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Moreover, in rodents, central catecholamines stimu-
late ACTH release, effect mediated via secretion of CRH 
(for a review see [5], while serotonin (5-HT) increases 
both ACTH and CRF release and facilitates the capacity 
of AVP to release ACTH in stressful situations [6-9].

Voltammetry and in particular differential pulse vol-
tammetry (DPV) is an electrochemical technique that 
used in association with specifically treated carbon fi-
ber microelectrodes (µCFE) allows the detection of cat-
echolamines, serotonin and peptides simultaneously in 
discrete brain regions of anaesthetized as well as con-
scious freely moving rats [10,11].

This methodology can therefore be combined with 
behavioral models of stress-anxiety-depression such as 
forced immobilization that mingles emotive and physi-
cal stress [12] and for a review see [13], or forced swim-
ming test [14,15] or fear conditioning [16,17].

This methodological combination will allow moni-
toring selective changes of the monoamine neurotrans-
mitters in real time and in the specific cerebral region 
selected within animals submitted to such aversive con-
ditions. In particular, limbic system components such as 
amygdala, hypothalamus and regions reciprocally con-
nected with the amygdala such as the hippocampus, 
are involved in emotional responses to 	 aversive stim-
uli [18-20]. Therefore these regions could be studied. 
In particular, amygdala could be the prior target as it 
has been reported that 25% of the neurons of this area 
contains CRF [21,22].
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Introduction

Corticotropin releasing factor (CRF) and arginine va-
sopressin (AVP), both of which are synthesized in the 
hypothalamus, stimulate the release of adrenocorti-
cotropin hormone (ACTH) from the anterior hypophysis 
in conditions of stress, anxiety [1-4].
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Additionally, it is reported that the locus coeruleus 
(LC) has been involved in several physiological and be-
havioral activities such as emotion, vigilance, memory, 
and adaptive responses to stress [23]. Stressful stimu-
li trigger LC neurons, modify their electrophysiological 
activity, and induce release of catecholamines [24]. LC 
contains the largest amount of catecholaminergic cells 
in the brain and innervates large sections of the neu-
roaxis [25,26]. Its stimulation determines ACTH release 
and anxiogenic-like behaviors among other stress-as-
sociated responses (for a review see [27]). Interactions 
between CRF and central catecholamines has been al-
ready reported as well as that administration of CRF in 
CNS alters activity of LC neurons and catecholaminergic 
metabolism in terminal areas and stimulates catechol-
amine release in hypothalamus and prefrontal cortex 
(for a review see [27]). Such an altered function of LC 
neurons has been implicated in the pathophysiology of 
affective and stress-related disorders [4,28].

Extensive rodent and human research has shown that 
the hippocampus is highly sensitive to stress and that pro-
longed exposure to stress leads to loss of neurons, particu-
larly in the hippocampus [29]. The hippocampus also plays 
an important role in the terminating HPA axis responses 
to stress [30]. Hippocampal lesions increase parvocellular 
CRF and AVP expression, prolong ACTH and corticosterone 
release in response to stress [31] and the hippocampal 
outflow to the hypothalamus originates in the ventricle 
subiculum and CA1 regions of the hippocampus (CA1) i.e. 
terminal region of LC [30]. Furthermore, involvement of 
the 5-HT in mediating stress effects on the hippocampus is 
proposed by data showing that stress elevates 5-HT levels 
in the hippocampus [32].

Based on the previous studies indicating the locus 
coeruleus and the hippocampus as among the most 
interested brain regions by stressful situations, prelim-
inary studies have been performed in these two struc-
tures. The electrochemical technique of voltammetry 
used in association with specifically treated carbon fi-
ber microelectrodes (µCFE) has been applied for the in 
vivo detection of catecholaminergic and serotoninergic 
levels, simultaneously. Concomitant cell firing measure-
ments have been performed in the LC. This association 
of electrochemical and electrophysiological techniques 
can be combined with behavioral models of stress-anx-
iety-depression [33].

