
International Journal of

Clinical Biostatistics and Biometrics

Guan et al. Int J Clin Biostat Biom 2024, 10:053

Volume 10 | Issue 1
DOI: 10.23937/2469-5831/1510053

• Page 1 of 12 •

ISSN: 2469-5831

Open Access

Citation: Guan C, Au R, Ang A, Gangopadhyay A (2024) Analyzing the Covariance Structure of Plasma 
Signaling Proteins in Relation to the Diagnosis of Dementia. Int J Clin Biostat Biom 10:053. doi.
org/10.23937/2469-5831/1510053
Accepted: February 10, 2024; Published: February 12, 2024
Copyright: © 2024 Guan C, et al. This is an open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited

Guan et al. Int J Clin Biostat Biom 2024, 10:053

Analyzing the Covariance Structure of Plasma Signaling 
Proteins in Relation to the Diagnosis of Dementia
Calvin Guan1*, Rhoda Au2, Alvin Ang2 and Ashis Gangopadhyay1

1Department of Mathematics & Statistics, Boston University, 665 Commonwealth Ave, Boston, MA, 
02215, USA
2Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord St 
(L 1004), Boston, MA, 02118, USA

*Corresponding author: Calvin Guan, Department of Mathematics & Statistics, Boston University, 665 Commonwealth 
Ave, Boston, MA, 02215, USA

Abstract
Numerous studies have shown that individuals with dementia 
have exhibited activation of inflammatory pathways in 
their brains. Typically, these studies use traditional and 
well-established regression methods for data analysis. In 
this paper, a new approach is introduced that utilizes the 
analysis of the covariance structure using methods related 
to the principal component analysis (PCA) theory. Eleven 
biomarkers related to neuroinflammation were used to 
determine the association with the onset of dementia. 
Various demographic covariates were adjusted to account 
for possible confounding effects of the covariance structure. 
Three hypothesis testing methods were considered to 
discern differences between partial covariance matrices 
for comparing power and Type I errors through simulation 
studies. Application of hypothesis testing methods using 
data from Framingham Heart Study (FHS) found significant 
differences in covariance matrices between the non-
dementia and dementia groups.

Keywords
Inflammatory biomarkers, Dementia, Comparison of 
covariance matrices, Principal component analysis (PCA)

ORiGinAl ReseARCh

Check for
updates

Therefore, it has been suggested that treating 
inflammatory conditions could inhibit the development 
of dementia. Given that inflammatory molecules have 
been found in autopsy [3], it raises the question at what 
antemortem time point is neuroinflammation a risk 
factor for the onset of dementia later in life. Whether 
inflammation is a causal factor of dementia or simply 
a byproduct is still widely debated among the scientific 
and clinical communities [4]. Epidemiological studies 
and treatment trials using anti-inflammatory drugs 
have been disappointing, although concerns have been 
raised about the methodological fidelity of the trials [4]. 
As there is yet a proven and effective cure for dementia, 
it is crucial to understand the underlying mechanisms 
further to develop such treatments.

Protein biomarkers are used to quantify the level 
of inflammation in the brain. For this study, eleven 
measures that are recognized as inflammatory 
biomarkers are assessed as risk factors for dementia. 
The most common inflammatory biomarker is C-reactive 
protein (CRP), which is found in higher concentrations 
after an aneurysmal subarachnoid hemorrhage [5]. 
Other biomarkers include interleukin-6 (IL6) and 
osteoprotegerin (OPG). IL6 is a pleiotropic cytokine that 
contributes to host defense during infection and tissue 
injury [6], while OPG is a soluble secreted protein and 
decoy receptor that is associated with inflammation 
after is chemic stroke [7]. These protein biomarkers 

Introduction
There is general research consensus that 

inflammation in pathologically vulnerable regions of the 
brain is associated with dementia, and specifically with 
the subtype of Alzheimer’s disease [1]. For example, [2] 
surmises that miocroglial activation neuroinflammation 
plays a significant role in the development of dementia. 
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In summary, the paper discusses three novel 
approaches to understanding the differences between 
covariance structures of multivariable data and provides 
guidelines for using these methods using extensive 
simulation studies. The potential clinical contribution of 
these analyses is their application to confirm the role of 
inflammatory biomarkers as a risk factor for dementia.

Methodology and Materials

Design
In this section, we briefly describe the details of the 

study design.

Participants: The Framingham Heart Study (FHS) 
is a community-based multi-generational prospective 
cohort study that began in 1948 to identify risk factors 
for cardiovascular disease and subsequently expanded 
to incorporate study of many common chronic diseases 
including dementia. For the current study, participants 
are members of the offspring cohort, which includes 
the biological children of the original FHS cohort and 
the spouses of the children [15]. These participants 
had regular health examinations on average every four 
years. Data used for this analysis were collected at the 
seventh and eighth health examinations performed 
during 1998-2001 and 2005-2008, respectively (n = 
2684).

