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Appendix - Mathematical Proof of Amplitude Distribution Theorem

Let X, and X, be iid N (0,1)random variables for s =0....,N —land £ =0....,N -1

In particular we have:

Cov (x,,x,)= E[x,,x,]= & 1

55t

Where

S =

8,t

{ I ifs equals t, and
otherwise.

We also have

Var (xs)= E[xf] and Var (x,)= E[xsz] 2

And, given a constant c,

c-x, ~N(0,¢)and c-x, ~N(0,c) 3)

Under the linearity of expectations, we proceed as follows:
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where we used Eq. (1) in the last step. One way to interpret the Kronecker delta is that, for fixed ¢ if we sum on s over 0,..., N —1 the only
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value of s where the summand is not 0 is S =7 . Therefore, we set s = t in the summand, and remove the s - summation. This gives

N-IN-1 N-

5 (27r/N)tk —1 271'/N 27r/N th —1 271'/N)l
220.e Yo
t=0 s=0 =0

By taking out the power t and combining exponentials, we have ¢

. . . t
i Nk girINE (ef'z”(k”)”v ) . Using this in out formula, we get

N-1 N-1
Ze i(27/N)tk 7, (27/N)t ( ~i2x(k+l) /N)
=0 =0

(—i27(k+1)/N)

Now, if k+1 satisfy e = I then,

E[Z 7 ] (e i2m(k+1) /N) th @

t

2

Il
(=]

On the other hand if £ + / isnota multiple of N, we use the Geometric sum formula:

- 1
—X
I+ x+-+x"" = z
pry I-x
Using this with x = e —i2n(k+l)/N we have
N
_( i2a(k+1)/N )
- —127r k+l /N _ 1 (e _ O
- 1 e—iZfr(kJrl)/N -
t=0 -
In the last step we used the fact that for any integer, a multiple of e ?"* =1.We obtained two different cases:
wlz 72124V ife > V=] qe 1= N—k
[ ] - 0 otherwise
As shorthand we may use the Kronecker delta function again to get:
E[Z,.Z,]=N-6,,., 5)

Notice the original formula takes the form
N-1 ‘ N-1 2kt N-1 27k
_ INk T Tkt .
Z, =Y xe “2riN) :thcos( j—zz s1n( =X, —iY,
=0 1=0

We also have the similar formula for/ : Z, = X, —iY, . Therefore, what we have proved is a formula for

E[Z,.Z,]=E[(X, -iY,)(X,-iY) |=E[X.X,]-iE[X, Y] -E[Y,X ]-E[Y,Y,]
Combining this with (5) gives

B[X, X |-B[XY]-B[YX ]|-B[VY]=N-5 ©
Using the fact that cosine is an even function and sine is an odd function we have

X, , =X, adY,  =-Y, @
Therefore, in (6), replacing & by N — k , we obtain

E[X. X, ]-iE[XY]+E[Y X ]|+E[YY]=N-5, ®

Note that in the Kronecker delta function we replaced N —k by k because N — (N - k) = k. similarly, changing (6) by replacing [ with
N —1 in the expectations and considering (7), we get

E[X X |+iE[XY]-E[YX ]|+E[YY]=N-5, ©

Finally, replacing kK by N —k and /by N —/ in the expectations of (6), we obtain
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E[X, X, |+E[XY]+E[YX,]-E[YY]=N-6 (10)
Adding equations (6) and (10) and dividing by 4, we get
1
E[X,X,] =§N(5,,k +6,51) (11)
Adding just equations (6) and (9), we obtain
2E[X, X, ]+ 2E Y, X,]=N(5,+6,,)

But then using (11), we can see that this implies

E [YkX ,] =0 (12)
This equation is true for all £ and [ It is also true if we switch the role of k and L Therefore,

E[X,Y]=0 (13)
Finally, substituting (11), (12) and (13) into (6), we get

1

EN(@,k +5I,N—k)_0'i_0'i_E[YkY;]:N'é‘l,N—k

Solving this equation, we obtain

1
E [Yle] = EN(5l,k + é‘l,N—k) (14)

Now note that (X,,X,,...,X,_,%,Y,,....Y,_,) are all jointly Normal random variables, and all have mean zero. Therefore everything

about their joint probability density function may be deduced from the variances and covariances (between the marginal random variables). In
particular, for jointly Normal random variables, having all zero covariances means that the random variables are independent.

