
International Journal of

Clinical Biostatistics and Biometrics
Research Article: Open Access

C l i n M e d
International Library

Citation: Frölich MA, Jung P, Starr S (2015) Target Frequency Analysis of functional MRI 
Data. Int J Clin Biostat Biom 1:007
Received: September 11, 2015: Accepted: October 31, 2015: Published: November 02, 2015
Copyright: © 2015 Frölich MA. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

Frölich et al. Int J Clin Biostat Biom 2015, 1:2

Target Frequency Analysis of functional MRI Data
Michael A. Frölich1*, Paul Jung2 and Shannon Starr2

1Professor, Department of Anesthesiology, University of Alabama at Birmingham, USA
2Associate Professor, Department of Mathematics, University of Alabama at Birmingham, USA

*Corresponding author: Michael A. Frolich, Department of Anesthesiology, University of Alabama at Birmingham, 
619 South 19th Street, Birmingham, AL 35249-6810, USA, Tel:  (205) 975-0145, Fax: (205) 975-0145, E-mail: 
froelich@uab.edu

Appendix – Mathematical Proof of Amplitude Distribution Theorem
Let sx  and tx be ( ) 0,1iid N random variables for 0 ., 1s N= … − and 0 ., 1t N= … −
In particular we have: 

Cov ( ), s tx x =  [ ] , s tx x = ,s tδ (1)

Where

,

 1 
  0s tδ


= 



if s equals t, and

otherwise.

We also have 

Var ( )sx = 2 sx     and  Var ( ) sx =  2 sx   (2)

And, given a constant c,

( ) ~ 0,sc x N c⋅ and  ( ) ~ 0,tc x N c⋅ (3)

Under the linearity of expectations, we proceed as follows:
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where we used Eq. (1) in the last step. One way to interpret the Kronecker delta is that, for fixed t if we sum on s over 0, , 1N… −  the only 
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value of s where the summand is not 0 is   s t= . Therefore, we set s = t in the summand, and remove the s - summation. This gives
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By taking out the power t and combining exponentials, we have ( ) ( ) ( )( )2 / 2 / 2 / 

ti N tk i N tl i k l Ne e eπ π π− − − += . Using this in out formula, we get
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Now, if   k l+ satisfy ( 2 ( )/ ) 1i k l Ne π− + = then, 
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On the other hand if k l+ is not a multiple of N, we use the Geometric sum formula:
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Using this with ( )2 /i k l Nx e π− += , we have
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In the last step we used the fact that for any integer, a multiple of 2 1i ae π− ⋅ = . We obtained two different cases:

[ ]   
 , 

  0k l
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
( )2 /if =1, i.e. i k l Ne l N kπ− + = −

otherwise

As shorthand we may use the Kronecker delta function again to get:

[ ] , , k l l N kZ Z N δ −= ⋅ (5)

Notice the original formula takes the form
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We also have the similar formula for :  l l ll Z X iY= − . Therefore, what we have proved is a formula for

[ ] ( )( ) [ ] [ ] [ ] [ ]k l k l k l k l ,   X X i  X Y i  Y X  Y Yk l k k l lZ Z X iY X iY= − − = − − −       

Combining this with (5) gives

[ ] [ ] [ ] [ ] ,    k l k l k l k l l N kX X i X Y i Y X Y Y N δ −− − − = ⋅    (6)

Using the fact that cosine is an even function and sine is an odd function we have

N k kX X− = and N k kY Y− = − (7)

Therefore, in (6), replacing  k  by N k− , we obtain

[ ] [ ] [ ] [ ] ,    k l k l k l k l l kX X i X Y i Y X Y Y N δ− + + = ⋅    (8)

Note that in the Kronecker delta function we replaced N k− by k because ( ) .N N k k− − =  similarly, changing (6) by replacing l with 
N l−  in the expectations and considering (7), we get

[ ] [ ] [ ] [ ] ,    k l k l k l k l l kX X i X Y i Y X Y Y N δ+ − + = ⋅    (9)

Finally, replacing k by N k− and l by N l− in the expectations of (6), we obtain
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[ ] [ ] [ ] [ ] ,    k l k l k l k l l N kX X i X Y i Y X Y Y N δ −+ + − = ⋅    (10)

Adding equations (6) and (10) and dividing by 4, we get

[ ] ( ), ,
1 
2k l l k l N kX X N δ δ −= + (11)

Adding just equations (6) and (9), we obtain

[ ] [ ] ( ), ,2  2  k l k l l k l N kX X i Y X N δ δ −+ = + 
But then using (11), we can see that this implies

[ ] 0k lY X = (12)

This equation is true for all k and l. It is also true if we switch the role of k and l. Therefore,

