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Abstract
Background: Considerations must be taken when 
designing group-randomized trials due to the hierarchical 
structure of the data. Longitudinal group-randomized trials 
have an added layer of nesting adding more complexity to 
the study design. Simulation studies have been performed 
to compare the operating characteristics and validate 
statistical models for these hierarchical data structures, 
but many provide simulations from parametric distributions 
under set assumptions.

Methods: Our manuscript aims to use previous study 
data to compare two statistical analysis methods in group-
randomized trial designs through data-driven simulations 
for a prospective study design. Creating simulated datasets 
using existing study data from a previous study allows the 
existing data to drive the assumptions of the models. The 
motivation for this simulation study was a potential concern 
that our proposed longitudinal mixed-effects model could 
have inflated type I error. We compare the empirical power 
and type I error rate for our proposed model against a 
baseline adjusted model at a single time point when modeling 
a continuous outcome, % weight change at 24 months. 
The longitudinal model includes three follow-up time points, 
while the other models the outcome with an adjustment for a 
baseline measure, weight. The empirical power of the models 
is calculated and compared for varying effect sizes.

Results: Results showed that the models had comparable 
power for the tested effect sizes and type I error rates of 
3.09% and 3.87% for the longitudinal and the baseline 
adjusted model, respectively. Conclusion

These results show our proposed longitudinal model does 
not result in an inflated type I error rate and would be 
sufficient to use for the future trial.
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Introduction
Group-randomized clinical trial designs, also 

commonly referred to as cluster-randomized clinical 
trial designs, randomize groups of subjects rather than 
individuals to study conditions, creating a hierarchical 
data structure as the subjects within a cluster are 
correlated. This correlation violates the independence 
assumption and is measured by the intracluster, or 
intraclass, correlation (ICC), defined as the ratio of 
the between-cluster variance to the total variance [1]. 
Group randomization is the only feasible method for 
randomization when an intervention must be applied 
to an entire group. These trial designs are now a key 
tool in the comparative effectiveness of treatments in 
health services research and implementation science as 
they can be more administratively convenient, increase 
subject compliance, reduce contamination bias, and 
produce results applicable in real-world clinical settings 
[2-4]. An added level of hierarchical, or nested, data 
occurs in longitudinal group-randomized trial designs. As 
the subjects are measured more than once throughout 
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The rest of this article is organized as follows. In 
Section 2, we present the information from the previous 
study that provides the data from which we derived 
the simulated datasets used to perform our simulation 
studies. The information for the prospective study that 
will set up our simulation datasets is also provided. 
The statistical mixed effect models for the clustered 
data are presented in Section 3. Section 4 details the 
structure of the simulations, then the simulation results 
are presented in Section 5, followed by the concluding 
remarks in section 6.

Methods
Capitalizing on the expanded capacity for home-

based telemedicine and lessons learned in a previous 
primary care-based weight-loss trial, we are currently 
conducting a cluster-randomized trial, RE-TOOL (Rural 
Engagement in Teemed Team for Options in Obesity 
Solutions). The previous study, RE-POWER, was a 
pragmatic cluster randomized trial across 36 primary 
care clinics that ended in January 2020 with the primary 
care clinics as the randomization unit. There were three 
treatment groups compared; two were a group-based 
intervention (one in person, one telehealth), and the 
third group included individual in-person clinic visits with 
clinicians. There were 1407 participants enrolled across 
the 36 primary care clinics that were randomly assigned 
to the treatment arms, with most clinics accruing 35-
40 participants. The primary outcome, weight loss, was 
measured at 6, 18, and 24 months. Follow-up data were 
complete for 91.7%, 84.6%, and 86.7% of participants at 
6, 18, and 24 months, respectively. Analyses used linear 
mixed-effects multilevel models, including random 
participant and cluster (practice) effects, to explore the 
differences in the outcome of absolute weight change 
and percentage weight change at 24 months with model 
adjustment for randomization strata. The most efficient 
covariance structure based on Akaike’s information 
criterion (AIC) was used. Upon comparing the models' 
AICs to determine the covariance structure that 
provided the best relative goodness-of-fit, we found the 
variance components structure to be best to describe 
the random effect of site and unstructured to be best for 
describing the correlation in participants' measures. The 
missing outcomes were treated as missing at random 
and addressed using maximum likelihood methods. The 
intraclass correlation coefficient for the participants 
within the clusters for RE-POWER was found to be 0.02.

