Accepted: November 14, 2019; Published: November 16, 2019
Copyright: © 2019 Fokoue F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction
McCune Albright syndrome is a rare congenital disorder, which is classically defined by a triad associating a Fibrotic Dysplasia (DF) most often polyostotic, “café au lait” skin pigmentation and a hyperfunctioning endocrinopathy. “Café au lait” skin pigmentation are macules which are common and mostly the first manifestation of the disease, apparent at or shortly after birth. Fibrous Dysplasia (FD), which can involve any part and combination of the craniofacial, axial, and/or appendicular skeleton, can range from an isolated, asymptomatic monostotic lesion discovered incidentally to severe disabling polyostotic disease involving practically the entire skeleton and leading to progressive scoliosis, facial deformity, and loss of mobility, vision, and/or hearing. Endocrinopathies can include any of the following: Precocious puberty, fertility, testicular abnormalities, thyroid disease, growth hormone excess, FGF23-mediated phosphate wasting and Hypercortisolism. The diagnosis is often made on bone or endocrine involvement [1,2].

Here we report the case of an infant with McCune-Albright syndrome who was diagnosed with polyostotic fibrous dysplasia using 99m Tc-HMDP bone scintigraphy outside the clinical presentation, although not conventionally presented by the infant. The aim of this work is to show the interest of bone scintigraphy in the diagnosis of McCune Albright syndrome.

Patient and Method
It was a 2 years and 6 months girl, with no particu-
gamma camera model Symbia T6 2010. The planar bone scintigraphy showed hyperfixation of variable intensity including a very intense hyperfixation with regard to the facial mass, left maxillary and skull base, a moderate and heterogeneous hyperfixation of the two humeral diaphyses more marked on the right and a moderately intense hyperfixation of the left coxo-femoral, femur and tibial diaphysis. This aspect was suggestive of polyostotic fibrous dysplasia, thus confirming the diagnosis of McCune Albright syndrome in this infant (Figure 1).

Discussion

McCune Albright syndrome is a rare genetic disorder, due to a somatic mutation in exon 8 of the GNAS gene causing a substitution of arginine at position 201 by a histidine or cystidine, responsible for constitutive activation of adenylate cyclase resulting in an increase in intracellular cAMP, leading to increased production of melanin, oestradiol, testosterone, thyroxine, growth hormone or cortisol depending on the affected tissue [3,4]. McCune Albright syndrome is a rare disease and reliable data of prevalence are not available (the estimated prevalence ranges between 1/100,000 and 1/1,000,000). In contrast, the skeletal aspect of the disease, fibrous dysplasia, especially monostotic disease, is not rare. Fibrous dysplasia has been reported to account for up to 7% of all benign bone tumors. However, there are no specific recommendations regarding the molecular diagnosis of McCune Albright syndrome. Lombroso, et al. In a study of 113 patients, only 8% of patients had a single sign of the disease [5]. The extent of this syndrome depends on the proliferation, migration and survival of cells in which the mutation occurred spontaneous-

Figure 1: Static images highlighting a very intense hyperfixation with regard to the facial mass, the left maxillary and the base of the skull, a moderate and heterogeneous hyperfixation with regard to the two humeral diaphyses more marked on the right; moderately intense hyperfixation of the left coxo-femoral, femur, and tibial diaphysis.
During embryonic development. Its age of revelation is variable, but it occurs mostly in childhood and most often affects female subjects. Classically, it associates a triad with a polyostotic fibrous dysplasia (DFP): “café au lait” skin pigmentation and hyperfunctioning endocrinopathy such as hyperthyroidism, ACTH-dependent Cushing’s syndrome, acromegaly, precocious puberty, hyperprolactinemia, type 1 diabetes. Hepatobiliary disorders and Pancreatic diseases have also been described in patients with McCune Albright syndrome by Gaujoux, et al. Thus, the number of tissues reached, and the severity of the disease depend on the time of development at which the genetic mutation occurs and the importance of mosaicism [6-8]. As its result, the classic triad of McCune Albright syndrome with the presence of “café-au-lait” skin pigmentation would not be a dogma, as our study shows (Table 1).

Fibrous dysplasia in McCune Albright’s syndrome is characterized by a localized proliferation of fibrous tissue in the bone marrow and classified as a benign tumor although the risk of progression of these bone lesions as sarcoma is estimated at 4%. In our study, a bone scan with HMDP-99mTc was useful for the diagnosis of fibrous dysplasia, despite the absence of cutaneous lesions as “café au lait” spots [9-12]. Bone scintigraphy greatly contributed to the diagnosis of McCune Albright syndrome in a polyostotic presentation and established the initial lesion pattern of bone involvement of the disease.

Conclusion

This observation shows the importance of HMDP-99mTc bone scintigraphy in the early diagnosis of McCune Albright syndrome, which allows to highlight polyostotic fibrous dysplasia and to establish a lesion mapping of the affected bone sites, thus allowing easy a better management and subsequent monitoring.

Declaration of Links of Interest

The authors did not specify their possible links of interest.

References

<table>
<thead>
<tr>
<th>Authors</th>
<th>« café au lait » skin pigmentation</th>
<th>Endocrinopathy</th>
<th>Fibrous dysplasia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jung, et al. [6] Strasbourg, France</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ezzine, et al. [4] Sousse, Tunisie</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Boudriga, et al. [5] Sousse, Tunisia</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Our study, Fez Morocco</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1: Comparison of clinical presentation according to different studies.