includes the OLS and the KL estimator:

If k = 0 in ˆNBα  becomes ˆ.α

https://doi.org/10.23937/2469-5831/1510031
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If d = 0 in ˆNB  becomes ˆ .KLα
The MSEM of the proposed NB estimator of α is given by

2 1ˆ( ) [ ] [ ] .NB p pMSEM NBU B N NB I NB Iα σ α α− ′ ′ ′ ′= + − −  		 (2.17)

The lemmas below will be used for theoretical comparisons among estimators in the next section.

Lemma 2.1: [17] Let E be an n × n positive definite matrix, that is E > 0 and α be some vector; then, 0E α α′− >  
if and only if 1 1.Eα α−′ <

Lemma 2.2: [18] Let ,i iA yα =  i = 1,2 be two linear estimators of α. Suppose that 1 2ˆ ˆ( ) ( ) 0,D Cov Covα α= − >  
where ˆ( ) 1, 2iCov iα =  be the covariance matrix of ˆiα  and ˆ( ) ( ) ,i i ib Bias A X Iα α= = −  i = 1,2. Consequently, 

2
1 2 1 2 1 1 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) 0MSEM MSEM D b b b bα α α α σ ′ ′∆ − = − = + − >  (2.18)

if and only if 2 1
2 1 1 2[ ] 1b D b b bσ −′ ′+ <  where ˆ ˆ( ) ( ) .i i i iMSEM Cov b bα α ′= +

Comparison among the Estimators

Comparison between α̂  and ˆNBα
Theorem 3.1: ˆ ˆ( ) ( ) 0NBMSEM MSEMα α− >  if and only if

2 1 1[ ] [ ( )][ ] 1p pNB I U NBU B N NB Iα σ α− −′ ′ ′ ′− − − <  	 (3.1)

Proof: 

2 1 1

2
2

2
1

ˆ ˆ( ) ( ) ( )

( (1 ))1
( )

NB
p

i

i i i i

D D U NBU B N

u k ddiag
u u u k

α α σ

σ

− −

=

′ ′− = −

 − += − + 

	 	 (3.2)

where 1 1U NBU B N− − ′ ′−  will be positive definite (pd) if and only if 2 2( ) ( (1 )) 0i iu k u k d+ − − + >  or 
( ) ( (1 )) 0.i iu k u k d+ − − + >  Clearly, for k > 0 and 0 < d < 1, ( ) ( (1 )) (2 ) 0.i iu k u k d k d+ − − + = + >  By Lemma 
2.2. The proof is completed.

Comparison between ˆkα  and ˆNBα

Theorem 3.2: ˆ ˆ( ) ( ) 0k NBMSEM MSEMα α− >  if and only if 

1[ ] [ ( ) ( ) ][ ] 1p p p pNB I V NU I NU I NB Iα α α α′ ′ ′ ′− + − − − <  (3.3)

where, 2 1
1 ( )V NUN NBU B Nσ −′ ′ ′= −

Proof:
2 1

1

2
2

2 2
1

( )

( (1 ))
( ) ( )

p

i i

i i i i

V NUN NBU B N

u u k ddiag
u k u u k

σ

σ

−

=

′ ′ ′= −

 − += − + + 

	      	 (3.4)

where, 1NUN NBU B N−′ ′ ′−  will be pd if and only if 2 2( (1 )) 0i iu u k d− − + >  or ( (1 )) 0.i iu u k d− − + >  

Clearly, for k > 0 and 0 < d < 1, ( (1 )) (1 ) 0.i iu u k d k d− − + = + >  By Lemma 2.2. The proof is completed.

Comparison between ˆdα  and ˆNBα

Theorem 3.3: ˆ ˆ( ) ( ) 0d NBMSEM MSEMα α− >  if and only if

2[ ] [ ( ) ( ) ][ ] 1p p p pNB I V F I F I NB Iα α α α′ ′ ′ ′− + − − − <  	 (3.5)

where, 2 1 1
2 ( )V FU F NBU B Nσ − − ′ ′= −

Proof:
2 1 1

2

2 2
2

2 2
1

( )

( ) ( (1 ))
( 1) ( )

p

i i

i i i i i

V FU F NBU B N

u d u k ddiag
u u u u k

σ

σ

− −

=

′ ′= −

 + − += − + + 

    	     (3.6)
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where, 1 1FU F NBU B N− − ′ ′−  will be pd if and only if 2 2 2 2( ) ( ) ( 1) ( (1 )) 0i i i iu d u k u u k d+ + − + − + >  
or ( )( ) ( 1) ( (1 )) 0.i i i iu d u k u u k d+ + − + − + >  Clearly, for k > 0 and 0 < d < 1, 
( )( ) ( 1) ( (1 )) (2 1) (2 1) 0.i i i i iu d u k u u k d u k kd d k d+ + − + − + = + + − + + >  By Lemma 2.2. The proof is com-
pleted.