Inflammatory biomarkers: Inflammatory biomarkers 
were measured from venous blood samples, as 
previously described [8]. Table 1 lists the 12 different 
biomarkers of inflammation [16,17].

The biomarkers’ blood concentration levels are 
typically right-skewed, as there is a lower limit on 
the levels but no upper limit (Figure 1). Therefore, a 
logarithmic transformation is applied to biomarkers to 
reduce skewness and improve the performance of PCA 
decomposition.

Dementia review: The dementia diagnosis of each 
participant in FHS is evaluated and verified through an 
adjudication panel that includes at least one neurologist 
and one neuropsychologist, who determined 
the diagnosis based on information from clinical 
examinations, medical records, and, when available, 
neuropsychological and neurological assessments and 
family interviews [18,19]. Ongoing surveillance for 
incident dementia that has been underway since 1976 
identifies participants for diagnostic consideration. 
Therefore, those who do not undergo a dementia 
review assessment are presumed not to have dementia. 
Participants identified for possible mild cognitive 
impairment (MCI) were also excluded from the analysis 
(n = 158), to create a distinct separation between 
the dementia and non-dementia groups. Dementia 
is flagged whether the onset is before or after the 
biomarkers sampling.

Adjusting for covariates: Covariates that could 

are gathered by venous blood samples drawn from 
participants and then the proteins of interest are 
isolated, frozen, and measured [8]. The data presented 
in this study is from the Framingham Heart Study (FHS). 
The FHS has been collecting longitudinal data from 
three generations of participants for over 7 decades 
that includes demographics, inflammatory biomarkers, 
incident dementia and clinical comorbidities.

Traditional hypothesis testing methods are adequate 
for assessing the effects of biomarkers’ individual 
effects on dementia. However, multiple-hypothesis 
testing procedures can produce false positives at an 
unacceptably high rate [9]. Smart manipulation of 
the rejection criteria can result in a good balance of 
power and false positives, but this study circumvents 
the need by offering an alternative approach. Principal 
component analysis (PCA) and partial covariance 
analysis are deployed to condense the problem into a 
single hypothesis testing procedure. PCA approximates 
data by the product of the “object patterns” and the 
“variable patterns” [10], while partial covariance adjusts 
the scale measures for a set of variables [11]. These 
methods can summarize a set of variables and identify 
the fundamental structure of the set, which can be 
invaluable for understanding the underlying factors that 
affect the combined impact of these variables. A useful 
application of the group structure is to facilitate the 
comparison of a set of variables for different population 
groups.

For this study, three distinct methods for the 
hypothesis testing of equivalence of covariance matrices 
are applied to determine potential inflammation-related 
risk factors for dementia: Principal Component Group 
Comparison [12], Forkman’s Test [13], and the Tracy-
Widom Statistic [14]. Primary objectives are to compare 
the test statistics and p-values via various visualization 
tools, as well as to assess the Type I error rate and power 
of the hypothesis testing procedure via simulations. 
Given the novelty of the approaches utilized in this paper, 
it is imperative to perform simulation analysis for a 
comprehensive understanding of these inferential tools. 
For example, the simulation analysis allows visualizing 
and evaluating each method’s unique advantages and 
disadvantages within controlled settings. The PCA 
comparison method is intuitive, and the non-parametric 
framework requires fewer assumptions about the 
underlying data generating process but is untested in 
the context of hypothesis testing. The Tracy-Widom 
distribution is parametric; therefore, the p-values can 
be derived from the distribution by theoretical analysis. 
However, there are strict assumptions for the Tracy-
Widom distribution, so the results may be questionable 
if the assumptions are not met. The Forkman’s test 
method allows the computation of the p-values without 
the restrictive distributional assumptions. The results 
are further summarized into test statistics to test the 
differences in partial covariance matrices.
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to remove noise during the imputation step [20]. Note 
that imputation works well when the proportion of 
missing values is not too high; as such, the inflammatory 
biomarker lysophosphatidic acid (lpa) was not 
considered in this analysis due to too many missing 
values (n = 1270). Participants with missing values in 
the other biomarkers had their missing values imputed 
(n = 433).

Statistical analyses
This section describes the various statistical 

techniques implemented to analyze the data along with 
a detailed discussion of the various characteristics of 
the methodologies.

Participant characteristics: After screening out 
exclusions and implementing imputation for missing 
observation, the data included 2684 participants, of 
which 2536 were in the non-dementia group and 148 in 
the dementia group. The study sample was characterized 
using means and percentages along with rudimentary 
univariate analysis to examine potential differences 

significantly affect protein biomarker concentration are 
identified using rudimentary linear models and their 
mutual correlation. These covariates are age, sex, BMI, 
current smoking status, total cholesterol, ventricular 
rate, serum creatinine concentration and indicator of 
treatment for lipid disorders. Furthermore, the models 
are adjusted for the time difference between biomarker 
sampling and dementia diagnosis. Participants with 
missing covariates are excluded (n = 1021), these 
exclusions were already applied in Section 4.1.1.