Preliminary data are presented as well as experimen-
tal proposals so that to analyze the feasibility to set an 
experimental behavioral-neurochemical in vivo model of 
stress-anxiety-depression. In particular, to verify a direct 
relationship between 5-HT and ACTH systems: With the 
aim to the possible formulation of new strategies of phar-
macological treatment(s) of such pathological state(s).

Materials and Methods

Differential Pulse Voltammetric (DPV) and electrophys-
iology were applied in vivo by means of µCFE prepared as 
described earlier using carbon fiber with diameter 30 µm. 
They were first electrically treated, i.e. a 70 Hz triangular 
wave form was applied in three stages: 0 to +2.2 V for 8 
s, 0 to +1.8 V for 10 s, and 0 to +1.2 V for 10 s. Two suc-
cessive, continuous potentials were then applied: -1.0 and 
+0.5 V, for 4 s each. This electrochemical treatment was 
carried out with the auxiliary, reference, and working elec-
trodes immersed in 0.1 M Phosphate-Buffered Saline (PBS) 
at pH 7.4. Then the tip of the electrodes was coated with 

electrophysiologic unit

potentiostat
microCFE
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Figure 1: Scheme of coupled voltammetric (potentiostat/galvanostat) and electrophysiological (electrophysiologic unit) in-
struments for concomitant DPV monitoring of catechols levels and electrophysiological measurements of cell firing. 
HIPP: Hippocampus; LC: Locus coeruleus; A: Auxiliary; R: Reference; microCFE: The three electrodes for DPV scans i.e. 
in hippocampus; microCFE in LC and G: Ground: The two electrodes for electrophysiological measurements i.e. in LC. 
Electrodes A, R and G are made with silver wire (see Crespi, et al. [34]).

https://doi.org/10.23937/2469-5866/1410022


ISSN: 2469-5866DOI: 10.23937/2469-5866/1410022

Crespi. Int J Brain Disord Treat 2018, 4:022 • Page 3 of 7 •

In particular, one DPV micro-biosensor was stereo-
tactically inserted in the locus coeruleus (LC) i.e. cell 
body region, then, in the same animal, a second µCFE 
was implanted within the hippocampus (CA1) i.e. termi-
nal region of LC, following coordinates from Paxinos and 
Watson [36] (See Figure 1).

Both microsensors were previously chemically treat-
ed with Nafion so that selective, simultaneous DPV 
measurements of catechols (noradrenaline, dopamine) 
and serotonin (5-HT) could be performed [11,33,35].

Successively, in vivo differential pulse voltammetric 
(DPV) measures of neurotransmitters as well as electro-
physiologic detection of cell firing have been performed 
as described earlier [11,33,35].

Preliminary Data

In these animals, intracerebroventricular (i.c.v.) infu-
sion of CRF (1 µg) or aCSF (4 µl artificial cerebral spinal flu-
id: Control rats) determined the results shown in Figure 2, 

Nafion so that selective, simultaneous measurements of 
catechols (noradrenaline, dopamine) and serotonin (5-HT) 
could be performed [34,35].

In Vivo Experiments

Male adult rats (Wistars, 250-280 g) were supplied 
by Charles-River (Italy) and kept in temperature- and 
humidity-controlled rooms (22 °C, 50%). All animal pro-
cedures were carried out in accordance with the Italian 
law (Legislative Decree no. 116, 1992) which acknowl-
edges the European Directive 86/609/EEC and were 
fully compliant with the GlaxoSmithKline policy on the 
care and use of laboratory animals and codes of prac-
tice. Furthermore, all efforts were made to minimize the 
number of animals and their suffering.

