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eloid lineage cells [3]. Unlike other neuroinflammatory 
diseases, such as Multiple Sclerosis (MS), in which in-
filtrating T lymphocytes are key players in the Central 
Nervous System (CNS) inflammation, innate immune 
response-associated resident cells, including astrocytes 
and especially microglia, are crucial for the establish-
ment of AD neuroinflammatory parameters [4]. More-
over, inflammasomes are potent innate-associated sen-
sors producing proinflammatory mediators involved in 
many physiological and pathological events [5-7].

This review outlines the role of microglial cells in the 
CNS homeostasis as well as in AD pathogenesis. More-
over, this paper reviews aspects associated with inflam-
matory responses related to NLRP3 inflammasome ac-
tivity, specifically in microglial cells during AD.

Microglia

Microglia is hematopoietic derived cell related to 
innate immunity, which are phenotypically defined as 
CNS resident macrophages [8]. Among various microgli-
al functions, they play a crucial role in CNS surveillance, 
monitoring brain environment and eliminating unde-
sired substances, such as cell debris, through phagocy-
tosis, and maintaining CNS integrity [8]. Microglial cells 
are highly sensitive to changes in the CNS homeosta-
sis [8]. Another important role associated with this cell 
type is antigen presentation through Major Histocom-
patibility Complex (MHC) class I and II molecules, acti-
vating T lymphocytes and influencing adaptive immune 
response [9]. Additionally, microglia have a role in mod-
ulating synaptic activities through bidirectional com-
munication with neurons via distinct receptor types, in-
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Introduction

Alzheimer’s Disease (AD) is a disorder leading to de-
mentia, and is one of the greatest public health prob-
lems in the 21st century. AD affects more than 25 million 
individuals worldwide and projections indicate that AD 
incidence will significantly increase in coming years due 
to factors such as longer life expectancy and obesity [1]. 
AD presents multifactorial etiology resulting in progres-
sive cognitive impairment and memory loss [2]. Extra-
cellular deposits of β-Amyloid (Aβ) protein and intracel-
lular neurofibrillary tangles of hyperphosphorylated tau 
proteins are in the core of AD pathogenesis and induce 
senile plaque formation [2].

Inflammatory responses are another important as-
pect associated with AD and it is mainly related to my-
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cluding neurotransmitter, adrenergic and dopaminergic 
receptors [10]. Resting microglia express low levels of 
CD45, CD40, CD80, MHC I and II, among others. Howev-
er, after inflammatory stimulus, these cells significantly 
increase expression of these molecules, as well as their 
phagocytic capacity and may stimulate lymphocyte pro-
liferation [11]. Importantly, activated microglia also se-
crete several cytokines and chemokines, immunomodu-
lating other cell types [12,13].

NLRP3 Inflammasome

Microglial and other myeloid lineage cells express in-
nate immune response-related receptors [14-16]. Antigen 
recognition in innate immune response is mediated by 
pattern recognition receptors, such as NOD-Like Receptor 
Family Receptors (NLRs), which recognize Pathogen-Asso-
ciated Molecular Patterns (PAMPs) and Danger-Associated 
Molecular Patterns (DAMPs) [17]. Inserted in NLR family, 
inflammasomes are multi-protein complexes formed in 
the cytosolic compartment of immune cells after stimula-
tion by both PAMPs and DAMPs. The formation of these 
protein platforms results in caspase-1 activation and cleav-
age, as well as subsequent activation of proinflammatory 
cytokines, such as IL-18 and IL-1β [18,19].

Among inflammasomes, Nucleotide-binding domain 
and Leucine-Rich repeat Protein 3 (NLRP3) is the most 
well-studied component. While other inflammasome 
types recognize a limited number of DAMPs or PAMPs, 
a great variety of signals is able to activate NLRP3, high-
lighting its importance in the immune response against 
both endogenous and exogenous stimuli, and increas-
ing its clinical relevance [20]. The microbial stimuli that 
activate NLRP3 include bacterial RNA, hemozoin crystals 
derived from Plasmodium ssp, viral products, and many 
others. Endogenous stimuli such as ATP, urate, silica, 
amyloid protein and cholesterol are some examples of 
NLRP3 activators [21,22].