Comparison between ˆKLα  and ˆNBα
Theorem 3.4: ˆ ˆ( ) ( ) 0KL NBMSEM MSEMα α− >  if and only if

3[ ] [ ( ) ( ) ][ ] 1p p p pNB I V NM I NM I NB Iα α α α′ ′ ′ ′− + − − − <  	 (3.7)

where, 2 1 1
3 ( )V NMU M N NBU B Nσ − −′ ′ ′ ′= −

Proof:
2 1 1

2

2 2
2

2 2
1

( )

( ) ( (1 ))
( ) ( )

p

i i

i i i i i

V NMU M N NBU B N

u k u k ddiag
u u k u u k

σ

σ

− −

=

′ ′ ′ ′= −

 − − += − + + 

   	     (3.8)

where, 1 1NMU M N NBU B N− −′ ′ ′ ′−  will be pd if and only if 2 2( ) ( (1 )) 0i iu k u k d− − − + >  or 
( ) ( (1 )) 0.i iu k u k d− − − + >  Clearly, for k > 0 and 0 < d < 1, ( ) ( (1 )) 0.i iu k u k d k d− − − + = >  By Lemma 2.2. 
The proof is completed.

Selection of the parameters k and d
Different biasing parameters estimators of k and d are proposed in different studies, for example, Hoerl and 

Kennard [1], Liu [6], [16,19-23], among others.

So the optimal values of k and d for the proposed NB estimator is going to be found. At first, by minimizing the 
equation m, we obtain the optimal value of k when d is fixed as

ˆ ˆ ˆ( ) (( ) ( )),NB NB NBMSEM Eα α α α α′= − −

ˆ( ( )),NBm tr MSEM α=
2 2

2 2 2
2 2

1 1

( (1 )) (2 )
( ) ( )

p p
i i

i ii i i

u k dm k d
u u k u k

ασ
= =

− +
= + +

+ +∑ ∑  		  (3.9)

Differentiating m with respect to k and setting ( ) 0,m k∂ ∂ =  we get
2

2 2 2 .
( 1) ( )

i

i i i i

uk
d u u

σ
α σ α

=
+ + +

 		    (3.10)

Then, the estimated optimal value of k is given as follows:
2

2 2 2

ˆˆ ,
ˆ ˆˆ( 1) ( )

i

i i i i

uk
d u u

σ
α σ α

=
+ + +

 		    (3.11)

and,
2

min 2 2 2
1

ˆˆ ( ) min .
ˆ ˆˆ( 1) ( )

p

i

i i i i i

uk NB
d u u

σ
α σ α

=

 
=  + + + 

 	      (3.12)

Also, the optimal value of d will be found by differentiating m with respect to d when k is fixed and setting 
( ) 0,m d∂ ∂ =  we get

2 2 2

2 2

(2 ) .
( )

i i i

i i

u u kd
k u

σ α σ
α σ

− +
=

+
 		    (3.13)

Then, the estimated optimal d with the unbiased estimators is given by
2 2 2

2 2

ˆˆˆ ˆ(2 )ˆ ,ˆ ˆ ˆ( )
i i i

i i

u u kd
k u

σ α σ
α σ

− +
=

+
 		    (3.14)

and
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2 2 2
min

min 2 2
min 1

ˆˆˆ ˆ(2 ) ( )ˆ ( ) min .ˆ ˆ ˆ( ) ( )

p

i i i

i i i

u u k NBd NB
k NB u

σ α σ
α σ

=

 − + =  
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 	 (3.15)

The parameters k and d estimators selection in ˆNBα  are found iteratively as follows:

Find an initial estimate of d using 
2

2

ˆˆ min ( ).
ˆi

d σ
α

=

Determine min
ˆ ( )k NB  from (3.12) using d̂  in step 1.

Estimate min
ˆ ( )d NB  in (3.15) by using min

ˆ ( )k NB  in step 2.