The prospective study, RE-TOOL, will compare the 
percent weight change between two interventions: 
Team Care which combines intensive group-based 
coaching visits with quarterly individual team-based 
clinic visits, and Local Care + which has quarterly 
primary care physician visits only. We propose a total of 
16 clinics, randomized 1:1 to the two treatment groups, 
which will accrue 35 participants per clinic. Percent 
weight change from baseline will be captured at three-

the study, the repeated measurements are correlated 
or exhibit variability that changes. Although there are 
many benefits to group-randomized trial designs, they 
pose some design and analysis problems not present 
in other designs [4]. As these group-randomized trial 
designs are more widely used, there is more available 
literature that has been published to address these 
issues in design and analysis, many using simulations 
studies [5-9].

Simulation studies are an invaluable tool for 
statistical research, particularly for the comparison 
of the performance of statistical methods [10]. 
Simulation studies use pseudo-random sampling to 
generate datasets, and these simulated datasets are 
used to obtain empirical results that allow comparison 
between different statistical models [10]. The pseudo-
random sampling can be performed either by producing 
parametric draws from a known model or by data-driven 
sampling methods. Re-sampling with replacement, is 
sampling many simulated datasets with replacement 
from a specific dataset and is based on the idea that 
using existing data instead of making assumptions about 
the populations one is attempting to estimate can give 
better results [11].

Although the literature is rich with manuscripts 
that use distribution-driven simulations to evaluate 
the performance of modeling techniques and provide 
recommendations on adequate sample sizes and the 
total number of clusters, our paper aims to provide an 
example of using a simulation study using re-sampling 
with replacement on previous study data to compare 
statistical methods [12]. Our motivation for this paper 
came from a concern about a recently funded grant that 
was written to expand on lessons learned in a previous 
trial, RE-POWER (Rural Engagement in Primary Care for 
Optimizing Weight Reduction) [13,14]. The proposed 
grant used a repeated measures mixed model with 
three-time points modeled explicitly, similar to what 
was used in RE-POWER, but the reviewer noted that 
Murray et al. showed through simulations that this 
model design is known to have an inflated type 1 error, 
up to 20%, depending on the simulation assumptions 
[6]. Several alternative models could be used in this 
case, including a mixed-effects model at a single follow-
up time with an adjustment for baseline measure or a 
random coefficients analysis that would include all of 
the time points [6].

The primary goal of this manuscript is to compare 
the model we proposed, a mixed-effect repeated 
measures model with three-time points, by comparing it 
to a mixed-effects model at a single follow-up adjusting 
for baseline. The prospective study structure is very 
similar to the previous study, RE-POWER, so we have a 
unique opportunity to use the existing study data and 
simulation studies to compare the two analytic methods 
by allowing the simulated data to drive the assumptions 
that other simulation techniques must specify.
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time points, 6, 12, and 24 months with a hypothesized 
net between-group treatment effect at 24 months of 
3%. Using a closed analytic formula and a type I error 
rate of 0.05, the trial will have 85% power to detect a net 
between-group treatment effect of 3% (SD = 8%) with 
an ICC of 0.02, as observed in RE-POWER. We planned 
to use similar analysis techniques that were used in RE-
POWER, and percent weight loss would be analyzed 
using hierarchical linear mixed-effects models using 
weights at 6, 12, and 24 months, with intervention arm, 
time, clinic, and their interaction terms included in the 
model. In the absence of differential loss to follow-up, 
the primary analysis described above will use restricted 
maximum likelihood, and no participants will be deleted 
from the analysis due to missing data.

