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Abstract
Right heart catheterization (RHC) is a well-established di-
agnostic tool for patients with congenital and acquired right 
heart disease and to actively monitor critically ill patients in 
the intensive care unit. Notably, previous randomized con-
trolled trials and observational studies provide limited sup-
port for the clinical utilization of RHC in critically ill patients. 
However, traditional statistical methods incorporating pro-
pensity scores rely heavily on potentially invalid parametric 
assumptions, leading to biased results. We studied the data 
from the Study to Understand Prognoses and Preferences 
for Outcomes and Risks and Treatments (SUPPORT) and 
investigated differences in survival among patients with and 
without RHC using an innovative, semiparametric, dou-
ble-robust substitution estimator called targeted maximum 
likelihood estimation (TMLE). We confirmed that critically ill 
patients who received an RHC had a significantly decreased 
30-day and 60-day survival compared to patients who did 
not receive one after adjusting for a variety of potential con-
founder selection strategies. This paper will advance the 
understanding of TMLE for analysis of observational stud-
ies, and promote the application of TMLE in the critical care 
studies.
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Introduction

Despite its long-standing clinical use since 1970 [1], 
right heart catheterization (RHC) for critically ill patients 
remains controversial. Initial observational series [2] 
and subsequent randomized controlled trials [3] failed 
to demonstrate benefit. While RHC remains a funda-
mental diagnostic tool in the outpatient setting for a va-
riety of cardiopulmonary diseases (notably pulmonary 
hypertension, severe heart failure or prior heart trans-
plantation, and shunt quantification), some observers 
have written “obituaries” for the pulmonary artery 
catheter used to perform RHC in critical care settings 
[4]. Although RHC for cardiogenic shock remains a dis-
tinct entity with possible advantage [5], its broader role 
in critically ill patients has been appropriately limited 
due to the results of clinical trials.

One of the first studies to question the value of RHC 
in critically ill patients used an observational design [2]. 
Not only did it show no benefit, but it suggested in-
creased mortality. Because this signal of harm was not 
seen in a subsequent meta-analysis of over 5,000 pa-
tients from 13 randomized trials [3], a reasonable hy-
pothesis suggests that unadjusted bias existed within 
the observational cohort where RHC was selected for 
clinical indications [2].
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trolled trials.

Methods

Study population

The Study to Understand Prognoses and Preferences 
for Outcomes and Risks and Treatments (SUPPORT) [2] 
was a 5-center study of decision making and outcomes in 
severely ill, hospitalized, adult patients. The five centers 
were: Beth Israel Hospital, Boston, Mass; Duke University 
Medical Center, Durham, NC; Metro-Health Medical Cen-
ter, Cleveland, Ohio; St Joseph's Hospital, Marshfield, WI; 
and University of California Medical Center, Los Angeles. 
Study coordination was performed via George Washing-
ton University, Washington, DC, and the statistical center 
was at Duke University. The SUPPORT study design con-
tained two phases. Phase 1 was a prospective observa-
tional study, with 4301 patients enrolled from June 1989 
to June 1991. Phase 2 was a cluster randomized control tri-
al study, with 4804 patients enrolled from January 1992 to 
January 1994. Eligibility criteria included patients admitted 
or transferred to the ICU in the first 24 hours, producing a 
study population of 5735 patients.

TMLE

TMLE is a two-step semiparametric method. Denote 
A as the treatment assignment such that A = 1 means 
the patient received RHC and A = 0 means the patient 
did not receive RHC. Let W denote patient baseline co-
variates, and denote ( ),S t A W  as the survival probability 
of a patient at time t given treatment assignment A and 
baseline covariates W. Define the target parameter as 

( ) ( )( ) ( )( ) ) ( )(0 0 0 0 =  =  =  = 1,  = 0, t P t Q t E S t A W S t A Wψ  Ψ Ψ − 
, where Ψ maps a distribution P to a real number in R, P0 
is the true data-generating distribution, Q0 is a portion 
of P0 relevant to Ψ.

In the first step, obtain an initial estimation of P0 or 
Q0 by using machine learning (super learner). Denote 
the initial estimator as 0

nQ . Given an initial estimator, 
we can build a fluctuation working model ( ){ }0 :  nQ ∈ ∈  
and define a proper loss function of which the deriva-
tive with respect to ∈  equals the influence curve of the 
target parameter. In the second step, update the initial 
estimate in a step targeted toward making an optimal 
bias-variance tradeoff for the parameter of interest 

( )( )0Q tΨ , instead of the whole distribution P0. We can 
update the initial estimator by estimating ∈  through 
an interated or a one-step process (usually a logistic 
regression) and denote the updated version as nP∗  and 

nQ∗ . The TMLE is the substitution estimator obtained 
by plugging nP∗  or nQ∗  into the target parameter map-
ping ( ) ( )( ) = n nt Q tψ ∗ ∗Ψ , and TMLE solves the efficient 
influence curve equation ( ) = 1