In (13), we see that

Cov (X,.Y)=E[X,.Y]-E[X,]E[Y]=0.

Thus any X . and Yl are independent, for each choice of kand ] (including k£ = [). Also, note that for Normal random variables, pairwise
independence implies full independence for a family of three or more variables. Using (11) and (14) to calculate variances and covariances
between pairs of X 'sand pairs of Y 's, and recalling equality (2) and (3), we deduce that the family (X ,Y,X,,Y,,..., Xy, Yy, ) areall

iid, V'(0.N)because in (11), setting k =/ = 0 we obtainE[X, - X, ] :%N(&o_0 +8,,)- N is interpreted as 0 in this context because X, only goes
up to ¢t =0,..., N —1and using modular arithmetic(Q = v . Also Var(YO) =0, as one can see by using (14). That is why we start at t =1 in (15).
Here [ N /2] equals the smallest integer # satisfyingn > N / 2 . Therefore, we can see that

(N/Z)—l if N is even,
[N/2]—1= (N—l)/Z if N is odd.

It is the largest integer m such thatm < N /2. The reason for making this restriction is thatif 1 <k <mand 1</ < mthenk+/<2m<N
, which means that S,y =0 for each pair from this set. So then we obtain

1
E[Xsz]:EN'ék,l =E [Y;Yl]

We note that the importance of stopping at m < N /2 ,and taking k& > 0 and / > Ohas been observed before. It is referred to as the Nyquist
limit. It is natural not to take more than this many random variables, or else one starts to repeat some of the previous random variables in
various ways. Also, at k =(or at k= N /2, the imaginary part becomes 0 and the real part gets a different variance to compensate, and we do
not want to include these special cases.

We have now established that (X,,Y,X,.Y,,....X,.Y,) are iid A (0,N/2)random variables for A'(0,N'/2). In order to standardize the
random variables, we define

)A(k:\/sz and }A’k :\/EY;{ (16)
N N

Then [)A( I,f/ 1,)}' z,f’ 2,.. .,)A( m,IA/ mj are iid NV (0,1) random variables. Any subset of these random variables will also be a set of iid standard

normal NV (0,1) random variables. In particular, taking any R <(N/2)and taking any set of size Ras a subset of {1,...,m} wehave§ ={k,,...,k,}
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, for some cxoice of k,...,k, where we may assume 1<k, <k, <...<k, <N /2 (eliminating unnecessary permutations). We define

r=1

R A2 A2
O, :Z[Xk,,"r‘Ykr\J (17)

2
Because the sum of k squared Normal random variables are distributed £ with k degrees of freedom, the random variable O isa Gamma
(2R,2) - distributed random variable. We note that we can start from (17) and use (16) to rewrite

2 e 2 2
Q== (X} +17) (18)
N — r r ‘

Then N/2-Q,has a Gamma (k =R,0=N) distribution. Another well established fact is that the square root of a Gamma-distributed
random variable, say O, has a Nakagami distribution if we set is shape parameter 7 of the Nakagami distribution equal to the shape

parameter k of the Gamma distribution and the spread parameter Q of the Nakagami distribution equal to the shape parameter times the

spread parameter, j x g,of a Gamma kxg distribution. Therefore, by defining

R

Ty= (X0 +72),

=1

We have that 7}, is a Nakagami random variable with parameters m =1and Q= NR . Usually, one will choose to take just one harmonic,
which is R =1but if one takes - for example - two or three harmonics (R =2 or3) then this theorem will provide a proper null hypothesis

distribution assuming a white noise MRI signal to which we statistically compare our observed data.
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