Activation of NLRP3 complex is thought to occur in 
two steps. In the first one, cognate ligands are recog-
nized by innate receptors, such as Toll Like Receptors 
(TLRs), resulting in translocation of nuclear factor κB (NF-
κB) to the nucleus and subsequent induction of nlrp3, 
pro-il-1β and pro-il-18 gene expression. In the second 

step, different PAMPs and DAMPs may induce NLRP3 
machinery oligomerization and activation with recruit-
ment and interaction of Apoptosis-associated Speck-
like protein containing a CARD (ASC) and procaspase-1, 
inducing caspase autocleavage and finally cytokine pro-
cessing [23]. Some pathways have been described as 
possible mechanisms for the second step. For example, 
potassium (K+) efflux is necessary during inflammasome 
assembly process. Studies have shown that blocking K+ 
efflux in cell culture inhibits NLRP3 activation after stim-
ulation with several agonists [24]. NLRP3 inflammasome 
activity is a potent inflammatory mechanism involved in 
the immune response against various microorganisms, 
such as Plasmodium spp and Toxoplasma gondii [25,26]. 
However, deregulated inflammasome activity may re-
sult in severe pathological processes due to strong in-
flammatory response.

Microglia, NLRP3 and Alzheimer

NLRP3 has been linked to pathogenic mechanisms in 
AD. Table 1 summarizes some important findings in an-
imal models and clinical studies. For example, there is 
an increased IL-18 level in AD brain patients [27]. More-
over, high levels of IL-1β in the brain induce tau pro-
tein hyperphosphorylation in animals [28]. In addition, 
IL-1β plays an important role in neuronal damage, since 
this cytokine induces the production of inflammatory 
factors such as NO (Nitric Oxide) and TNF-α (Tumor Ne-
crosis Factor α) and these molecules promote the trans-
formation of diffuse amyloid plaques into inflammatory 
plaques, resulting in cortical neuron damage and cere-
bral atrophy [29].

Studies have shown that NLRP3 activation may also 
play a role in the periphery during AD. Monocytes from 
patients with severe AD have significantly greater NLRP3 
activation compared to control groups [30]. Moreover, 
IL-1β levels are significantly increased in patients with 
early-onset AD [31]. In another study, Chen and co-
workers demonstrated that IL-18, IL-23 and IL-17 are 
increased in the serum of patients with AD compared to 
age-matched healthy controls [32].

Polymorphisms in nlrp3 and associated genes have 
been implicated in AD. Tan and coworkers demonstrate 

Table 1: Findings in animal models and clinical studies concerning NLRP3 activity in AD. 

Type of study Reference Findings
Animal model Heneka, et al. [37] NLRP3-/- and Caspase-1-/- mice are resistant to experimentally developed AD 

Griffin, et al. [28] IL-1β induces tau protein hyperphosphorylation
Gustin, et al. [42] Aβ stimuli activate NLRP3 specifically in microglia
Wu, et al. [45] Aβ protofibrils induce NLRP3 activation and IL-1β accumulation in microglia
Couturier, et al. [38] ASC-/- mice are resistant to experimentally developed AD

Clinical study Ojala, et al. [27] Increase of IL-18 in AD brain
Heneka, et al. [37] Increase of Caspase-1 in AD brain
Griffin, et al. [29] IL-1β is involved in neuronal damage
Saresella, et al. [30] NLRP3 is upregulated in monocytes of severe AD patients
Dursun, et al. [31] IL-1β is significantly increased in serum of early-onset AD patients
Chen, et al. [32] IL-18 is increased in serum of AD patients
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Oxidative damage has also been observed in AD pa-
tient samples. For example, in postmortem AD brain, 
there is an increased oxidative damage to DNA com-
pared with age-matched controls [49]. Oxidative dam-
age may modulate NLRP3 inflammasome activation. 
NLRP3 microglial neurotoxicity mediated by Aβ is asso-
ciated with Reactive Oxygen Species (ROS) and induces 
NADPH oxidase-induced ROS production [50]. Aβ pep-
tides induce NADPH oxidase complex activation and 
stimulate ROS production [51].