Data imputation: Missing data, be it due to non-
attendance at the time of data collection, inconclusive 
results, unreadable notation, or something else, pose 
a significant challenge in a clinical setting. However, 
in traditional statistical analysis, a sample would be 
discarded if its variables had missing values. Instead, 
the PCA imputation method is applied on the logarithm 
of biomarker concentrations to preserve the sample 
size with minimal effect on the data quality. This 
method uses a regularized iterative PCA algorithm 
that fits an expectation-maximization (EM) algorithm 

Table 1: Biomarker sampling method.

Biomarker Abbreviation Sample Type Units
C-reactive protein CRP Serum mg/L

Soluble intercellular adhesion molecule-1 sICAM-1 Serum ng/mL

Interleukin-6 IL6 Serum pg/mL

Interleukin-18 Il18 Serum pg/mL

8-EPI-Isoprostane ISO Urine pg/mL

Lipoprotein-associated phospholipase-A Lp-PLA2-mass Plasma ng/mL

Lipoprotein-associated phospholipase-A Lp-PLA2-activity Plasma nmol/min/mL

Monocyte chemoattractant protein-1 MCP-1 Serum pg/mL

Osteoprotegerin OPG Serum pmol/L

P-selectin Plasma ng/mL

Tumor necrosis receptor II TNFRII Plasma pg/mL

 

Figure 1: Kernel Density Estimation of CRP vs. Log-Transformed CRP.
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with the χ2 test of independence. Age, BMI, creatinine 
concentration, total cholesterol, current smoking status, 
and lipid disorder treatment indicator show significant 
mean differences between the dementia and non-
dementia groups whereas sex and ventricular rate were 
not significantly different. Interestingly, the dementia 

between the two groups. Table 2 provides the mean 
and standard deviation of continuous variables. The 
two-sample t-test of the mean difference between the 
dementia group and the non-dementia group is included 
for each variable. Table 3, Table 4 and Table 5 show the 
counts and proportions for categorical variables, along 

Table 4: Covariates variables descriptions (current smoking status).

Current Smoking Status N Nn %n Nd %d

No 2444 2302 0.908 142 0.959

Yes 240 234 0.092 6 0.041

χ2 test of independence: χ2  = 3.983, p-value = 0.046

Table 5: Covariates variables descriptions (treated for lipids).

Lipids N Nn %n Nd %d

No 1535 1476 0.582 59 0.399

Yes 1149 1060 0.418 89 0.601

χ2 test of independence: χ2  = 18.464, p-value < 0.001

Table 6: Log predictor descriptions.

Biomarker

(log concentration)
ˆnµ ˆnσ ˆdµ ˆdσ t p-value

CRP 0.479 1.081 0.540 1.252 0.623 0.533

sICAM-1 5.657 0.305 5.714 0.315 2.271 0.024

IL6 0.622 0.728 0.993 0.773 6.031 < 0.001

IL18 5.446 0.386 5.569 0.405 3.825 < 0.001

ISO 6.685 0.841 6.710 0.713 0.424 0.672

Lp-PLA2-mass 5.277 0.261 5.309 0.246 1.587 0.114

Lp-PLA2-activity 4.904 0.257 4.951 0.233 2.487 0.014

MCP-1 5.901 0.307 6.014 0.341 4.181 < 0.001

OPG 1.532 0.302 1.816 0.326 10.952 < 0.001

P-selectin 3.666 0.318 3.687 0.327 0.771 0.442

TNFRII 7.796 0.396 7.954 0.813 2.492 0.014

Table 2: Quantitative covariates descriptions.

Demographics ˆnµ ˆnσ ˆdµ ˆdσ t p-value

Age 65.285 8.516 77.453 6.193 22.681 < 0.001

BMI (kg/m2) 28.406 5.443 26.768 4.597 -4.167 < 0.001

Creatinine (mg/dL) 0.908 0.299 0.986 0.332 2.817 0.005

Total Cholesterol (mg/dL) 186.432 37.576 179.115 35.855 -2.407 0.017

Ventricular Rate (beats/min.) 62.336 10.415 63.101 11.380 0.799 0.426

µ̂  is the sample mean, σ̂  is the sample standard deviation, n denotes the non-dementia group, and d the dementia group

Table 3: Covariates variables descriptions (sex).

Sex N Nn %n Nd %d

Male 1228 1164 0.459 64 0.432

Female 1456 1372 0.541 84 0.568

χ2  test of independence: χ2  = 0.298, p-value = 0.585
N is the sample size of the respective group, while %n and %d are the proportion of the non-dementia and dementia group with 
given characteristics.
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These descriptive tools were utilized to identify potential 
structural differences between the partial covariance 
matrices of the non-dementia and dementia groups.