If min
ˆ ( ) 1d NB >  or min

ˆ ( ) 0,d NB <  use min
ˆ ˆ( ) .d NB d=

Simulation Study
A Monte Carlo simulation study is performed to show the performance of the NB estimator over some existing 

estimators. It contains two parts: (i) Simulation technique and (ii) Results discussion.

Simulation technique
Using the equation below, we generate the explanatory variables (see, Gibbons [24] and Kibria [19]):

2 1/2
, 1(1 ) , 1, 2,..., , 1, 2,...,ij ij i px z z i n j pρ ρ += − + = = 		  (4.1)

where zij are independent standard normal pseudo-random numbers and ρ is the correlation between any two 
explanatory variables and ρ here has two values 0.9 and 0.99. The n observations for the response variable y are 
gotten by the following equation:

1 1 2 2 3 3 , 1, 2, ,i i i i iy x x x e i nβ β β= + + + = …     			   (4.2)

where ei are 2. . (0, ).i i d N σ  The values of β are obtained as 1β β′ =  [25]. Also, we choose the values of the bi-
asing parameters of the estimators as k = d = 0.1, 0.2, …, 0.9 by following the work of Wichern and Churchill [26] and 
Kan, et al. [27] is that when k lies between 0 and 1, the ORR estimator performs better. The Monte Carlo simulation 
study replication is 1000 times for n = 50 and 100 and 2  1,  25,   100.andσ =  For each replicate, we calculate the 
mean square error (MSE) of the estimators using the next equation:

1000
* * *

1

1( ) ( ) ( )
1000 ij i ij i

j
MSE α α α α α

=

′= − −∑ 	      			   (4.3)

where *
ijα  is the estimator and iα  is the true parameter. The estimated MSEs of the estimators are shown in 

Table 1, Table 2, Table 3 and Table 4 for (ρ = 0.90 and n = 50), (ρ = 0.99 and n = 50), (ρ = 0.90 and n = 100), and (ρ 
= 0.99 and n = 100), respectively.

Simulation results discussions
From Table 1, Table 2, Table 3 and Table 4, we observed that, when the factors σ and ρ are going to increase, 

the estimated MSE values are also going to increase, while n is going to increase, the estimated MSE values are 
going to decrease. Also, the OLS estimator is performing the worst for all cases in presence of the multicollinearity. 
Moreover, the simulation results show that, the proposed NB estimator is performing better than the other esti-
mators for most of cases. The Liu estimator gives better results in the MSE values when k = d = 0.1, 0.2 i.e. when 
the biasing parameters are near to zero. For ρ = 0.9: The condition number (CN) is approximately around 5 and the 
variance inflation factors (VIFs) are around 4 to 6 such that it is observed that a close agreement of the proposed NB 
(although better results) with the KL estimator for low values of k = d and a better performance as k = d increases for 
a fixed value of σ. This improvement increases with the increase of the value of σ and an even better improvements 
is observed if ρ = 0.99 where the CN and the VIFs become larger and are approximately around 15 and around 36 
to 61, respectively. So, the proposed NB estimator works better for the strong correlated explanatory variables. So, 
the performance of the proposed NB estimator almost depends on the value of ρ, σ, the biasing parameters k and 
d, and the true parameter. Thus, simulation results are consistent with the theoretical results.

Application
To illustrate the theoretical and simulation results of this paper, we consider a real life data in this section. The 

Portland cement data was originally adopted by Woods, et al. [28]. This data was also analyzed by many research-
ers, for examples, [29,30]; Lukman, et al. [14] and recently by Kibria and Lukman [8], among others. And this data 
is analyzed here to explain the performance of the proposed NB estimator and the other existing estimators. The 
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Table 2: Estimated MSE for OLS, ORR, Liu and the proposed NB.

0.99, 50nρ = =

Eigenvalues of XX '  are: 182.2172, 1.2633, and 0.6648

CN of XX '  is 16.5554

VIFs are: 40.6681, 42.3133, and 61.4367

σ dk = OLS ORR Liu KL NB

Note: Smaller MSE value is bolded in each case.

