Does Esmolol Have an Effect on Erythrocyte Deformability in Rat Lower Limb Ischemia Reperfusion Injury?

Ali Doğan Dursun¹, Faruk Metin Çomu², Ayşegül Küçük³, Ülkü Sabuncu⁴, Nevriye Salman⁴, Timuçin Sabuncu⁵, Gülay Kip⁶, Ömer Kurtipek⁷ and Mustafa Arslan⁷*

¹Department of Physiology, Atilim University, Turkey
²Department of Physiology, Kirikkale University, Turkey
³Department of Physiology, Kutahya Health Science University, Turkey
⁴Health Science University, Yüksek İhtisas Training and Research Hospital, Anesthesiology and Reanimation Clinic, Turkey
⁵Department of Cardiovascular Surgery, Hacettepe University, Turkey
⁶Department of Pediatric Dentistry (Anesthesiology and Reanimation Specialist), Gazi University, Turkey
⁷Department of Anesthesiology and Reanimation, Gazi University, Turkey

*Corresponding author: Dr. Mustafa Arslan, Department of Anesthesiology and Reanimation, Gazi University, Medical Faculty, 06510, Ankara, Turkey, Tel: 90-312-202-67-39

Abstract

Objective: Ischemia reperfusion (I/R) injury is a common problem in vascular surgery. We aimed to investigate the effects of esmolol on erythrocyte deformability in rat lower limb I/R injury.

Materials and methods: Following Ethics Committee approval 24 rats were randomly divided into 4 groups, Control (Group C), Esmolol (Group E), Ischemia-reperfusion (Group I/R), I/R-Esmolol (Group I/R-E). In I/R group, atraumatic microvascular clamp was placed to infrarenal abdominal aorta. After 120 minutes from ischemia, the clamp was removed and reperfusion was performed for 120 minutes. Esmolol (200 μg/kg/min) was administered 30 minutes before the operation in I/R-Esmolol group. Erythrocytes were obtained from heparinized whole blood samples. A constant flow filtrometer was used to measure erythrocyte deformability and relative resistance was calculated.

Results: Ischemia reperfusion increased relative resistance when compared to control group (p < 0.0001). The erythrocyte deformability index was significantly higher in the I/R and I/R-E groups than in the control group (p < 0.000, p < 0.000, respectively). Esmolol application significantly decreased the erythrocyte deformability index according to the I/R group (p = 0.039).

Conclusions: It was found that the application of esmolol partially corrects the erythrocyte deformability impairment in the I/R-generated rats. Findings that we have reached in our study suggest that the protective effects of esmolol in I/R damage will be shown in detail and the indications for use will expand when supported by other studies.

Keywords

Esmolol, Erythrocyte deformability, Ischemia-reperfusion, Lower extremity

Introduction

Lower extremity ischemia reperfusion (I/R) injury is seen especially in patients undergoing major vascular surgery. However, it may be observed as a result of interruption of blood flow after arterial occlusion of the lower extremity and restoration in the follow-up. Under normal conditions, it is known that aerobic metabolism is the main pathway in maintaining the metabolic functions and integrity of the cells and oxygen is the essential component for its maintenance. Anaerobic metabolism is used in the absence of oxygen and as a result of this, lactic acid production increases and in the follow-up, acidosis develops in the cell which disrupts the continuity of the basic functions of the cell. When the interrupted oxygen supply starts again, lots of local and

Accepted: December 18, 2019; Published: December 20, 2019
Copyright: © 2019 Dursun AD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
systemic response occurs. In particular, inflammatory cytokines and reactive oxygen radicals (ROS) released during reperfusion lead to I/R damage. One of the most important damages of I/R is microcirculation. Inflammatory cytokines released from polymorphonuclear leukocytes interact with the endothelium causing tissue damage. Another target of this ROS release is erythrocytes [1,2].

Microcirculation is very important for oxygen delivery to tissue. Proper maintenance of microcirculation depends on erythrocyte deformability. I/R damage due to erythrocyte membrane structure and intracellular ionization disrupts erythrocyte deformability and consequently oxygen supply to tissue [3]. Many agents have been studied to correct this damage partially or completely [4-6]. However, there is no information in the literature about esmolol which is a selective β-1 blocker. Esmolol has previously been found to prevent cardiac I/R damage in cardiac clinical models and animal models, but it has been found to have protective effects in spinal cord I/R injury models [7,8]. The aim of this study was to investigate the effect of esmolol on erythrocyte deformability disorder caused by lower-extremity I/R injury.