Hypothesis testing: Hypothesis testing methods 
served as a reference analytical tool to assess the 
difference between the partial covariance matrices of 
the two groups.

H0: P0 = P1, HA: P0 ≠ P1

where P0 and P1 are the population partial covariance 
matrices of the non-dementia and dementia groups, 
respectively. A hypothesis testing method calculates a 
test statistic and the corresponding p-value from the 
data that are used to make a decision. Three novel 
approaches to the hypothesis testing problem were 
considered, namely, Principal Component Group 
Comparisons, Forkman’s test, and Tracy-Widom 
statistic.

Principal components group comparison: The 
first method to assess the differences between two 
covariance matrices was the Principal Components 
Group Comparison (PCGC) method based on the 
comparison of principal components of different groups 
[12]. Let L and M be the principal component loading 
matrices of the non-dementia and dementia groups, 
respectively, then the test statistic is the minimum angle 
between the space of the first component, given by

1
1 2

1cos {( ) }T λ−=

where λ1 is the first eigenvalue of S = LM ′ML′.

A small minimum angle implies that the two groups 
are similar with respect to the first principal component. 
As the minimum angle does not follow a known 
probability distribution, a bootstrap method is used to 
calculate the p-value. A bootstrap method creates B 
bootstrap data by randomly shuffling the group labels. 
Then, a boot-strap test statistic Tb is calculated for 
each bootstrap data (b = 1, ..., B). Finally, the p-value 
is calculated as the proportion of bootstrap samples 
in which the observed test statistic is smaller than the 
bootstrap test statistics.

Forkman’s test: The Forkman’s test takes inspiration 
from [13], where the authors propose a hypothesis 
testing method for the number of significant principal 
components in a standardized data matrix. First, the 
authors simulate simple parametric bootstrap samples 
and calculate the test statistic for each sample. The 
bootstrap is parametric because it assumes a normal 
distribution. It is relatively simple approach because it 
is based on a standard distribution with no estimation 
of parameters. Then, the bootstrap test statistics are 
compared to the observed test statistic to calculate 
the bootstrap p-value. Estimation of parameters are 
not needed because the observed data are already 
standardized to zero mean and unit variance. 

rate is slightly higher for females than males, which 
goes against the findings of contemporary studies [21].

Biomarker characteristics: Table 6 provides the 
characterization of inflammatory biomarkers using the 
mean and standard deviation with two samples t-test 
of the mean difference as a comparison between the 
dementia and non-dementia groups. The results are 
mixed; four biomarkers have significant differences, 
while seven did not. However, this method evaluates 
biomarkers individually and is not able to detect potential 
inter-biomarker covariance differences. Furthermore, 
there may be demographic effects that cannot be 
captured using simple summary statistics. Therefore, 
it is necessary to use more sophisticated statistical 
methods to sufficiently understand the underlying 
covariance structure between the biomarkers.

Partial covariance: A multivariable data covariance 
matrix measures the joint structural association among 
a set of variables. Comparison of covariance matrices 
is a key tool for understanding differences between 
multivariable structures of multiple groups of data. This 
approach has been extensively used in the study of a 
wide range of problems involving multidimensional data, 
such as understanding the role of genetic constraints 
in the determination of evolutionary trajectories in 
adaptive radiation [22], the response of the genetic 
architecture to environmental heterogeneity [23], 
the evolution of phenotypic integration [24,25], 
multicharacter phenotypic plasticity [26] and sexual 
dimorphism [27,28] among others.

The partial covariance allows exploration of the 
structural association between the variables of interest 
after adjusting for exogenous variables. The logarithmic 
transformed biomarkers are adjusted by controlling 
for covariates. This is done by fitting a linear model for 
each biomarker against the covariates and estimating 
the covariance using the resulting residuals. Therefore, 
data analysis uses partial covariance matrices instead 
of traditional covariance matrices to account for 
demographic effects.

Preliminary screening for the association of 
inflammatory biomarkers with dementia: To explore 
the relationship of inflammatory biomarkers with 
dementia status, the partial covariance structure of 
biomarkers is compared between the two groups. Visual 
comparisons of the partial correlation matrices between 
the two groups were made using heat maps and scree 
plots. The heat map visualizes high values using reddish 
colors and low values using blueish colors, akin to a 
temperature map. A scree plot is a graphical tool that 
plots the eigen-values, i.e. amount of variance explained 
by each principal component, of the covariance matrix 
by decreasing orders of magnitude. The scree plot can 
be used to find the number of significant components 
to keep in a principal component decomposition or 
the number of dominant factors in factor analysis [29]. 

https://doi.org/10.23937/2469-5831/1510053
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( )0 1, , 2 log tan
2
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= + − +
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( )12

0 1

min , 0.5
sin

2 1
p n

n n
γ −  =  + − 

( )12

0 1

max , 0.5
sin

2 1
p n

n n
φ −  =  + − 

Therefore, T is the test statistic, and the p-value is 
given by Pr(T > t|H0) = 1 - F1(t).