0 = n
i ni

D O P∗ ∗∑ , where 
( )i nD O P∗ ∗  denotes the observed influence curve under 

distribution nP∗ . Under regular conditions, we have

( ) ( )( ) ( )2
0 00,  

d

nn t t Nψ ψ σ∗ − →

In medical research, the marginal treatment effect at 
the population level is often of particular interest. It is the 
average causal effect of the treatment on the outcome by 
comparing the population if everyone was treated to the 
population if everyone were untreated. In practice, po-
tential confounding covariates will invalidate such causal 
effects. Propensity score methods (PSM) [6,7] are widely 
used to address measured confounding, and Connors, et 
al. [2] used PSM to analyze their observational series. How-
ever, PSM suffers from problems that can make the study 
results misleading, biased, or challenging to interpret. First, 
the effect and validity of PSM for removing confounding 
bias heavily depends on the correct specification of the 
parameter propensity score model. But restricted para-
metric statistical models with a finite number of unknown 
parameters used for calculating the propensity score may 
not capture the true, complicated, underlying probability 
distribution of the real world. Second, maximum likelihood 
estimation (MLE) relies on an overall fit of the entire prob-
ability distribution, but the parameter of interest (such as 
the marginal difference of the treatment effects) is usually 
related to just a relevant subset. As a result, the estimation 
is not efficient. Third, as an estimating-equation-based 
methods, PSM is not robust to sparsity. Specifically, ex-
treme propensity scores can result in unstable estimates 
with high variance. The estimates may be even outside the 
constraints of the statistical model.

TMLE [8] has been proposed to overcome these prob-
lems by offering the following advantages. First, TMLE is an 
instrumental tool used in semiparametric or nonparamet-
ric models avoiding the assumption of a misspecified para-
metric statistical model. Moreover, TMLE has excellent 
flexibility in incorporating a variety of machine learning 
methods to estimate the outcome and exposure mecha-
nisms, which can minimize bias in comparison with mis-
specified regressions. Using machine learning algorithms 
can be particularly advantageous in avoiding model mis-
specification when there is a large number of covariates 
and potentially complex relationships among them. With 
semiparametric and machine learning techniques, TMLE 
can capture the true probability distribution. Second, TMLE 
targets learning with a specific focus on the parameter of 
interest instead of the whole distribution. As a result, it is 
more efficient than traditional MLE. Third, TMLE is doubly 
robust, which means that TMLE leads to unbiased esti-
mates even under misspecification of one of the outcome 
models or the treatment model. Fourth, TMLE employs a 
substitution estimator that is more robust to outliers and 
sparsity than the estimating-equation-based estimators. 
Fifth, results from TMLE can be interpreted as causal ef-
fects under standard causal assumptions. However, due 
to its novelty and theoretical difficulty, TMLE has seldom 
been used in critical care studies.

Therefore, we re-analyzed the original observation-
al study of RHC in critically ill patients but using TMLE 
instead of their original PSM as a novel application to 
study its ability to match the results of randomized con-
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were -0.06 (95% CI, (-0.087, -0.033)) and -0.06 (95% CI, 
(-0.089, -0.031)), respectively. All the results (Table 2) 
showed that patients who did not undergo RHC had a 
significantly higher survival probability than patients 
who underwent RHC.

Conclusion

Connors, et al. [2] used PSM to analyze the dataset 
in the SUPPORT study. However, there are many prob-
lems with PSM that make the study results misleading, 
biased, and challenging to interpret. This paper used an 
innovative alternative to PSM, TMLE, to confirm that 
patients with RHC had a significantly decreased 30-day 
and 60-day survival in comparison to patients without 
RHC during initial care. This paper will advance the un-
derstanding of TMLE for analysis of observational stud-
ies, and promote the application of TMLE in the critical 
care studies.
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and interval estimation can be performed.

Data analysis

Differences in the 30-day ( )( )0 30ψ  and 60 day 
( )( )0 60ψ  survival were estimated with TMLE. Three 

different ranges of potential confounders were used to 
perform TMLE, as shown in Table 1. In the first simple 
set (W1), we combined literature knowledge and the 
findings from the original analysis [2] to select covari-
ates that were likely to influence the use of RHC such as 
age, sex, race, type of insurance, primary disease cate-
gory, and APACHE score. The moderate set (W2) includ-
ed variables from the simple set (W1) and variables as-
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cancer status, comorbidities, support model estimate of 
surviving 2 months, mean blood pressure, white blood 
cell count, heart rate, respiratory rate, temperature, 
albumin, sodium, pH levels, do-not-resuscitate DNR 
status on day 1. The full set (W3) included all potential 
confounders.