The animals were anaesthetized (chloral hydrate, 500 
mg/kg i.p.), set in a stereotaxic frame and prepared for 
concomitant differential pulse voltammetric (DPV) and 
electrophisiologic analysis as described earlier [33,35].
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Figure 2: Electrophysiology (cell firing) in LC of rats treated (arrow) with CRF (■ 1 µg/4 µl, n = 6) or with aCSF 4 µl (□ control 
rats, n = 6) Data are expressed in % of control, **p < 0.001, *p < 0.05.
Stats: Effect of group: F(1,6) = 20.1, p = 0.004; Effect of time: F(12,7) = 11.9, p = 0.001; Group by time interaction: F(12,7) = 
14.1, p = 0.001.
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Figure 3: DPV levels of catechols in hippocampus CA1 of rats treated (arrow) with CRF (■ 1 µg/4 µl, n = 6) or with aCSF 4 µl 
(□ control rats, n = 6) Data are expressed in % of control *p < 0.05.
Stats: Effect on time F(4,2) = 6.1, p = 0.002; Effect on group F(1,6) = 4.459, p = 0.05 and group by time interaction F(4,2) = 
5.6, p = 0.002.
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performed using the Bonferroni (Dunn’s) test. Then, the 
results were presented as % of control values, mean ± 
s.e.m., *p < 0.05, **p < 0.001.

Proposed Combined Behavioral - Electrochem-
ical/Electrophysiological Tests

Various groups of rats (n = 5 each group) can be pre-
pared for concomitant voltammetric measurements 
and electrophysiological recordings and then exposed 
to forced swimming test (FST) as already described [33] 
in order to monitor the influence of such stressful con-
ditions upon monoaminergic activities.

FST is a behavioral test that predicts the clinical effi-
cacy of many types of antidepressant drugs [14].

First test: Comparison between naive and “behav-
iorally treated” rats

By means of the same microbiosensor (µCFE) used 
for voltammetric measurements electrophysiological 
recordings can be also performed [33]. Thus, parallel 
double probing analysis of amine neurotransmitter ac-

Figure 3 and Figure 4. In particular, these data show that 
CRF significantly increases cell firing in LC (Figure 2) as well 
as catechol levels in CA1 (Figure 3). In contrast, no signifi-
cant changes have been observed in 5-HT levels (Figure 4).

The present data on modification of catechol activity 
following such treatment are in accord with reports indi-
cating a direct effect of intracerebroventricularly infused 
catecholamines, acting via alpha1 and/or beta-receptors, 
on induction of stress-like ACTH surges in rats [27,37]. 
The preliminary DPV data obtained in LC indicated again 
changes in catechol levels but no significant changes in 
5-HT levels (Figure 5 and Figure 6). In contrast, other work 
has shown a role of LC and serotonin in mediating the ef-
fect of exposure to stressors [38]. The discrepancy could 
be related to the different methodology applied, i.e. push 
pull canulae, with possible blood contamination of the su-
perfusate collected, however, further studies, as proposed 
hereafter will help to elucidate that divergence.

Statistical Analysis

Row data were subjected to ANOVA, with compari-
son between “control” (vehicle) and “treatment” values 
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Figure 4: DPV levels of serotonin (5-HT) in hippocampus CA1 of rats treated (arrow) with CRF (■ 1 µg/4 µl, n = 6) or with 
aCSF 4 µl (□ control rats, n = 5) Data are expressed in % of control.
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Figure 5: DPV levels of catechols in LC of rats treated (arrow) with CRF (■ 1 µg/4 µl, n = 4) or with aCSF 4 µl (□ control rats, 
n = 6) Data are expressed in % of control *p < 0.05.
Stats: Effect of group: F(1,20) = 4.6, p = 0.004; Effect on time: F(5,1) = 16.8, p = 0.0001; Group by time interaction: F(5,1) = 
9.2, p = 0.0001).
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the electrochemical and electrophysiological outcome 
following behavioral or pharmacological treatments in 
naïve versus rats submitted to stress-anxiety-depres-
sion would clarify the role of CRF (and ACTH) as the pu-
tative endogenous responsible of a stress-anxiety-de-
pressive state.