In practice, we approximate the Tracy-Widom 
p-value using a Gamma distribution as outlined by [32], 
as the Tracy-Widom p-value is difficult to calculate 
directly.

Simulation study: Before addressing the core 
question related to differences in inflammatory 
biomarkers between the non-dementia group and the 
dementia group, it is important to first compare the 
performances of the three hypothesis testing methods 
discussed in the last section using simulation studies. 
Simulation is necessary to evaluate and compare the 
results of the three methods in a controlled setting, as 
established theoretical results for these methods are 
limited. Two groups of random variables are generated 
from a parametric distribution in the simulations. The 
first group had a fixed parameter, while the second 
group varied the parameter in a range where the fixed 
parameter of the first group is the center. The goal of 
these simulations is to visualize the change in statistic 
and p-values as the distributions of the two groups 
differ. The Type I error and power of these tests are 
assessed below. The following describes the data-
generating process (DGP) for each simulation below.

DGP1: Data is generated from bivariate normal 
distributions with zero-mean and unit variance, X0, X1, 
where the correlation is defined as ρ0 = 0, ρ1∈ (−1, 1). 

DGP2: Following the work of [33], let 
( ), ...,ki kli kpix x=x  represent the predictor vector for the 

ith observation in group k, in this case k = 0,1 and generate 

, 1, , 2,2 , ~ (0,1)kji kji k j i k k j i kjix w w w where w Nθ+ += + +
. Parameters are defined as θ0 = 3, θ1 ∈ (1, 5). This 
simulation creates a complex dependency based on a 
moving average process that is not directly obvious.

DGP3: Designed as a multivariable normal simulation 
with ( )~ 0, 0,1k kX N k∑ = . Where the ith row and jth 
column of ,k ijkσ∑  is defined as i j

ijk kσ φ −= , which 
follows the correlation structure of an autoregressive 
process of order 1 (AR(1)). Specifically, the parameters 
are defined as ( )0 1.5, 0,1φ φ= ∈ . This simulation can 
be described as a multivariable variation of DGP1.

The methods in Forkman, et al. [13] are then modified 
to test the hypothesis of the difference between two 
covariance matrices. First the test statistic is calculated 
as such:

( ) 1
0 0 1 1 1 1Z n S n S n S−= +

1
1

/
p

k
k

T λ λ
=

= ∑
Where S0 and S1 are the sample partial covariance 

matrices of the standardized data from the dementia 
group and the non-dementia group, and n0 and n1 are 
the respective sample sizes. Furthermore, T is the test 
statistic and λk is the kth eigenvalue of Z.

In summary, the test statistic is calculated by 
combining the covariance matrices of two groups 
in such a way that if the two matrices are equal, the 
largest eigenvalue of the combined matrices follows the 
greatest root statistic distribution [14].

The p-value is then calculated using the following 
boot-strap algorithm:

Algorithm 1 Forkman’s Test P-Value

1: for b ∈ 1, 2, ..., B do

2: Generate ( ) ( )1, 1, 2, 2,0,1 , 0,1b i j b i jX N X N� �

3: ( ) 1
1 1 1 1 2 2b b n b n b nZ −= ∑ ∑ + ∑  (Σ is the covariance 

matrix)

4: 1 1
/ p

b b bkk
T λ λ

=
= ∑  (λbk is the kth eigenvalue of Zb)

5: end for

6: P-value = ( )1
/B

bb
I T T B

=
>∑  (I is the indicator 

function)

Tracy-widom statistic: The Tracy-Widom distribution 
was introduced in [30], as the probability distribution 
of the normalized eigenvalue of a random Hermitian 
matrix. Johnstone [31] established the use of the 
Tracy-Widom distribution of order 1 as the asymptotic 
distribution of the largest eigenvalue in the covariance 
matrix of independent Gaussian variables. A follow-
up paper [14] explores the application of the Tracy-
Widom distribution of order 1 to multivariable analysis, 
of relevance is the group comparisons of covariance 
matrices.

The hypothesis tested considered S0 and S1, the 
sample covariance matrices for both groups. Let n0 be 
the number of participants in the non-dementia group, 
and n1 for the dementia group. And let λ1 be the largest 
eigenvalue of S = (n0S0 + n1S1)

−1n1S1. Finally, define F1 
as the Tracy-Widom distribution of order 1 and p the 
number of predictors, then under H0: 

( ) ( )
( )
1 0 1

1
0 1

log , ,
, ,

it p n n
T F

p n n
λ µ

σ
−

= �

Where µ is the centering term, and σ the scaling 
term, defined as:
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Inflammatory biomarkers and effect on dementia: 
Finally, the effect that inflammatory biomarkers 
collectively had on dementia risk is analyzed by 
performing the three aforementioned methods on 
the partial covariance structure of non-dementia and 
dementia group.

Results

Simulation analysis
This section summarizes the results of the simulation 

analysis as described in Section 4.2.9.