Statistical Models
Mixed models are an extension of simple linear 

models to allow both fixed and random effects to be 
included in modelling the outcome. Mixed models are 
used in group-randomized controlled trials due to the 
nested structure of participants within randomized 
clusters. The continuous outcome measure of interest 
is the percent weight change, specifically at 24 months, 
defined as the quantity 24 month weight-baseline 
weight divided by baseline weight.

Longitudinal model

A three-level mixed-effects repeated measures 
linear model for our continuous outcome, % weight 
change 

( ) ( ) ( )0 1 2 18 3 24 4 18 5 24 18 24 18 24   ik k i i i k i k k i k i k i i iki k i k i kY X T T T X T X V T T T V T Vβ β β β β β γ γ γ ε= + + + + + + + + + + + +

, with subject-specific and cluster-specific 
random slopes can be written as

( ) ( ) ( )0 1 2 18 3 24 4 18 5 24 18 24 18 24   ik k i i i k i k k i k i k i i iki k i k i kY X T T T X T X V T T T V T Vβ β β β β β γ γ γ ε= + + + + + + + + + + + +

( ) ( ) ( )0 1 2 18 3 24 4 18 5 24 18 24 18 24   ik k i i i k i k k i k i k i i iki k i k i kY X T T T X T X V T T T V T Vβ β β β β β γ γ γ ε= + + + + + + + + + + + +,       (1)

where   1,..., ki n=  is the index for the participant 
within the kth cluster, K= 1,...,K. The variable kX  is 
the intervention assignment indicator for participant 
i, coded 1 for the treatment (Team Care) and 0 
for the comparison group (Local Care +). Since the 
randomization to the treatment is done at the site level 
(cluster), the index for kX  will only depend on k. The 
variables 18 24  i iT and T  take a value of 1 for the ith 
participant’s 18 month or 24-month weight change, 
respectively, and 0 otherwise. The fixed effect terms 
in equation (1) include 0β  the overall fixed intercept, 

1β  denotes the effect of the treatment group at the 
6 month follow-up time, 2β  and 3β  denote the time 
effects in the comparison group for 18 and 24 months, 
respectively and 4β and 5β  denote the intervention by 
time interaction effects, which can be interpreted as 
the additional change in the % weight change for the 
treatment group over time compared to the comparison 
group. To account for the positive intraclass correlation 
expected in the data, the cluster- and participant-
specific random effects must be specified in the model. 
It has been shown that failing to include these effects 
will result in an inflated type I error rate [14,15]. The 

random effects allow for correlation among members 
within a site, kγ , and across time, 18i kT γ  and 24i kT γ , 
for correlation among participants ( ) , i kV and across 
time ( )24i i kT V  and ( )24i i kT V , and for random variations 
among the participants, ,ijkε Under the general linear 
mixed model, we assume that the random effects are 
independent and normally distributed as ( )2~ 0,k yNγ σ , 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
18 24 18 24, ~ 0, , ~ 0, , ~ 0,i k i k y v i i Tvi k i k i kT T N V N T V T V Nγ γ σ σ σ

and ( )2~ 0,ik eNε σ . The null hypothesis we will be testing 
is that there is no treatment effect, 0 0,β =  in % weight 
change at month 24 when adjusting for baseline weight.

The null hypothesis we will be testing is that there 
is no difference in outcome, % weight change, between 
the two treatment groups at month 24, 5 0β = .