Results

When TMLE makes use of the simple covariate set 
(W1), the difference in the 30-day and 60-day survival 
between patients with RHC and patients without RHC 
were -0.03 (95% CI, (-0.056, -0.005)) and -0.03 (95% CI, 
(-0.057, -0.003)), respectively. When TMLE makes use of 
the moderate covariate set (W2), the difference in the 
30-day and 60-day survival between patients with RHC 
and patients without RHC were -0.05 (95% CI, (-0.077, 
-0.023)) and -0.05 (95% CI, (-0.077, -0.023)), respec-
tively. When TMLE makes use of the full covariate set 
(W3), the difference in the 30-day and 60-day survival 
between patients with RHC and patients without RHC 

Table 1: Potential confounders used in implementing TMLE and PSM.

Covariate set Model covariates Description
Simple set W1 Age, sex, race, type of insurance, primary disease category, and apache score
Moderate set W2 W1 + cancer status, comorbidities, SUPPORT model estimate of the probability 

of surviving 2 months, mean blood pressure, white blood cell count, heart rate, 
respiratory rate, temperature, albumin, sodium, pH levels, do-not-resuscitate 
(DNR) status on day 1

Full set W3 W2 + years of education, income, secondary disease category, respiratory 
diagnosis, cardiovascular diagnosis, neurological diagnosis, gastrointestinal 
diagnosis, renal diagnosis, metabolic diagnosis, hematologic diagnosis, sepsis 
diagnosis, trauma diagnosis, orthopedic diagnosis, Duke Activity Status Index 
(DASI), death by date 30, Glasgow Coma Score, weight, PaO2/FlO2 ratio, 
PaCo2, hematocrit, potassium, creatinine, bilirubin

Table 2: Differences in the 30-day ( )( )0 30ψ  and 60-day ( )( )0 60ψ  survival estimated by TMLE.

Methods Treatment model Model estimation: Difference in survival probability 30 days 60 Days

TMLE

(A, W1) S(X|A = 1) -S(X|A = 0) ± SE -0.03 ± 0.013 -0.03 ± 0.014
(95% CI) (-0.056, -0.005) (-0.057, -0.003)

(A, W2) S(X|A = 1) -S(X|A = 0) ± SE -0.05 ± 0.014 -0.05 ± 0.014
(95% CI) (-0.077, -0.023) (-0.077, -0.023)

(A, W3) S(X|A = 1) -S(X|A = 0) ± SE -0.06 ± 0.014 -0.06 ± 0.015
(95% CI) (-0.087, -0.033) (-0.089, -0.031)

https://doi.org/10.23937/2469-5831/1510018
https://www.ncbi.nlm.nih.gov/pubmed/5434111
https://www.ncbi.nlm.nih.gov/pubmed/5434111
https://www.ncbi.nlm.nih.gov/pubmed/5434111
https://www.ncbi.nlm.nih.gov/pubmed/5434111
https://www.ncbi.nlm.nih.gov/pubmed/8782638
https://www.ncbi.nlm.nih.gov/pubmed/8782638
https://www.ncbi.nlm.nih.gov/pubmed/8782638
https://www.ncbi.nlm.nih.gov/pubmed/16204666
https://www.ncbi.nlm.nih.gov/pubmed/16204666
https://www.ncbi.nlm.nih.gov/pubmed/16204666
https://www.ncbi.nlm.nih.gov/pubmed/16204666
https://www.ncbi.nlm.nih.gov/pubmed/24286266
https://www.ncbi.nlm.nih.gov/pubmed/24286266
https://www.ncbi.nlm.nih.gov/pubmed/27553044
https://www.ncbi.nlm.nih.gov/pubmed/27553044
https://www.ncbi.nlm.nih.gov/pubmed/27553044
https://www.ncbi.nlm.nih.gov/pubmed/27553044


ISSN: 2469-5831DOI: 10.23937/2469-5831/1510018

• Page 4 of 4 •Akosile et al. Int J Clin Biostat Biom 2018, 4:018

propensity score in observational studies for causal effects. 
Biometrika 70: 41-55.

8. Van Der Laan MJ, Rubin D (2006) Targeted maximum likeli-
hood learning. The International Journal of Biostatistics 2(1).

6. Austin PC (2011) An introduction to propensity score meth-
ods for reducing the effects of confounding in observational 
studies. Multivariate Behavioral Research 46: 399-424.

7. Rosenbaum PR, Rubin DB (1983) The central role of the 

https://doi.org/10.23937/2469-5831/1510018
https://biostats.bepress.com/ucbbiostat/paper213/
https://biostats.bepress.com/ucbbiostat/paper213/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144483/

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Methods
	Study population 
	TMLE
	Data analysis 

	Results
	Conclusion
	Table 1
	Table 2
	References