Test statistics and P-values Results: Figure 2 depicts 
the graphs of the three test statistics and the respective 
p-values (Figure 3) for the three different simulations. 
Note that the parameters for DGP2 (θ1) are scaled to 
match the other simulations in the overlying illustration. 
As a reminder, in the original simulation (θ1 ∈ (1, 5), θ0 

In each simulation, the test statistic and the p-value 
are graphically visualized. A fine grid of discrete values is 
set for ρ1, θ1, and ɸ1 respectively. Each DGP is simulated 
10 times, and the average of each set of test statistic or 
p-values against their respective value of ρ1, θ1, or ɸ1 
are then plotted.

Furthermore, Type I error and power for each DGP 
and each statistical method are calculated by estimating 
the Type I error by setting the parameter of interest 
equal to (DGP1: ρ0 = ρ1 = 0, DGP2: θ0 = θ1 = 3, DGP3: ɸ0 
= ɸ1 = 3). To assess power, a reference point for group0 
(ρ0 = ɸ0 = 0, θ0 = 3) is set, while setting the parameter of 
interest of group 1 to values surrounding group 0’s (ρ1 
= ɸ1 = (−.4, −.2, .2, .4), θ1 = (1, 2, 3, 4)). The Type I error 
and power are evaluated in a range of sample sizes (n0 = 
n1 = 500, 1000, 1500) and a fixed number of predictors 
(p = 10) to evaluate changes in the estimator as sample 
sizes increase.

 

Figure 2: Comparisons of test statistics.

 

Figure 3: P-value comparisons.
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= 3), this is rescaled to ( )( )* *
1 00.5, 0.5 , 0θ θ∈ − =  in 

graphical presentation. The test statistics in DGP1 do 
not change noticeably with the parameters, although 
their corresponding p-values changed in a predictable 
way except for DGP2. The Tracy-Widom distribution 
performed well under DGP1 and DGP3 as it exhibits 
symmetry in the test statistic and the p-value graph. 
However, the DGP2 simulation was not symmetric but 
was more significant on the right side. The Tracy-Widom 
p-value did not reach significance level (α = 0.05) 
even at ( )*

1 11 0.5θ θ= = − , the lowest value in DGP2 
simulation. In fact, the minimum of the Tracy-Widom 
test statistic (the maximum p-value) was reached when 
θ1 < 3, lower than the true null case. Lastly, the scaled 
Forkman’s test statistic had good results in all three 
simulation methods.

The one-sided peculiarity of Tracy-Widom’s 
distribution in DGP2 is worth exploring. A compelling 
argument for this phenomenon is that the size or 
determinant of Σ1 has an one-sided effect on the Tracy-

Widom distribution, as S1 is used in the numerator to 
make the combined co-variance matrix. Indeed, a 
simulation that varies the matrix size clearly shows this 
effect, we call this simulation DGP4.

DGP4: Data was generated from independent 
bivariate normal distributions with zero-mean and 
variance ( )2 2

2, ~ 0,k kX Nσ σ . Where k = (0,1) and 

( )2 2
0 13, 2.5, 3.5σ σ= ∈ .

DGP4 simulation result (Figure 4) clearly showed 
the one-sided relationship between the Tracy-Widom 
statistic and the difference between the variances 

2 2
1 0σ σ− . Therefore, the appropriate way to test the 

equality of the co-variance matrices would be by means 
of a two-sided p-value. However, this contradicts the 
results of DGP1 and DGP3, which showed that the 
Tracy-Widom statistic is two-sided with respect to 
the difference in covariance between variables. This 
contradiction creates a difficult dilemma. On the one 
hand, there is the option of looking for differences in 
magnitude in variances, where a one-sided p-value 

 

Figure 4: DGP4 Simulation results.

Table 7: Type I error and power under DGP1.

Method1 n0 n1 ρ1 = −0.4 ρ1 = −0.2 ρ1 = 0 ρ1 = 0.2 ρ1 = 0.4

PCGC 500 500 0.8 0.61 0.052 0.63 0.816

PCGC 1000 1000 0.87 0.762 0.03 0.754 0.876

PCGC 1500 1500 0.892 0.804 0.044 0.79 0.89

PBoot 500 500 1 0.79 0.034 0.83 1

PBoot 1000 1000 1 0.986 0.048 0.98 1

PBoot 1500 1500 1 1 0.046 0.998 1

TW 500 500 0.992 0.334 0.004 0.342 0.994

TW 1000 1000 1 0.816 0.002 0.824 1

TW 1500 1500 1 0.98 0.004 0.974 1

ρ1 = 0 constitutes the null distribution
1PCGC: Principal Components Group Comparison; Fork: Forkman’s Test; TW: Tracy-Widom 
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would be appropriate. On the other hand, if the 
objective is to determine differences in correlation 
between variables, the two-sided p-value would be 
the appropriate choice. For sake of simplicity, the data 
analysis focuses on the latter by standardizing the 
variables of interest. The standardization to zero mean 
and unit variance is consistent with similar analyses, 
such as in [34].