Baseline adjusted model

In the alternative baseline-adjusted model, we are 
modelling a single follow-up time with adjustment for 
baseline weight. The mixed-effects linear model for % 
weight change at month 24 with subject-specific and 
cluster-specific random slopes and an adjustment for 
baseline weight can be written as

( )0 1 1 2 2ik k i k ijki kY X X Vβ β β γ ε= + + + + + ,                (2) 

where 1,..., ki n=  is the index for the participant, 
nested within the kth cluster, 1,...,k K= . The 
variable 1kX is the intervention assignment indicator 
for participant i, coded 1 for the treatment and 0 for 
the comparison group. Since the randomization to 
the treatment is done at the site level (cluster), the 
index for 1kX  will only depend on k. The variable 2iX  
denotes the baseline weight measured for participant 
i. The fixed effect terms in equation (1) include 0β the 
overall fixed intercept, 1β denotes the treatment effect 
for the outcome, % weight loss at month 24, and kγ
denotes the slope of the baseline weight effect in the 
comparison group, i.e., the change in the intervention 
effect for a one-unit change in baseline weight. The 
random effects allow for correlation among members 
within a site, kγ , for correlation among participants 

( )i kV , and random variations among the participants, 
ijkε  Under the general linear mixed model, we 

assume that the random effects are independent and 
normally distributed as ( ) ( ) ( )2 2~ 0, , ~ 0,k y yi kN V Nγ σ σ , and

( )2~ 0,ik eNε σ . The null hypothesis we will be testing is 
that there is no treatment effect, 0kX =  in % weight 
change at month 24 when adjusting for baseline weight.

Simulation Setup
We performed simulation studies to compare 

the empirical type I error rate and power for the two 
models described in Section 3 under different effect size 
scenarios. We used simple random sampling to draw 
sites from the previous study data, drew participants 
from the selected sites with replacement, and assigned 
the selected sites to the treatment arm (Team Care) 
or comparison arm (Local Care+) in 1:1 using a null 



ISSN: 2469-5831DOI: 10.23937/2469-5831/1510058

Brown AR, et al. Int J Clin Biostat Biom 2025, 11:058 • Page 4 of 6 •

distribution. For the type I error rate, we modeled 
the simulated data without any adjustments to the % 
weight change variable, i.e., see the no effect scenario 
in (Table S1).

To calculate the empirical power, we adjusted the 
% weight change for the participants at the clinics 
randomized to the treatment group by subtracting the 
values in Table S1 from the % weight change for each 
participant at the treatment arm sites. For instance, the 
simulated data before adjustments were made for the 
treatment group arm had a 24-month mean % weight 
change of -4.37%, thus after the adjustment for the 
hypothesized effect (Scenario 4), the 24-month mean % 
weight change would be -7.37%. The % weight change 
effect size was adjusted for a greater % weight change at 
the earlier time points, months 6 and 12, as the previous 
study showed participants initially had a greater % 
weight loss early in the study that was trending back 
toward 0% as the study went on. Table S1 shows the 
adjustments that were made to the % weight change 
for the participants allocated to the Team Care arm for 
each of the follow-up time periods before modelling the 
data again.

The formal steps for the data set generation are:

S1. Randomly sample with replacement 16 clinics 
from the 34 clinics in our data set.

S2. For each clinic, randomly generate the 
intervention assignment indication 0kX =  or 1. Note 
that we are considering a balanced allocation of the 
intervention. 

S3. Randomly sample without replacement 35 
participants % weight change for each follow-up time 
and the baseline weight from the 16 selected clinics. 

S4. Adjust the % weight change in the simulated 
dataset depending on the follow-up time to the values 
shown in Table 1 for each of the scenarios. 

S5. Fit the data with the three-level linear mixed 
effects model (1) using the MIXED procedure in SAS/
STATTM software [16]. Code provided in Appendix A.

S6. The p-value, p1sd, for the pairwise test of the 
treatment group to the comparison group at the month 
24 follow-up is obtained for the dth simulated dataset 
for the sth scenario.

S6. Fit the data with the two-level linear mixed 
effect model with the adjustment for baseline weight 
(2) using the MIXED procedure in SAS/STAT software. 
The covariance structure is the default variance 
components. Code is provided in Appendix A.

S7. The p-value, p2sd, for the test of the treatment 
effect, 1β  is obtained for the dth simulated dataset for 
the sth scenario.

S9. Repeat steps S4 to S8, storing the p-values from 
each of the effect size adjustments for scenarios (2)-(6) 
in (Table 1).

