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and constrained systems, as they lacked the flexibility 
of a human anesthesiologist to manage the demands of 
complex clinical environments.

Recent decades have been marked by the emergence 
of machine learning - a highly promising subfield 
within the domain of AI. Machine learning enables the 
computer to develop its function based on an ongoing 
data input, in a bottom-up fashion, without the need 
for explicit programming [1]. This self-teaching capacity 
allows the system to continuously adjust to the new 
incoming data, greatly enhancing its ability to function 
in complex and dynamic clinical settings. There are 
several sub-types of machine learning algorithms, 
many of which are making their way into the field of 
anesthesia [4].

Regardless of whether the underlying algorithm 
was manually developed or emerged from machine 
learning, robots in anesthesia can be categorized into 
two major classes - closed loop systems and clinical 
decision support (CDS) systems. Closed loop systems are 
based on the principle of feedback control, where the 
machine continuously measures the variable of interest, 
compares it to the desired target, and adjusts its output 
accordingly [3]. The ultimate advantage of closed loop 
systems is their capacity to consistently maintain the 
variable of interest near the target value. As such, these 
algorithms became the basis for the development of 
pharmacologic robots used in anesthetic delivery and 
hemodynamic management [5].

To execute their function, pharmacologic robots 
need to be capable of accurately assessing the depth 
of anesthesia and establishing a reliable control of 

As technology continues to evolve at an exponential 
rate, conversations about its innovative promise 
become increasingly prominent in every sphere of 
life. Medicine and the field of anesthesiology are no 
exceptions to this trend. Discussions surrounding the 
topic of artificial intelligence (AI) elicit a mixture of 
feelings, ranging from excitement about its potential 
for enhancing patient care to uncertainty about the 
impact it may have on the future of the profession 
among current and prospective practitioners alike [1]. 
Amidst these feelings of ambivalence, one aspect of 
technological advancement is nearly universally agreed 
upon – emerging innovations will inevitably impact the 
practice of anesthesiology.

Historically, anesthesiologists have established a 
track record of being the “early adopters” of technology. 
Beginning with the development of positive pressure 
mechanical ventilation in the 1951 during the polio 
epidemic in Copenhagen, the practice of anesthesia 
has been consistently shifting towards automation [2]. 
In addition to widespread emergence of ventilators, 
the 1950s were marked by the first attempts to 
automate anesthesia monitoring and administration 
[1]. The early anesthetic robots would measure the 
depth of anesthesia using data derived from the 
electroencephalograph (EEG) signal and respond with 
pre-programmed, rule-based feedback [1].

These devices were developed in a top-down manner, 
meaning they relied on pre-set algorithms to account 
for a multitude of clinical scenarios when executing 
their function [3]. This design limited the usefulness of 
human-programmed machines to the setting of simple 
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Predictive therapy represents a particularly exciting 
area of CDS applications. Recent years have been marked 
by the development of programs aimed at detecting 
prodromal features of hemodynamic instability. Hatib 
and colleagues have created an algorithm capable 
of analyzing arterial pressure waveforms to forecast 
hypotensive episodes up to 15 minutes in advance, with 
88% sensitivity and 87% specificity [7]. Other teams have 
utilized AI to predict the hypnotic4 and hemodynamic 
[8] impacts of anesthetic induction with greater 
accuracy compared to trained practitioners. These 
preliminary findings point to the immense promise 
of CDSs in enhancing the practice of risk assessment 
and minimizing complications across all perioperative 
stages.

Combining the cognitive support capabilities of CDS 
tools with precise control of therapy delivery of closed 
loop systems represents the ultimate step towards the 
development of autonomous anesthetic robots. As we 
continue to enhance our capacity to understand the 
relevant clinical targets and convey them to AI systems, 
we are moving closer to the establishment of devices 
that are capable of both - determining and providing the 
optimal medical therapy [5]. While unlikely to emerge 
in the near future, these fully autonomous systems 
represent an exciting frontier, capable of revolutionizing 
the practice of anesthesia.

In addition to offering a multitude of potential 
benefits, the ever-increasing computerization of 
the field of anesthesia poses several challenges that 
require careful consideration. Clinically, the key areas 
of concern outlined in the literature include disruption 
of workflow, clinician skill atrophy, and direct patient 
harm [5,9]. From an ethical standpoint, a major issue 
is the loss of patient confidentiality in the face of the 
need for clinical data for machine learning along with 
the inherent delay between emerging technology and 
the corresponding regulations [7,9]. This concern is not 
just theoretical - a 2014 FDA issued health IT report 
stated that the organization only aims to establish 
close oversight in a select few areas of CDS application, 
leaving many domains unsupervised [10]. With many 
questions unanswered, the process of ensuring optimal 
integration of AI into our healthcare system requires 
thorough planning and continuous reassessment.