Possible Application

This experimental behavioral-neurochemical in vivo 
model will permit to verify the efficacy of CRF antag-
onists upon behavioral responses and electrochem-
ical-electrophysiological parameters, data that will 
underline the efficacy of such compounds within the 
stress-anxiety-depressive state. Briefly, rats submitted 
to behavioral model(s) of stress-anxiety-depression or/
and rats treated with CRF (isoproterenol, ACTH) will be 
previously treated with CRF antagonists. Then concom-
itant behavioral and neurochemical activities will be 
monitored in real time.

Furthermore, the following (among other) additional 
evidence from literature are underlying the direct rela-
tionship between 5-HT and ACTH systems:

•	 The 5-HT1A receptor agonist 5-OH-DPAT as well as 
the 5-HT2 receptor agonist DOB increase plasma 
ACTH (and corticosterone). DOB is probably acting 
via CRF as pretreatment with CRF antagonist (al-
pha-helical CRF9-41) significantly attenuates the 
ACTH response to DOB [44-46].

•	 5-HT depleters (i.e. 5,7-DHT, PCPA) while reducing 5-HT 
levels, also result in decreased levels of ACTH [47-49].

The validity of animal’s models of human mental dis-
orders is generally evaluated by a set of conditions and 
chronic stress is among those showing the main validity 
in rats (for a review see [50]). In particular FST appears 
to be a useful approach to study in rodents (positive) in-
fluence of drugs on clinical treatment of major depres-
sion [51].

Thus, the proposed experimental behavioural-neu-
rochemical in vivo model in combination of pharma-

tivities and firing levels could be monitored in the amyg-
dala of naïve control (n = 5) versus “FST behaviorally 
treated” rats (n = 5). Similar studies could be performed 
in the Raphe Dorsalis Nucleus (RDN), the richest brain 
region of serotonin cells and presenting clear intercon-
nections with the amygdala [39,40]. This further study 
performed in five control rats versus 5 “FST rats” would 
allow to specifically analyzing the serotonergic system 
at the level of cell bodies (RDN) as well as at the level of 
synaptic cleft (amygdala). The reduced activity of such 
system in patients with unipolar depression is indeed 
well known [41,42].

Second test: Treatment with CRF, or AVP or ACTH

In further four groups of rats prepared as above for 
parallel double probing analysis of amine neurotrans-
mitter activities and firing levels in the amygdala and 
in RDN and submitted to FST the following treatments 
could be performed:

i) Vehicle (aCSF 4 µl, control rats, n = 5), ii) CRF (1 µg, 
n = 5), or iii) AVP (1 µg, n = 5), or iiii) ACTH (1 µg, n = 5), 
(or isoproterenol: Compound that releases ACTH [43]).

The data gathered from these two set of experi-
ments tests will allow analyzing:

a)	 The influence of a behavioral test predictive of the 
clinical efficacy of many types of antidepressant 
drugs upon monoaminergic systems in discrete 
brain areas highly implicated in several physiological 
and behavioral activities such as emotion, vigilance, 
memory, and adaptive responses to stress.

b)	 The influence of the selective chemical treatments 
with compounds involved in the response to stress-
ful stimuli upon monoaminergic activities in rats sub-
mitted to stress-anxiety-depression.

Predictive Results

These studies will permit to verify the setting up of an 
experimental behavioural-neurochemical in vivo model 
of stress-anxiety-depression i.e. the concomitance of 
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Figure 6: DPV levels of serotonin in LC of rats treated with CRF (■ 1 µg/4 µl, n = 4) or with 4 µl aCSF (□ control rats, n = 6) 
Data are expressed in % of control.
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cological treatments aiming to these two systems (i.e. 
association of CRF receptor antagonists and 5-HT recep-
tor antagonists) could be useful in the understanding of 
their concomitant implication(s) within behavioral mod-
els of stress-anxiety-depression states and therefore 
possible formulation of new strategies of pharmacologi-
cal treatment(s) of such pathological state(s).
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