NLRP3 Pathway as a Target for AD Treatment

Because of the key role of NLRP3 pathway in AD, 
the development of therapeutic strategies targeting 
its cascade molecules, such as NLRP3, IL-1β, IL-18 and 
Caspase-1 seems highly attractive. Recently, Daniels 
and coworkers demonstrated that fenamate subclass 
of Nonsteroidal Anti-Inflammatory Drugs (NSAID) se-
lectively inhibit NLRP3 inflammasome formation in pe-
ripheral macrophages. In addition, this treatment pre-
vents memory deficit and neuroinflammation, besides 
decreasing NLRP3 activation in microglia from treated 
animals [52]. In another study, the treatment with me-
fenamic acid, another NSAID drug, reduced neural cell 
toxicity and protected rats from memory deficits [53]. 
Furthermore, ibuprofen specifically reduced pro-am-
yloidogenic α1 antichymotrypsin in vitro and in vivo 
by suppressing IL-1β [54]. These findings indicate that 
NSAID targeting NLRP3 pathway may be promising drug 
candidates for the treatment of patients with AD.

 Considering that NLRP3 complex formation can 
be activated by signals recognized by TLRs, receptor 
signaling pathways may be promising targets for AD 
treatment. However, the activation of these receptors 
may have positive or negative effects during AD. For ex-
ample, Jin and coworkers reported that TLR4 up regu-
lates proinflammatory cytokines, including IL-1β, and is 
involved in AD animal model progression [55]. On the 
other hand, another study demonstrated that TLR4, TLR 
2 and 9 have an important role in the clearance of Aβ 
deposits in animal brains [56].

Myd88 is a downstream intracellular adaptor of 
TLR2, 4 and IL-1R signaling, and activates NF-κb tran-
scription factor to activate proinflammatory cytokine 
genes. MyD88 deficiency may reduce Aβ load by en-
hancing the phagocytic capability of microglia [57]. In 
this line, blocking this molecule could be an interest-
ing target for the inhibition of inflammatory and toxic 
mechanisms in cells during AD. However, MyD88 seems 
a controversial target for AD. For example, Michaud and 
coworkers showed that MyD88-deficient mice present 
accelerated AD pathology and memory deficits [58]. It is 
noteworthy that this adapter is central in the signaling 
of several innate receptors and participates in the acti-
vation of many important inflammatory genes against 
pathogens. Thus, a therapeutic approach targeting 

that 5′-flanking rs2027432 polymorphism is strongly as-
sociated with late-onset AD in Chinese population [33]. 
In a meta-analysis study, Di Bona and coworkers show 
that the IL1B +3953 TT genotype is associated with in-
creased AD risk, while IL1B -511 TT genotype only in-
creases AD risk in Caucasians [34]. Furthermore, studies 
demonstrate that mutations in the IL-18 gene are also 
associated with the development of AD. For example, 
individuals carrying the CC genotype are at increased 
risk of developing AD [35]. Additionally, -607 C allele 
and -137 G allele were implicated in the risk of late-on-
set AD [36].

Heneka and coworkers recently reported significant 
increased caspase-1, both in AD human brain and an-
imals that experimentally developed AD [37]. In this 
study, APP/PS1/NLRP3-/- and APP/PS1/caspase-1-/- mice 
were highly protected from experimental development 
of AD, showing reduced neuroinflammation and de-
creased amyloid burden [37]. Furthermore, ASC-/- mice 
with AD model reduced amyloid aggregation, increased 
astrocyte phagocytosis and reduced memory deficits 
[38]. Together, these findings strongly suggest a role of 
NLRP3 inflammasomes in AD pathogenesis.