Materials and Methods

Animals

Erythrocyte deformability was conducted in the Physiology Laboratory of Kirikkale University upon the consent of Experimental Animals Ethics Committee of Gazi University. All the procedures were performed according to accepted standards of Guide for the Care and Use of Laboratory Animals. 24 male Wistar rats weighing 250-300 g were used in the experiment. Animals were maintained under standard conditions such as stable room temperature (24 ± 3 °C) and a 12-hour light-dark cycle and were allowed access to rat pellets and water.

Experimental model

Before the procedure, the animals were anesthetized with ketamine 100 mg/kg ip and were placed below a heating lamp to maintain a temperature of 37 °C. After obtaining a vein access via tail vein of rats, esmolol infusion was started at a dose of 200 µg/kg/min through the tail vein to the groups which were receiving esmolol. In this groups laparatomy was performed with an abdominal incision 30 mins after the end of infusion.

Lower-limb ischemia-reperfusion

The lower-extremity ischemia was created by using a microvascular bulldog clamp. Midline laparotomy was done similarly. Infrarenal segment of the aorta was clamped for 2 hours. After removing the clamp, reperfusion was established for another 2 hours. Then rats were sacrificed after obtaining blood and tissue samples.

Experimental protocol

Group I/R:	Ischemia-reperfusion group
Group I/R-E:	Ischemia reperfusion + Esmolol group
Group C:	Control group
Group E:	Esmolol group
Group I/R-E:	Ischemia reperfusion + Esmolol group

Group C: Following anesthesia, and vein cannulation, laparatomy was performed and lower limb I/R was applied then rats were sacrificed after obtaining blood samples.

Group E: Following anesthesia, tail vein was cannulated and 200 µg/kg/min esmolol was infused. After the infusion ended, the rats were kept without any surgical intervention, then rats were sacrificed after obtaining blood samples.

Group I/R: Thirty mins after the anesthesia, laparatomy then lower limb I/R was applied and following reperfusion blood samples were taken.

Group I/R-E: After the anesthesia and esmolol infusion. Laparatomy was performed and then lower limb I/R-E was created. After the procedures were completed, rats were sacrificed and blood samples were taken.

Deformability measurements

A constant flow filtrometer system (MP 30, Biopac Systems Inc., Commat, USA) was used for deformability measurements. Erythrocyte suspension that was delivered at 1 ml/min flow rate was passed through a nucleopore-polycarbonate filter of 5 mm in diameter, and alterations in the filtration pressure corresponding to different flow rates were measured. The alterations in the pressure were transferred to computer medium and buffer were calculated, and the relative resistance was calculated.

Statistical analysis

SPSS 20.0 software program was used for statistical analyses and p < 0.05 was considered statistically significant. The findings were expressed as mean ± standard deviation. Kruskal-Wallis variance analysis was preferred for data evaluation. The variables with significance were evaluated with Bonferroni corrected Mann-Whitney U test.

Results

Ischemia reperfusion increased relative resistance when compared to control group (p < 0.0001). The erythrocyte deformability index was significantly higher in the I/R and I/R-E groups than in the control group (p < 0.0001, p < 0.0001, respectively). Esmolol application significantly decreased the erythrocyte
Esmolol is a short-acting selective β-1 adreno-receptor blocker and has a rapid time of onset and short duration of action. It has protective effects against I/R damage during cardiac surgery with inotropy, chronotropy and dromotropy. Another reason for this protective effect is due to the antioxidant and cytoprotective properties of free oxygen radicals [11,12]. In previous studies, it has been found that esmolol shows antioxidant properties by reducing lipid peroxidation markers [13]. Esmolol has been found to reduce histological and motor disorders caused by spinal cord I/R damage and has protective effect against spinal cord I/R injury [14]. At the same time, protective efficacy has been determined in transient ischemic attacks [8].

In this study, we want to investigate the effects of esmolol on erythrocyte deformability in rat lower limb ischemia reperfusion injury. We found that lower-extremity I/R injury increased erythrocyte deformability and improved the deformability index and relative resistance of esmolol at a dose of 200 µg/kg/min before I/R administration. The increase in the deformability index of lower extremity I/R of esmolol was partially corrected by esmolol infusion. Although the underlying mechanism has not been fully elucidated, we believe that this effect is due to the antioxidant activity of esmolol.

References