S10. Repeat steps S1 to S9 10,000 times for each 
combination of effect size modification. Thus, we 
have p-values from 10,000 simulated datasets for the 
original sampled datasets and each of the effect size 
adjustments.

S11. Calculate the empirical power (or type I error 
rate) as the proportion of times the simulation-based 
p-value is smaller than the significance level, α = 0.05.

By using 10,000 simulated data sets to compare our two 

models, the maximum margin error is ( ).5 1-.5
1.96 0.01.

10,000
=

Results
The simulation study produced 10,000 sampled 

datasets from the RE-POWER study data, with each 
having a total sample size of 560 participants across 
16 sites, with each site having 35 participants. Since 
the simulated data was drawn from the RE-POWER 
population, we expect the missing data to be about 8.3%, 
15.4%, and 13.3% for months 6, 12, and 24, respectively. 
Across these samples, the treatment group arm had 
a 24-month mean % weight change of -4.37% (SD = 
8.48%) compared to the comparison groups of -4.39% 
(SD = 8.51%). This results in a bias of 0.02, favouring 
the comparison arm. The empirical type I error rate 
was calculated for no effect of treatment (null) and the 
empirical power was calculated for the effect sizes or a 
difference in % weight change comparing treatment to 
comparison, 1, 2, 3, and 4%. These values were found by 
calculating the number of times out of 10,000 that the 
p-value of the pairwise test was less than 0.05. Figure 
1 provides the empirical type I error rate (effect size of 
0%) and the empirical power comparison for the two 
statistical methods for the varying effect sizes. It shows 
that for all assumed effect sizes, the power is very 
comparable, although slightly lower in the longitudinal 
model. For our specific hypothesized effect size, 3%, 
the longitudinal model has empirical power of 84.28% 
compared to 86.09% in the baseline-adjusted model.

Although the power is slightly lower in the 
longitudinal arm, the type I error rate is also lower in 
the longitudinal model, 3.09%, compared to 3.87% in 
the baseline-adjusted model. The primary effect size of 
interest was 3%, as the prospective study hypothesized 
that the treatment group would have an average % 
weight loss of 3% more than the comparison arm. For 
the pairwise test of treatment group vs. comparison 
group % weight change at month 24, the mean estimate 

Percent Weight 
Change Treatment Comparison

 6 Month -13.70 -7.72
 12 Month -9.98 -5.51
 24 Month [1] -7.37 -4.39
[1] Primary Outcome of 
Interest.

Table 1: Simulated percent weight change for treatment (Team 
Care) and comparison (Local Care+) for the hypothesized effect.
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across the simulations was -2.97% for the longitudinal 
model compared to -2.98% for the baseline adjusted 
model. The coverage probability for our hypothesized 
effect size was found to be 96.21% [95% CI: 96.58-95.84] 
compared to 94.15% [95% CI: 93.69-94.61] for the 
longitudinal and baseline adjusted model, respectively.

Discussion
In this manuscript, we used simulation studies using 

the data-driven method to challenge the proposed 
statistical model originally proposed. The simulation 
results showed the empirical power and type I error 
rate comparison between the proposed longitudinal 
statistical model and the single time point, baseline-
adjusted model. Although the baseline-adjusted model 
was slightly more powerful for the hypothesized time 
effect, we did find that the empirical type I error rate 
was not inflated in the longitudinal model. The coverage 
probability and estimated mean difference between the 
two groups also favoured the longitudinal model. The 
results from this simulation study provide justification 
to move forward with the longitudinal mixed model if 
we wish to keep consistent with the analysis and results 
presented in the previous, very similar study.