Regarding specific NLRP3 activity in CNS, recent lines 
of evidence suggest that inflammasome activities in 
the nervous tissue are important for the pathogenesis 
of neurodegenerative diseases, such as MS [39-41]. In 
AD, little is known about NLRP3 activation mechanisms 
in the CNS during the course of the disease. In experi-
ments using Aβ as NLRP3 stimulus as well as known in-
flammasome agonists such as ATP and nigericin, Gustin 
and coworkers indicated that NLRP3 machinery is only 
present in microglia, at least in some circumstances, 
and not in astrocytes, reinforcing the crucial role of mi-
croglial NLRP3 activity in CNS [42]. However, other stud-
ies disagree with these findings and suggest NLRP3 acti-
vation in astrocytes after CNS injury. Therefore, further 
studies are needed to address these issues [43,44].

In primary cultures of microglia, Aβ (1-42) protofi-
brils induce NLRP3 activation and finally IL-1β accumu-
lation downstream TLR/MyD88 pathway [45]. Addition-
ally, activated microglia surrounding senile plaques in 
AD brain present high IL-1β production in a Cathepsin 
B-dependent manner [46].

Autophagy is also an important mechanism for Aβ 
fibrils degradation and a disability in the autophagy ma-
chinery may result in ineffective clearance of misfold 
proteins, leading to formation of Aβ plaques or neuro-
fibrillary tangles [47]. In microglial cells, Aβ induces au-
tophagy through AMP-Activated Protein Kinase catalyt-
ic subunit Alpha 1 (PRKAA1) pathway, inducing autoph-
agy deregulation and NLRP3 inflammasome activation, 
which suggests that impaired autophagy activity in mi-
croglia from AD human brains induces NLRP3-mediated 
inflammation [48].
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MyD88 might not be beneficial, inducing susceptibility 
to infections.

In vitro studies demonstrate that caspase-1 inhibitor 
Z-YVAD-FMK inhibits the processing of IL-1β via NLRP3 
pathway, and attenuates microglial neurotoxicity. This 
finding suggests that caspase 1 inhibition or IL-1β neu-
tralization can improve the inflammatory process by mi-
croglia activation upon Aβ stimuli [50].

The role of IL-1β in AD appears to be more complex 
than previously thought. Shaftel, et al. demonstrated 
that IL-1β overexpression lead to robust neuroinflam-
mation in hippocampus of mice, characterized by acti-
vation of astrocytes and microfibers as well as secretion 
of proinflammatory cytokines. Surprisingly, in a mouse 
model of AD, 4 weeks of IL-1β overexpression for 4 
weeks protected animals to Aβ pathology [59].

Conclusion

Neuroinflammatory events have recently been re-
ported as additional parameters to the protein depo-
sition involved in the etiology and pathogenesis of AD. 
Innate immune molecules in microglia are important to 
outcome AD and may play a crucial role in the estab-
lishment of severe inflammation in CNS. Recent studies 
have indicated the NLRP3 activation pathway as a key 
immune component for the development of AD. Conse-
quently, NLRP3 could be an important target in thera-
pies for AD as well as other neurodegenerative and neu-
roinflammatory diseases. To date, no drugs have been 
developed to directly bind and inhibit NLRP3 activity. 
Because NLRP3 pathway may influence other import-
ant pathways in the immune system, the challenge is 
to establish a specific strategy to inhibit the activation 
of this inflammasome and consequently decrease the 
pathological effects of inflammation in the CNS without 
altering the functionality of resident cells, such as mi-
croglia, or leading the patient to greater vulnerability to 
infections due to immune deficiency.
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