Type I error and power results: Next, the three 
methods using Type I error and power of the tests were 
assessed (Table 7, Table 8 and Table 9). Type I error is 
represented in the columns where the parameters for 
both groups are equal to (ρ1 = 0, θ1 = 3, and ɸ1 = 0). 
Although the PCGC method captures the true Type I 
error (α = 0.05) quite well, the power is relatively low 
in all simulations; in fact, the power does not appear 
to change at all in DGP2. The Forkman’s test method 
accurately estimates Type I error, while also having high 
power for all simulations. Meanwhile, the Tracy-Widom 
method was consistently conservative in estimating the 
Type I error in all simulations, with the DGP1 simulation 
being the most conservative. As for power, the Tracy-
Widom method had good power distribution in DGP1 
and DGP3, although is in general less powerful than the 
Forkman’s test method. However, the Tracy-Widom 
method was extremely under-powered in DGP2 when 

θ1 < θ0, this phenomenon is a consequence of Tracy-
Widom method’s non-symmetric interaction with DGP2.

In general, power increases as the sample size 
increases, whereas the Type I error does not have any 
discernible changes. Additionally, the power increases 
along with sample sizes given a fixed number of 
variables; this is true for all three methods.

In summary, the Forkman’s test method had the most 
impressive simulation results; not only did it reasonably 
estimate Type I error, but it also demonstrated high 
power in all the simulations. The least impressive 
method was PCGC. While it had reasonable Type I 
power estimation, it was under-powered in comparison. 
In addition, PCGC was completely unable to detect the 
parameter changes in DGP2. The Tracy-Widom method 
was conservative in estimating the Type I error in all 
simulations. It had high power in DGP1 and DGP3, 
although not as much as the Forkman’s test. However, 
the Tracy-Widom method was extremely underpowered 
in DGP2 when (θ1 < θ0) as mentioned previously.

Analysis of inflammatory biomarker data
This section summarizes the results of the analysis 

of the data on the FHS inflammatory biomarkers and 
dementia.

Table 8: Type I error and power under DGP2.

Method1 n0 n1 p θ1 = 1 θ1 = 2 θ1 = 3 θ1 = 4 θ1 = 5

PCGC 500 500 10 0.05 0.056 0.052 0.05 0.06

PCGC 1000 1000 10 0.046 0.046 0.046 0.046 0.042

PCGC 1500 1500 10 0.056 0.046 0.044 0.048 0.05

PBoot 500 500 10 1 1 0.05 0.762 1

PBoot 1000 1000 10 1 1 0.074 1 1

PBoot 1500 1500 10 1 1 0.064 1 1

TW 500 500 10 0.074 0.008 0.046 1 1

TW 1000 1000 10 0.192 0.026 0.062 1 1

TW 1500 1500 10 0.33 0.036 0.052 1 1

θ1 = 3 constitutes the null distribution
1PCGC: Principal Components Group Comparison; Fork: Forkman’s Test; TW: Tracy-Widom 

Table 9: Type I error and power under DGP3.

Method1 n0 n1 p φ1 = −0.4 φ1 = −0.2 φ1 = 0 φ1 =0 .2 φ1 = 0.4

PCGC 500 500 10 0.824 0.282 0.04 0.28 0.82

PCGC 1000 1000 10 0.936 0.382 0.05 0.416 0.944

PCGC 1500 1500 10 0.986 0.466 0.034 0.508 0.992

Fork 500 500 10 1 0.984 0.06 0.984 1

Fork 1000 1000 10 1 1 0.052 1 1

Fork 1500 1500 10 1 1 0.052 1 1

TW 500 500 10 1 0.916 0.03 0.892 1

TW 1000 1000 10 1 1 0.042 1 1

TW 1500 1500 10 1 1 0.026 1 1

φ1 = 0 constitutes the null distribution
1PCGC: Principal Components Group Comparison; Fork: Forkman’s Test; TW: Tracy-Widom 
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Preliminary analysis: These analyzes sought 
evidence suggesting structural differences in biomarkers 
between participants in the dementia and non-dementia 
group. Figure 5 illustrates the comparison between 
the partial correlation of the two groups using a heat 
map visualization. There seems to be some negative 
correlation among some variables in the dementia 
group, which does not appear in the non-dementia 
group.

Another possible way to visualize the structural 
differences in the partial covariance matrices between 
the non- dementia group and the dementia group is by 
comparison of the scree plots (Figure 6). In both groups 
the eigen values of the first two components appear to 
be very similar, while there exists minor differences in 
the latter components.