Murray, et al. concluded that the longitudinal mixed-
effect models were still useful under certain assumptions 
compared to a baseline adjusted model. By allowing 
the previous study data to drive the assumptions of 
our modelling, we found the longitudinal model across 
three-time points to still be useful. Having the ability to 
use previous study data to design or compare statistical 
methods for a future trial is a unique opportunity. Our 
study provides an example of performing a simulation 
study using previous study data to compare statistical 

methods. Some limitations include borderline small 
number of clusters utilized for this study design and the 
approach used in the paper is that it cannot be used in 
situations where previous study data does not exist or 
the new study design deviates too far from the previous 
study design.
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Figure 1: A plot of empirical power for each of the two models we are comparing for the varying effect sizes for % weight 
change at 24 months. The proposed prospective study, RE-TOOL, has a hypothesized effect size of 3% at 24 months.



ISSN: 2469-5831DOI: 10.23937/2469-5831/1510058

Brown AR, et al. Int J Clin Biostat Biom 2025, 11:058 • Page 6 of 6 •

References
1.	 Bell ML, Rabe BA (2020) The mixed model for repeated 

measures for cluster randomized trials: A simulation study 
investigating bias and type I error with missing continuous 
data. Trials 21: 148. 

2.	 Heo M, Leon AC (2009) Sample size requirements to 
detect an intervention by time interaction in longitudinal 
cluster randomized clinical trials. Stat Med 28: 1017-1027.

3.	 Torgerson DJ (2001) Contamination in trials: Is cluster 
randomisation the answer? BMJ 322: 355-357.

4.	 Hemming K, Proschan MA, Stephens-Shields AJ (2022) 
Thirteenth annual UPenn conference on statistical 
issues in clinical trials: Cluster randomized clinical trials-
opportunities and challenges (morning panel session). Clin 
Trials 19: 384-395.

5.	 Murray DM (1998) Design and analysis of group randomized 
trials. New York, NY: Oxford University Press Inc.

6.	 Murray DM, Hannan PJ, Wolfinger RD, Baker WL, Dwyer 
JH (1998) Analysis of data from group-randomized trials 
with repeat observations on the same groups. Stat Med 
17: 1581-1600.

7.	 Campbell MJ, Donner A, Klar N (2007) Developments in 
cluster randomized trials and Statistics in Medicine. Stat 
Med 26: 2-19.

8.	 Murray DM, Varnell SP, Blitstein JL (2004) Design and 
analysis of group-randomized trials: A review of recent 
methodological developments. Am J Public Health 94: 423-432.

9.	 Ghosh S, Mukhopadhyay S, Majumder P, Wang B (2022) 
Statistical power and sample size requirements to detect 
an intervention by time interaction in four-level longitudinal 
cluster randomized trials. Stat Med 41: 2542-2556.

10.	 Morris TP, White IR, Crowther MJ (2019) Using simulation 
studies to evaluate statistical methods. Stat Med 38: 2074-
2102.

11.	 Rousselet GA, Pernet CR, Wilcox RR (2021) The percentile 
bootstrap: A primer with step-by-step instructions in R. Adv 
Methods Pract Psychol Sci 4.

12.	 Huang FL (2018) Using cluster bootstrapping to analyze 
nested data with a few clusters. Educ Psychol Meas 78: 
297-318.

13.	 Befort CA, VanWormer JJ, DeSouza C, Edward F 
Ellerbeck, Kim S Kimminau, et al. (2016) Protocol for the 
rural engagement in primary care for optimizing weight 
reduction (RE-POWER) Trial: Comparing three obesity 
treatment models in rural primary care. Contemp Clin 
Trials 47: 304-314.

14.	 Befort CA, VanWormer JJ, Desouza C, Edward F Ellerbeck, 
Byron Gajewski, et al. (2021) Effect of behavioral therapy 
with in-clinic or telephone group visits vs. in-clinic individual 
visits on weight loss among patients with obesity in rural 
clinical practice: A randomized clinical trial. JAMA 325: 
363-372.

15.	 Kahan BC, Forbes G, Ali Y, Vipul Jairath, Stephen 
Bremner, et al. (2016) Increased risk of type I errors in 
cluster randomised trials with small or medium numbers of 
clusters: A review, reanalysis, and simulation study. Trials 
17: 438.