[ ] 0k lX Y = (13)

Finally, substituting (11), (12) and (13) into (6), we get

( ) [ ], , ,
1 0 0   
2 l k l N k k l l N kN i i Y Y Nδ δ δ− −+ − ⋅ − ⋅ − = ⋅

Solving this equation, we obtain

[ ] ( ), ,
1 
2k l l k l N kY Y N δ δ −= + (14)

Now note that ( )0 1 1 0 1 1, , , , , , ,N NX X X Y Y Y− −… …  are all jointly Normal random variables, and all have mean zero. Therefore everything 
about their joint probability density function may be deduced from the variances and covariances (between the marginal random variables). In 
particular, for jointly Normal random variables, having all zero covariances means that the random variables are independent. 

In (13), we see that

Cov ( ), k lX Y = [ ] [ ] [ ] ,   0k l k lX Y X Y− =   ,

Thus any kX  and lY  are independent, for each choice of k and l (including k l= ). Also, note that for Normal random variables, pairwise 

independence implies full independence for a family of three or more variables. Using (11) and (14) to calculate variances and covariances 

between pairs of 'X s and pairs of 'Y s , and recalling equality (2) and (3), we deduce that the family 1 1 2 2 /2 1 /2 1( , , , , , , )N NX Y X Y X Y− −… are all 

iid, ( )0, N because in (11), setting 0k l= = we obtain [ ] ( )0 0 0,0 0,
1  
2 NX X N δ δ= +⋅ . N is interpreted as 0 in this context because tx  only goes 

up to 0, , 1t N= … − and using modular arithmetic 0 N≅ . Also Var ( )0 0Y = , as one can see by using (14). That is why we start at 1k = in (15).

Here [ ]  / 2N  equals the smallest integer n satisfying / 2n N≥ . Therefore, we can see that
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if N is even, 

if N is odd. 

It is the largest integer m such that / 2m N< . The reason for making this restriction is that if 1 k m≤ ≤ and 1 l m≤ ≤ then 2k l m N+ ≤ ≤
, which means that , 0l N kδ − =  for each pair from this set. So then we obtain

[ ] [ ],
1  
2k l k l k lX X N Y Yδ= ⋅ = 

We note that the importance of stopping at / 2m N<  and taking 0k > and 0l > has been observed before. It is referred to as the Nyquist 
limit. It is natural not to take more than this many random variables, or else one starts to repeat some of the previous random variables in 
various ways. Also, at  0k = or at / 2,k N= the imaginary part becomes 0 and the real part gets a different variance to compensate, and we do 
not want to include these special cases.

We have now established that ( )1 1 2 2, , , , , ,m mX Y X Y X Y…  are iid ( )0, / 2N random variables for ( )0, / 2N . In order to standardize the 
random variables, we define

2
k kX X

N

∧

=  and  2
k kY Y

N

∧

=
(16)

Then 1 1 2 2, , , , , ,m mX Y X Y X Y
∧ ∧ ∧ ∧ ∧ ∧ … 

 
 are iid ( )0,1 random variables. Any subset of these random variables will also be a set of iid standard 

normal ( )0,1 random variables. In particular, taking any ( )/ 2R N< and taking any set of size R as a subset of { }1, , m…  we have { }1, , RS k k= …
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, for some cxoice of 1, , Rk k…  where we may assume 1 21 / 2Rk k k N< < < … < <  (eliminating unnecessary permutations). We define
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∑ (17)

Because the sum of k  squared Normal random variables are distributed 
2χ  with k degrees of freedom, the random variable RQ  is a Gamma 

( )2 , 2R  - distributed random variable. We note that we can start from (17) and use (16) to rewrite

( )2 2
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r r
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R k k
r
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N =

= +∑
.

(18)

Then / 2 RN Q⋅ has a Gamma ( ),k R Nθ= =  distribution. Another well established fact is that the square root of a Gamma-distributed 

random variable, say  ,RQ  has a Nakagami distribution if we set is shape parameter   m of the Nakagami distribution equal to the shape 

parameter k  of the Gamma distribution and the spread parameter Ω of the Nakagami distribution equal to the shape parameter times the 

spread parameter, k θ× , of a Gamma k θ×  distribution. Therefore, by defining

( )2 2

1
r r

R

R k k
r

T X Y
=

= +∑ ,

We have that RT  is a Nakagami random variable with parameters 1m = and NRΩ = . Usually, one will choose to take just one harmonic, 

which is 1R = but if one takes – for example - two or three harmonics ( 2R =  or 3 ) then this theorem will provide a proper null hypothesis 

distribution assuming a white noise MRI signal to which we statistically compare our observed data.
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