0.90, 50nρ = =

Eigenvalues of XX '  are: 167.6671, 12.0130, and 6.3459

CN of XX '  is 5.1402

VIFs are: 4.5049, 4.5496, and 6.3642

σ dk = OLS ORR Liu KL NB

1 0.1 0.215736 0.211191 0.180083 0.206646 0.206242

0.2 0.206747 0.183921 0.198061 0.196344

0.3 0.202505 0.187658 0.189779 0.186143

0.4 0.198465 0.191597 0.181901 0.175538

0.5 0.194425 0.195536 0.174427 0.164832

0.6 0.190587 0.199475 0.167155 0.153924

0.7 0.18685 0.203414 0.160287 0.143016

0.8 0.183214 0.207454 0.153722 0.132108

0.9 0.17978 0.211595 0.147359 0.121301

5 0.1 5.392794 5.279472 4.501368 5.167362 5.156151

0.2 5.169786 4.596207 4.951626 4.908600

0.3 5.063635 4.692157 4.745182 4.651858

0.4 4.960817 4.789117 4.547626 4.387642

0.5 4.861231 4.887188 4.358554 4.117972

0.6 4.764776 4.986168 4.177461 3.844464

0.7 4.671351 5.086259 4.003943 3.569037

0.8 4.580653 5.187461 3.837798 3.293307

0.9 4.492783 5.289572 3.678622 3.019193

10 0.1 21.57118 21.11779 18.00547 20.66945 20.62491

0.2 20.67914 18.38503 19.80671 19.63450

0.3 20.25454 18.76883 18.98103 18.60743

0.4 19.84337 19.15667 18.19081 17.55077

0.5 19.44523 19.54875 17.43422 16.47179

0.6 19.05941 19.94498 16.70974 15.37776

0.7 18.6854 20.34524 16.01577 14.27564

0.8 18.32281 20.74974 15.35109 13.17282

0.9 17.97123 21.15839 14.71419 12.07607

Table 1: Estimated MSE for OLS, ORR, Liu, KL and the proposed NB.
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1 0.1 1.984104 1.624860 0.580584 1.301724 1.271328

0.2 1.355478 0.694926 0.847110 0.759900

0.3 1.148316 0.819570 0.541416 0.403920

0.4 0.985626 0.954720 0.335580 0.173094

0.5 0.855372 1.100172 0.198390 0.046818

0.6 0.749598 1.256130 0.109344 0.010404

0.7 0.662490 1.422492 0.054366 0.005324

0.8 0.589866 1.599258 0.023868 0.001673

0.9 0.528768 1.786428 0.011118 0.000347

5 0.1 49.60148 40.62089 14.51470 32.54249 31.78422

0.2 33.88736 17.37162 21.17836 18.99719

0.3 28.70841 20.48894 13.53397 10.09678

0.4 24.63953 23.86667 8.388276 4.326840

0.5 21.38450 27.50481 4.959444 1.168818

0.6 18.73975 31.40335 2.731764 0.256734

0.7 16.56164 35.5623 1.356702 0.132498

0.8 14.74645 39.98165 0.593538 0.041769

0.9 13.21767 44.66141 0.273156 0.008660

10 0.1 198.4053 162.4829 58.05881 130.1693 127.1369

0.2 135.5488 69.48658 84.71345 75.98878

0.3 114.8336 81.95598 54.13609 40.38731

0.4 98.55832 95.46690 33.55341 17.30726

0.5 85.53832 110.0192 19.83788 4.675476

0.6 74.95919 125.6130 10.92716 1.026936

0.7 66.24665 142.2492 5.426808 0.529992

0.8 58.98578 159.9258 2.374152 0.167072

0.9 52.87078 178.6448 1.092318 0.034653

Note: Smaller MSE value is bolded in each case.

Table 3: Estimated MSE for OLS, ORR, Liu, KL and the proposed NB.

0.90, 100nρ = =

Eigenvalues of XX '  are: 273.8443, 18.5471, and 14.8552

CN of XX '  is 4.2935

VIFs are: 4.2216, 3.9332, and 4.7453

σ dk = OLS ORR Liu KL NB

1 0.1 0.107464 0.106353 0.098172 0.105242 0.105141

0.2 0.105242 0.099182 0.103121 0.102616

0.3 0.104232 0.100192 0.101000 0.099990

0.4 0.103121 0.101202 0.098879 0.097162

0.5 0.102111 0.102212 0.096859 0.094233

0.6 0.101101 0.103323 0.094839 0.091203

0.7 0.100091 0.104333 0.092920 0.088072
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Table 4: Estimated MSE for OLS, ORR, Liu, KL and the proposed NB.