At the present day, we remain long ways away from 
fully automating even the most routine anesthetic 
procedures. Majority of anesthetic robots and machine 
learning models have not been utilized outside of the 
research setting. It is not uncommon for devices to 
receive approval for commercial use but ultimately fail 
to achieve meaningful integration into clinical practice. 
Such was the case for Sedasys robot - a semiautonomous 
sedation system which promised to optimize propofol 
delivery during endoscopic procedures but was removed 
from the market due to poor sales in 2016 [1].

medication delivery rate. Anesthesia depth is typically 
monitored via parameters derived from the EEG tracings 
such as bispectral index classically, along with the more 
sophisticated measures in recent years [4]. Current 
research indicates that the area of anesthesia depth 
monitoring has significantly benefited from machine 
learning methods, with newer systems achieving the 
accuracy of 88-93% in discriminating between awake 
versus anesthetized patients - a notable improvement 
compared to the results yieded via traditional methods 
[4].

Target control infusion (TCI) systems represent 
the earliest approach towards the automation of 
medication administration. Predating the development 
of closed-loop systems, TCIs are programmed to target 
selected drug plasma concentration and manage the 
medication delivery rate based on the population 
models of pharmacokinetics [3]. These robots operate 
as open loop systems, meaning they receive no input 
from the patient, making their performance reliant 
on the accuracy of the underlying models. Newer 
pharmacologic robots are designed as closed loop 
systems which process the input from the patient and 
utilize it to modulate drug administration. In the recent 
decades these devices have demonstrated the capacity 
to outperform manual controls and TCIs at maintaining 
the target anesthesia depth with isoflurane and propofol 
respectively [5].

Early pharmacologic robots were designed as single 
input single output (SISO) systems, capable of monitoring 
a single variable of interest and administering one 
type of medication. Newer designs have emerged in 
the last decade, possessing the capabilities to monitor 
multiple patient parameters and deliver multiple 
medications - multiple input multiple output (MIMO) 
systems [5]. These devices were shown to outperform 
manual controls at maintaining the anesthesia depth 
within the target range [6]. Current MIMOs function on 
semi-autonomous basis, meaning they are intended to 
assist the clinician in managing anesthesia, rather than 
providing complete automation [1]. Development of 
fully autonomous systems would require establishment 
of cross-communication between different feedback 
loops so that patients’ vitals signs, hemodynamic 
parameters, and EEG-derived data are all integrated 
into a complete clinical picture.

The closed-loop design of pharmacologic robots 
makes them well suited for delivery of the medical 
therapy however, they do not have capabilities to 
determine the optimal treatment targets. In contrast, 
clinical decision support (CDS) systems are designed to 
assist clinicians in optimizing patient management by 
providing reminders, clinical assessments, and guideline-
based recommendations [5]. CDSs have made their way 
into a wide variety of clinical settings, from reminder 
systems for perioperative medication administration to 
assistance with ultrasound-guided procedures [4].
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Nonetheless, AI-assisted anesthesia is not a matter 
of fiction or a distant future possibility. The ever-
evolving capabilities of machine learning are paving 
new ways for the computerization of clinical practice. 
As anesthetic robots continue to evolve, many routine 
procedures would require less time and effort on behalf 
of the provider. This may enable anesthesiologists to 
attend to additional duties and further expand their 
scope of practice. Non-operating room services such as 
pain medicine, pre-operative clinics, and intensive care 
are ripe for further anesthesiology engagement.

Ultimately, the current state of AI does not allow 
for complete automation of the clinical duties in the 
foreseeable future, with technological developments 
being instead aimed at assisting anesthesiologists in 
their work. This points to several exciting possibilities 
where innovations broaden clinicians’ scope of practice 
rather than limiting it. For such desirable scenario to 
become a reality, physicians should take on an active 
role in guiding the development and integration of the 
emerging technologies into the clinical practice. By 
remaining mindful of the implications of the ongoing 
technological evolution and establishing a clear vision 
of the desired future of the profession, the community 
of anesthesiologists can utilize AI to shape the practice 
in a way that enhances physician capabilities, promotes 
evidence-based medicine, and most importantly - 
improves patient outcomes [11-14].
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