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Abstract
Objectives: This study aimed to assess the impact of it-
erative reconstruction (IR) algorithms for the evaluation of 
coronary artery calcification (CAC) in terms of image quality 
and subjective diagnostic performance.

Methods: This study was performed in a single center and 
written informed consent was obtained from all patients. 
Thirty-one consecutive patients (26 men/5 women) under-
went CT calcium score to rule out CAC. Image data were 
reconstructed with both; filtered back projection (FBP) and 
different levels of IR algorithms. Both the qualitative and 
quantitative image quality and subjective diagnostic perfor-
mance were compared; Agatston scores and calcium densi-
ty were measured for a total of 100 coronary arteries.

Results: Quantitatively; image noise was substantially re-
duced with high levels of IR reflecting high significances of 
noise level (p < 0.001). In terms of subjective diagnostic per-
formance, it was observed with increased IR levels; 49% of 
coronary arteries showed decrease, 14% showed increase, 
32% were constant and 5% of coronary arteries showed 
fluctuation in total Agatston scores. Certain Agatston scores 
were not detected in coronary arteries in some levels of IR 
algorithms.

Conclusions: IR resulted in substantial noise reduction 
and improved in both signal-to-noise ratio (SNR) and con-
trast-to-noise ratio (CNR). Higher levels of IR might lead to 
disappearance or underestimation of detectable calcium in 
coronary arteries with low calcium burden. Iterative recon-
struction technique should be used with caution for better 
calcium quantification.
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Introduction
Coronary artery disease (CAD) is the leading cause 

of morbidity and mortality in most developed countries 
throughout the world [1,2]. The continuing advances of 
multislice computed tomography (MSCT) have provided 
ongoing opportunities to improve the current practice 
in computed tomography (CT) clinical applications and 
in particular in cardiovascular imaging [3-6]. Quantifi-
cation of coronary artery calcification (CAC) has been 
shown to be reliable, reproducible, and predictive of 
cardiovascular risk [7-14].

CAC is associated with arterial stiffness which ulti-
mately increases risks for adverse cardiovascular events 
[15]. The extent of coronary artery calcification is strong-
ly correlated with the degree of atherosclerotic disease 
and the rate of future cardiac events [15,16].

CT is considered the modality of choice for assessment 
and quantification of coronary calcium score (CCS) [17]. 

CCS is considered as a well-known indicator of athero-
sclerotic plaque for which the prognostic value has been 
well established [18,19]. The Agatston score has been de-
fined by Agatston and Janowitz and dates back into the 
1980s [20]. This score still represents the most common 
established method for CCS quantification [21-23].
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A high level of reproducibility for the measurement 
of coronary artery calcification is crucial; thus, effects of 
reconstruction algorithms on calcium scoring have been 
reported [24]. In comparison with standard filtered 
back projection (FBP), iterative reconstruction (IR) tech-
niques result in substantial image noise reduction, and 
thus improve diagnostic image quality [25,26]. Howev-
er; the current literature has contradictory on the ef-
fect of IR on the quantification of coronary calcification 
[3,17,21,24,25,27,28]. Therefore, this study aimed to 
define the threshold for the size and density in detec-
tion of CAC.

Methods

Study population
This study was performed in a single center, military 

base hospital, Oman; and approved by the Research and 
Ethical Committee Board. A written informed consent 
was obtained from all patients. Thirty-one consecutive 
adult patients were referred by cardiologist for CT coro-
nary angiography (CCTA) for various clinical indications 
enrolled prospectively in this study (Table 1).

Exclusion criteria were renal insufficiency, pregnan-
cy, asthma, patients with previous adverse reaction 
from iodinated contrast media and patients unable to 
consent.

All patients underwent a 64-MSCT scan examination 
of the calcium score as part of their CCTA (Brilliance; 
Philips Medical System, Best, Netherlands). The scan 
parameters were; axial scan mode; collimation, 40 × 
0.625; thickness, 2.5 mm; increment, 2.5 mm; rotation 
time, 0.4s; field of view, 220 mm; matrix, 512 × 512; kV, 
120; mA, 60; filter, standard (B) and iDose4 iterative re-
construction technique (Philips Medical System, Best, 
Netherlands). Image data was reconstructed with an 
electrocardiogram gated window at 75.0% of the R-R in-
terval. Both qualitative and quantitative image analysis 
was performed in a dedicated CT diagnostic workstation 

(Extended Brilliance Workspace, version 4.5.5, Philips 
HealthCare).