Results of the inferential procedures: The previous 
sections considered inflammatory biomarkers and the 
difference in the structure of the covariance between 
the two groups by generating a simple covariance 
matrix and the partial covariance matrix. The simple 
covariance matrix was calculated directly from the log-

transformed biomarkers, while the partial covariance 
was calculated from the residuals after adjusting for 
the covariates. The results from analyzing the simple 
covariance would show whether there is a difference 
in covariance structure by itself, while the results from 
the partial covariance would show whether differences 
exist after adjusting for confounding factors.

The results show significant differences between the 
co-variance matrices in all cases except for the PCGC 
method on the simple covariance matrix (Table 10). Given 
the lackluster performance of PCGC in the simulations, 
the results of Tracy-Widom and Forkman’s test seem 
more reasonable. Therefore, it appears that there is a 
significant difference between the simple covariance 
and partial covariance of the log-adjusted biomarkers 
of the dementia group and the non-dementia groups. 
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Figure 5: Heatmap comparison.
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Figure 6: Scree-plot comparison.

Table 10: Data analysis, test statistics and P-values.

Simple Covariance Partial Covariance
PCGC 0.038 (0.64) 1.531 (0.01)

PBoot 0.947 (< 0.001) 0.953 (< 0.001)

Tracy-Widom 86.333 (< 0.001) 91.248 (< 0.001)
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determine which variables are different. Furthermore, 
the data was not collected from the same period. 
Interleukin-18 (Il18) samples were measured from 
blood from the 7th health exam (1998- 2001), while the 
rest were measured from health exam 8 (2005-2008).

Furthermore, the covariate information came mainly 
from exam 8 values; exam 7 values were used only when 
exam 8 values are unavailable. These compromises could 
introduce additional noise that could not be controlled 
in order to maximize the number of biomarkers in the 
study. Furthermore, there was an imbalance in sample 
sizes between the non-dementia group (n = 2536) 
and the dementia group (n = 168). Imbalanced data 
introduces bias [35] and ’wastes’ the extra samples in 
the non-dementia group. Future research is warranted 
to determine theoretical justifications for the Forkman’s 
test and Tracy-Widom methods using more balanced 
study groups.

In summary, Forkman’s test and Tracy-Widom 
methods are valid candidates for testing the significance 
of co- variance differences among standardized variables 
between groups, while the PCGC method is unreliable. 
Forkman’s test appears to have suitable Type I error 
estimates and strong power, while Tracy-Widom has 
conservative Type I error estimates but good power. 
In a clinical research application, data analysis showed 
significant differences in protein biomarker covariance 
matrices between the non-dementia group and the 
dementia group. This result is expected, given the 
literature on inflammatory biomarkers as a risk factor 
for dementia. Utilizing new and cutting-edge analytic 
approaches can further enrich the understanding of 
inflammatory biomarkers and their effects on dementia.
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Partial covariance appears to be more significant than 
simple covariance, which gives credence to covariate 
adjustments. This result explicitly reveals differences in 
the dementia groups that the preliminary visualizations 
did not clearly show.

Discussion
Despite extensive research on individual risk 

factors for dementia, there are far fewer studies that 
consider how these risk factors synergistically influence 
dementia. Current solutions to multivariable problems 
(such as machine learning) are complex given the large 
and varied data involved. On the other hand, statistical 
methods based on comparison of covariance matrices 
have been applied to a variety of problems, but not to 
biological risk factors of dementia. The purpose of this 
study was to test simpler covariance-based models 
that summarize multiple variables into a single test and 
score by efficiently examining the combined effect of 
many variables.

Three methods were investigated that combined 
the covariance matrices of two groups and then were 
summarized as a test statistic to test whether the 
matrices are structurally different. The validity of these 
methods via simulation, Type I error, and power analysis 
suggests that the Forkman’s test method is effective in 
identifying both significant and insignificant differences 
between covariance matrices. By comparison, the PCGC 
method has low power and was unreliable in some 
cases. The Tracy-Widom method was conservative 
in estimating the Type I error but was accurate in 
estimating power. However, for non-normal distributed 
data, there were conflicting effects of variable variances 
and inter-variable covariances using the Tracy-Widom 
Statistics. These results indicate that the Forkman’s test 
and Tracy-Widom methods were reliable methods for 
analyzing approximately normally distributed data.

The application of these methods to the clinical 
question of inflammatory biomarkers and their 
relationship with dementia risk found that these tests 
detected significant differences in the covariance 
structure of biomarkers between the dementia group 
and the non-dementia group. This result reinforces the 
established consensus that inflammation biomarkers are 
indeed risk factors for dementia. Furthermore, the 11 
biomarkers analyzed in this paper can act as a collective 
risk factor for dementia. The collective covariance effect 
is certainly significant for dementia regardless of the 
significance of the individual mean effects.

There are limitations both in the methods and with 
the data. These methods are not well tested and thus 
are not established theoretically, which leads to a 
reliance on the use of simulation to assess the validity of 
these methods. Although these methods did determine 
the existence of a significant difference between two 
groups collectively among biomarkers, they could not 
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