0.99, 100nρ = =

Eigenvalues of XX '  are: 308.1041, 1.9490, and 1.5571

CN of XX '  is 14.0666

VIFs are: 40.7553, 36.2165, and 45.1145

σ dk = OLS ORR Liu KL NB

1 0.1 1.011126 0.914532 0.491028 0.823038 0.814062
0.2 0.831504 0.539376 0.669936 0.639744
0.3 0.759492 0.590172 0.544782 0.487560
0.4 0.696660 0.643314 0.442170 0.357102
0.5 0.641478 0.698700 0.357612 0.247962
0.6 0.592722 0.756534 0.288048 0.159834
0.7 0.549372 0.816612 0.230724 0.092718
0.8 0.510714 0.879138 0.183498 0.046308
0.9 0.476136 0.943908 0.144738 0.020604

5 0.1 25.27764 22.86401 12.27468 20.57483 20.35277
0.2 20.78791 13.48522 16.74850 15.99462
0.3 18.98812 14.75430 13.62016 12.18941
0.4 17.41701 16.08193 11.05303 8.926428
0.5 16.03685 17.46811 8.941014 6.197520
0.6 14.81744 18.91294 7.200996 3.996156
0.7 13.73461 20.41622 5.767182 2.317440
0.8 12.76826 21.97814 4.586634 1.157496

0.8 0.099081 0.105343 0.091001 0.084840

0.9 0.098071 0.106454 0.089082 0.081507

5 0.1 2.687711 2.659734 2.452785 2.631858 2.629131

0.2 2.632161 2.478338 2.577318 2.566410

0.3 2.605093 2.503992 2.523889 2.499851

0.4 2.57853 2.529848 2.471672 2.429656

0.5 2.55227 2.555805 2.420566 2.356128

0.6 2.526515 2.581863 2.370571 2.27957

0.7 2.501063 2.608123 2.321586 2.200184

0.8 2.476116 2.634484 2.273712 2.118374

0.9 2.451573 2.661047 2.226848 2.034443

10 0.1 10.75074 10.63884 9.810837 10.52753 10.51642

0.2 10.52875 9.913049 10.30917 10.26554

0.3 10.42037 10.01587 10.09556 9.999101

0.4 10.31392 10.11909 9.886587 9.718321

0.5 10.20908 10.22302 9.682062 9.424209

0.6 10.10586 10.32745 9.482082 9.117775

0.7 10.00435 10.43239 9.286243 8.800433

0.8 9.904464 10.53794 9.094646 8.473193

0.9 9.80609 10.64409 8.90719 8.137267

Note: Smaller MSE value is bolded in each case.
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regression model for this data is given by

0 1 1 2 2 3 3 4 4 .i iy X X X Xβ β β β β ε= + + + + +      (5.1)

For knowing more details about this data, we refer 
Woods, et al. [28].

To show the existence of the multicollinearity, dif-
ferent measures are calculated as the VIFs which are 
38.50, 254.42, 46.87 and 282.51, Eigenvalues of 'X X  
are 44676.206, 5965.422, 809.952 and 105.419 and the 
CN of 'X X  approximately equals 20.58. The VIFs, the 
eigenvalues and the CN tell us that there is a severe 
multicollinearity in the data. Also, σ̂  is equal to 2.446. 
The correlation coefficients matrix of the explanatory 
variables are presented in Table 5 such that there is a 
significant and strong relationship among the following 
explanatory variables: X1 and X3, X2 and X4. Then, the es-
timated parameters and the MSE values of the estima-
tors are presented in Table 6. It appears from Table 6 
that the proposed NB estimator is performing the best 
where it is giving an obvious improvement over all ex-
isting estimators and a little improvement over the KL 
estimator in which this is consistent with the simulation 
results because σ̂  here is small and not all the explan-
atory variables are significantly or strongly correlated at 
the same degree of correlation even though the data 
has high CN and VIFs.

Table 5: The correlation coefficients matrix of the explanatory 
variables.

Variables
1X 2X 3X 4X

1X 1 0.229 -0.824* -0.245

2X 0.229 1 -0.139 -0.973*

3X -0.824* -0.139 1 0.030

4X -0.245 -0.973* 0.030 1

Note: *Correlation is significant at 0.05.

Table 6: The results of regression coeffcients and the corresponding MSE values.