Image analysis
Qualitative analysis: Qualitative analysis was per-

formed by two readers; Radiologist and Cardiologist 
with extensive experience of 13 and 12 years, respec-
tively, in cardiac CT image interpretation. Both readers 
were blinded to the reconstruction method (FBP and 
different levels of IR). Each reader was asked to select 
the most preferable reconstructed data from his subjec-
tive prospective in each scanned case.

Quantitative analysis: Quantitative analysis was 
determined by measuring noise, signal-to-noise ratio 
(SNR), and contrast-to-noise ratio (CNR) in the same cut 
of various data sets that reconstructed by FBP and dif-
ferent levels of IR algorithms.

As per Shen, et al. [8] CT densities were measured 
at aortic root cranial to left coronary ostium, left main 
coronary artery, and epicardial fat surrounding left 
main coronary artery. Image noise was defined as the 
standard deviation of CT density at aortic root; cranial 
to left coronary ostium. SNR was drawn by dividing the 
CT density of left main coronary artery by image noise. 
As for CNR, CT density of left main coronary artery was 
first subtracted by that of epicardial fat surrounding left 
main coronary artery and then divided by image noise 
(Figure 1).

Subjective diagnostic performance

Subjective diagnostic performance was analyzed in 
100 coronary vessels in terms of total calcium score (Ag-
atston) and the Hounsfield unit (HU) for each measured 

Table 1: Study population and different cardiovascular risk 
factors.

	 Specifications 	 Total
Population 
      Number of patients 31
      Age (years, mean ± SD) 57.1 ± 9.2
      Gender (M/F) 26/5
       BMI 28.0 ± 5.2
       Heart rate (bpm; mean ± SD) 60.7 ± 8.9
Cardiovascular risk factors
       Typical chest pain 18
       Known hypertension 5
       Coronary artery disease 2
       Ischemic heart diseases 6

BMI: Body Mass Index; BPM: Beat Per Minute; M/F: Male/ 
Female; SD: Standard Deviation

         

Figure 1: Illustrates the position of region of ROI in two 
different regions for calculating noise, SNR, and CNR. 
All ROIs were drawn in a homogeneous region avoiding 
calcified areas. 
CNR: Contrast-to-Noise ratio; ROI: Region of interest; 
SNR: Signal-to-noise ratio
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substantial reduction compared to FBP reflecting high 
significant change. The mean values were ranging be-
tween 18.04-10.33, which is highly significant (p < 
0.001) (Table 2). In addition, both SNR and CNR showed 
an increasing trend with increasing strength of iterative 
reconstruction ranging from 2.05-3.60 and 8.24-14.47 
respectively (p < 0.001).

Subjective diagnostic performance
Clinically coronary calcification in the 100 analyzed 

coronary vessels were seen in right coronary artery, left 
main, left anterior descending and circumflex branch of 
left coronary artery were 24, 3, 50 and 23, respectively.

It was observed with increased IR levels, the behav-
ior of coronary arteries in terms of total Agatston scores 
and Hounsfield unit (HU) were not steady. By increasing 
the IR levels; the study showed decreases in total Ag-
atston score in 49% of coronary arteries, no change in 
32%, increases in 14% and showed fluctuations in 5%. In 
terms of HU; 46% of coronary arteries decreased, 32% 
increased and 22% showed fluctuation in HU density.

These findings were expressed statistically reflecting 
very high differences. All the comparisons showed high 

calcification in different reconstruction algorithms.

Statistical analysis: For statistical analysis all data 
was analyzed using MedCalc statistical software (ver-
sion 18.2.1 MedCalc Software bvba, Ostend, Belgium, 
http://medcalc.org; 2018). Categorized variables were 
presented as number and percentages, continuous vari-
ables were presented with mean and standard devia-
tion. Agreement was computed using weighted Kappa 
and comparisons were tested using Wilcoxon signed 
rank test. The two-sided P- values of less than 0.05 were 
considered to indicate a statistical significance.

Results

Qualitative assessment of image quality
The subjective assessment showed that there is poor 

inter-rater agreement between the two readers repre-
senting 29%. Radiologist preference was image with 
high level of iterative (≥ IR4) and Cardiologist prefer-
ence was image with low level of iterative (≤ IR3) repre-
senting 87% and 80%, respectively.