16.	 The data analysis for this paper was generated using SAS 
Software. Copywrite, SAS Institute Inc. SAS and all other 
SAS Institute Inc. product or services names are registered 
trademarks or trademarks of SAS Institute Inc., Cary, NC, 
USA.

https://pubmed.ncbi.nlm.nih.gov/32033617/
https://pubmed.ncbi.nlm.nih.gov/32033617/
https://pubmed.ncbi.nlm.nih.gov/32033617/
https://pubmed.ncbi.nlm.nih.gov/32033617/
https://onlinelibrary.wiley.com/doi/10.1002/sim.3527
https://onlinelibrary.wiley.com/doi/10.1002/sim.3527
https://onlinelibrary.wiley.com/doi/10.1002/sim.3527
https://pubmed.ncbi.nlm.nih.gov/11159665/
https://pubmed.ncbi.nlm.nih.gov/11159665/
https://pubmed.ncbi.nlm.nih.gov/35787213/
https://pubmed.ncbi.nlm.nih.gov/35787213/
https://pubmed.ncbi.nlm.nih.gov/35787213/
https://pubmed.ncbi.nlm.nih.gov/35787213/
https://pubmed.ncbi.nlm.nih.gov/35787213/
https://pubmed.ncbi.nlm.nih.gov/9699231/
https://pubmed.ncbi.nlm.nih.gov/9699231/
https://pubmed.ncbi.nlm.nih.gov/9699231/
https://pubmed.ncbi.nlm.nih.gov/9699231/
https://pubmed.ncbi.nlm.nih.gov/17136746/
https://pubmed.ncbi.nlm.nih.gov/17136746/
https://pubmed.ncbi.nlm.nih.gov/17136746/
https://pubmed.ncbi.nlm.nih.gov/14998806/
https://pubmed.ncbi.nlm.nih.gov/14998806/
https://pubmed.ncbi.nlm.nih.gov/14998806/
https://pubmed.ncbi.nlm.nih.gov/35441378/
https://pubmed.ncbi.nlm.nih.gov/35441378/
https://pubmed.ncbi.nlm.nih.gov/35441378/
https://pubmed.ncbi.nlm.nih.gov/35441378/
https://pubmed.ncbi.nlm.nih.gov/30652356/
https://pubmed.ncbi.nlm.nih.gov/30652356/
https://pubmed.ncbi.nlm.nih.gov/30652356/
https://journals.sagepub.com/doi/10.1177/2515245920911881
https://journals.sagepub.com/doi/10.1177/2515245920911881
https://journals.sagepub.com/doi/10.1177/2515245920911881
https://pubmed.ncbi.nlm.nih.gov/29795957/
https://pubmed.ncbi.nlm.nih.gov/29795957/
https://pubmed.ncbi.nlm.nih.gov/29795957/
https://pubmed.ncbi.nlm.nih.gov/26898748/
https://pubmed.ncbi.nlm.nih.gov/26898748/
https://pubmed.ncbi.nlm.nih.gov/26898748/
https://pubmed.ncbi.nlm.nih.gov/26898748/
https://pubmed.ncbi.nlm.nih.gov/26898748/
https://pubmed.ncbi.nlm.nih.gov/26898748/
https://pubmed.ncbi.nlm.nih.gov/33496775/
https://pubmed.ncbi.nlm.nih.gov/33496775/
https://pubmed.ncbi.nlm.nih.gov/33496775/
https://pubmed.ncbi.nlm.nih.gov/33496775/
https://pubmed.ncbi.nlm.nih.gov/33496775/
https://pubmed.ncbi.nlm.nih.gov/33496775/
https://pubmed.ncbi.nlm.nih.gov/27600609/
https://pubmed.ncbi.nlm.nih.gov/27600609/
https://pubmed.ncbi.nlm.nih.gov/27600609/
https://pubmed.ncbi.nlm.nih.gov/27600609/
https://pubmed.ncbi.nlm.nih.gov/27600609/

	Corresponding author
	Abstract