Coef. α̂ )ˆ(ˆ minkα )ˆ(ˆ altdα min
ˆˆ ( )KL kα min min

ˆ ˆˆ ( , )NB k dα

0α 62.4053 8.58715 27.6657 27.6270 27.6004

1α 1.55110 2.10461 1.90080 1.90884 1.9091

2α 0.51016 1.06484 0.86996 0.86859 0.8689

3α 0.10190 0.66808 0.46192 0.46782 0.4681

4α -0.14406 0.39959 0.20801 0.20724 0.2075

MSE 4912.0902 2989.8202 2170.9669 2170.9604 2170.9596

),( dk ------- 0.007676 0.442224 0.000471 (0.000471, 0.001536)

0.9 11.90207 23.59862 3.617124 0.513060
10 0.1 101.1106 91.45606 49.09852 82.29921 81.41089

0.2 83.15142 53.94056 66.99391 63.97858
0.3 75.95236 59.01700 54.48044 48.75773
0.4 69.66794 64.32763 44.2119 35.70581
0.5 64.14729 69.87245 35.76395 24.78977
0.6 59.26985 75.65156 28.80398 15.98442
0.7 54.93822 81.66497 23.06842 9.269556
0.8 51.07283 87.91258 18.34643 4.629474
0.9 47.60840 94.39447 14.46829 2.051730

Note: Smaller MSE value is bolded in each case.

Some Concluding Remarks
In this paper, we proposed a new biased (NB) esti-

mator for handling the multicollinearity problem in the 
multiple linear regression models. Some existing esti-
mators are the special case of the proposed estimator. 
The proposed NB estimator is compared theoretically 
with the Ordinary least squares (OLS) estimator, the 
Ordinary ridge regression (ORR) estimator, the Liu es-
timator and the Kibria-Lukman (KL) estimator, and then 
the biasing parameters d and k of the NB estimator are 
derived. A Monte Carlo simulation study is performed 
for comparing the performance of the OLS, ORR, Liu, KL 
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e3125.

15.	Lukman AF, Ayinde K, Sek SK, Adewuyi E (2019) A 
modified new two-parameter estimator in a linear regres-
sion model. Modelling and Simulation in Engineering.

16.	Hoerl AE, Kannard RW, Baldwin KF (1975) Ridge regres-
sion: Some simulations. Communications in Statistics 4: 
105-123.

17.	Farebrother RW (1976) Further results on the mean square 
error of ridge regression. Journal of the Royal Statistical 
Society: Series B (Methodological) 38: 248-250.

18.	Trenkler G, Toutenburg H (1990) Mean squared error ma-
trix comparisons between biased estimators-an overview of 
recent results. Statistical Papers 31: 165-179.

19.	Kibria BMG (2003) Performance of some new ridge regres-
sion estimators. Communications in Statistics-Simulation 
and Computation 32: 419-435.

20.	Kibria BMG, Banik S (2016) Some ridge regression esti-
mators and their performances. Journal of Modern Applied 
Statistical Methods 15: 206-238.

21.	Lukman AF, Ayinde K (2017) Review and classifications 
of the ridge parameter estimation techniques. Hacettepe 
Journal of Mathematics and Statistics 46: 953-967.

22.	Mansson K, Kibria BMG, Shukur G (2015) Performance of 
some weighted Liu estimators for logit regression model: 
An application to Swedish accident data. Communications 
in Statistics Theory and Methods 44: 363-375.

23.	Khalaf G, Shukur G (2005) Choosing ridge parameter for 
regression problems. Communications in Statistics Theory 
and Methods 34: 1177-1182.

24.	Gibbons DG (1981) A simulation study of some ridge esti-
mators. Journal of the American Statistical Association 76: 
131-139.

25.	Newhouse JP, Oman SD (1971) An evaluation of ridge esti-
mators. A report prepared for United States air force project 
RAND.

26.	Wichern DW, Churchill GA (1978) A comparison of ridge 
estimators. Technometrics 20: 301-311.

27.	Kan B, Alpu O, Yazici B (2013) Robust ridge and robust liu 
estimator for regression based on the LTS estimator. Jour-
nal of Applied Statistics 40: 644-655.

28.	Woods H, Steinour HH, Starke HR (1932) Effect of compo-
sition of Portland cement on heat evolved during hardening. 
Ind Eng Chem 24: 1207-1214.

29.	Kaciranlar S, Sakallioglu S, Akdeniz F, Styan GPH, Wer-
ner HJ (1999) A new biased estimator in linear regression 
and a detailed analysis of the widely-analysed dataset on 
portland cement. Sankhya: The Indian Journal of Statistics, 
Series B 61: 443-459.

30.	Li Y, Yang H (2012) A new Liu-type estimator in linear re-
gression model. Statistical Papers 53: 427-437.

and the proposed NB estimators. The main finding of 
this simulation is that the proposed NB estimator per-
formed better than the above mentioned estimators 
under some conditions. A real-life data is analyzed to 
support the findings of the paper.
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