Quantitative assessment of image quality
In iterative reconstructions; noise level showed a 

Table 3: Comparison of FBP TCS and HU in different levels of IR.

Baseline

Mean (sd)
IR levels p-Value*

FBP-TCS 6.66 (10.59)

IR1 6.57 (10.57) 0.001
IR2 6.54 (10.56) < 0.001
IR3 6.51 (10.51) < 0.001

IR4 6.46 (10.46) < 0.001
IR5 6.41 (10.43) < 0.001
IR6 6.37 (10.42) < 0.001

FBP-HU 183.29 (46.34)

IR1 172.88 (66.46) 0.001
IR2 165.79 (76.62) < 0.001

IR3 166.0 (80.51) 0.001
IR4 160.24 (84.19) 0.002
IR5 153.51 (91.41) 0.001
IR6 149.65 (95.51) 0.002

*Wilcoxon Signed Ranks Test
FBP: Filtered Back Projection; HU: Hounsfield Unit; IR: Iterative Reconstruction; SD: Standard Deviation; TCS: Total Calcium 
Score

Table 2: Association between different level of iterative reconstruction with imaging parameters (Noise, SNR and CNR).

Algorithm
Noise p-Value SNR p-Value CNR p-Value

Mean Sd Mean Sd Mean Sd
IR1 18.04 5.44 < 0.001 2.05 0.88 < 0.001 8.24 2.67 < 0.001
IR2 16.72 5.10 2.20 0.95 8.87 2.91
IR3 15.37 4.98 2.40 1.0 9.68 3.23
IR4 13.77 4.79 2.69 1.19 10.76 3.65
IR5 12.17 4.58 3.04 1.37 12.26 4.39
IR6 10.33 4.06 3.60 1.69 14.47 5.42

CNR: Contrast-to-Noise Ratio; SD: Standard Deviation; SNR: Signal-to-Noise Ratio
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were not detected in some coronary arteries in some 
levels of iterative ranging between 0.15-0.92 sqmm. Ag-
atston score (Figure 2 and Figure 3) with various densi-
ties ranging between 130-159 HU.

statistical significances (P-value 0.001 to < 0.001). In 
terms of HU density, it also showed higher differences 
in all levels (P-value 0.002 to < 0.001) (Table 3).

The study also showed that certain Agatston scores 

         

Figure 2: Agatston score is detected in FBP, IR 1, IR 2 & IR 3 with variation in density level (HU). 
FBP: Filter Back Projection; HU: Hounsfield Unit; IR: Iterative Reconstruction

         

Figure 3: Agatston score is not detected in IR 4, IR 5 & IR 6.
IR: Iterative Reconstruction
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was irrelevant to body mass index (BMI) and patient 
gender; and only can be explained due to the adjacent 
anatomical structures to that particular calcification or 
the presence of slight artifact due to breathing. Subse-
quent studies assessing the behavior of coronary calci-
fication based to location, surrounding structures and 
possibility of breathing artifacts would be required.

Clinically, a balance of IR strength has to be found to 
avoid higher or lower estimate of the Agatston scores, 
therefore; this study is not recommending higher level 
of IR in coronary calcium score assessment and should 
not exceed more than level 2. The study proved that 
higher level leads to disappearance of detectable calci-
um particularly in small scores ranging between 0.15 to 
0.92 sqmm. Agatston scores.

This study has two main limitations that should be 
taken into consideration; first, sample size was relative-
ly small. However; the study results were able to reflect 
the differences and draw a conclusion subjectively and 
objectively. Second, results were drawn from a single 
MSCT and the effect of iterative from other vendors 
might be different.

Conclusion
Knowledge regarding the presence or absence of 

CAC can lead to a better estimation of risk which the 
potential management relies on. Iterative reconstruc-
tion algorithm improves the diagnostic image quality 
substantially, however, higher IR level might lead to dis-
appearance or underestimate of detectable calcium in 
coronary arteries with low calcium burden.

Our study proved that with higher IR (IR 3 and above) 
the Agatston calcium score upto 0.9 sqmm. and density 
of 138 HU can be missed which in turn can lead to un-
derestimation of total Agatston score. Hence, IR tech-
nique should be used with caution for better calcium 
quantification and iterative reconstruction algorithm 
above IR2 is not recommendable.
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