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Abstract
In the older patient population, rates of Type 2 Diabetes (T2D) and 
obesity are reaching epidemic proportions. In fact, older patients will 
soon constitute the majority of patients with T2D in most developed 
countries. The higher prevalence of T2D in older individuals is 
seen in both men and women and across racial and ethnic groups. 
However, certain ethnic groups are disproportionately affected 
and successful strategies must account for these fundamental 
differences. T2D in old age is associated with traditional diabetes-
associated complications including micro- and macro vascular 
disease, but is also closely related to numerous other comorbidities 
including cognitive impairment, urinary incontinence, sarcopenia, 
and increased fall risk. An overall state of chronic inflammation 
and dysregulated immune system may underlie these increased 
risks; yet our understanding of immunometabolism during the aging 
process remains incomplete. In addition, optimal recognition and 
treatment of diabetes in the elderly is hampered by a lack of relevant, 
high-quality studies, as the majority of clinical trial data establishing 
risk profiles, glycemic targets, and therapeutic interventions for 
T2D are not applicable for large segments of the older patient 
population. Simply acknowledging this gap is inadequate. We need 
strong evidence-based data upon which to successfully identify 
diabetic patients and then intervene in ways that are targeted to 
specific individuals within a heterogeneous group of elderly patients 
with T2D. 
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(β)-cell function, the two major factors involved in the pathogenesis 
of T2D [6]. Accordingly, the rate of T2D has substantially increased 
in older adults [7] and remains a major cause of excess morbidity and 
mortality [8]. From 1980 through 2014, the rate of diagnosed diabetes 
in the U.S. population increased more than 120% for those 65-74 
years old (9.7% to 21.5%) and ≥ 75 years old (8.6% to 19.2%) [2]. In 
2011, the rate of diagnosed diabetes among people aged 65-74 was 
more than 13 times that of people younger than 45 years of age. The 
rates of diagnosed T2D are even higher in long-term care residents, 
with upwards of 1/3 affected [9]. In the coming decades, people ≥ 
65 years old will constitute the majority of diabetic patients in the 
U.S. and most other developed countries. These findings necessitate 
a greater focus on individualized care in the obese patient population 
and underscore the need for new guidelines and therapeutic strategies 
in the management of obesity and T2D in older patients.

Older adults with T2D face the same spectrum of micro vascular 
(retinopathy, nephropathy, neuropathy) and macro vascular (cardio- 
and cerebrovascular) complications as younger patients. T2D in 
older adults leads to excess morbidity and mortality that is greater 
than their non-diabetic counterparts [8]. However, the older diabetic 
patient population with T2D poses unique challenges as they are 
also at high risk for polypharmacy, functional decline, cognitive 
impairment, depression, urinary incontinence, and falls, among 
other diabetes-related comorbidities. In addition, older adults 
with T2D are a heterogeneous patient population with disparate 
functional capacity, living accommodations, comorbid conditions, 
and life expectancy. Unfortunately, there is a paucity of evidence-
based data to guide clinical decision making in many segments of 
the older diabetic patient population. Therefore, it is imperative to 
develop sound evidence-based strategies tailored to limit diabetic 
complications and mortality, yet maintain meaningful quality of life 
during the aging process.

Manuscript Text
Definition of elderly and old age

There is currently no universally accepted age threshold to define 
the terms “elderly” or “old age.” Most developed countries adhere to 
the chronologic age of either 60 or 65 years old as the definition of 
an older or elderly individual, mainly as a construct equivalent to the 
traditional age of retirement [10]. However, this is not universally 
accepted, has continuously evolved over time, and is considered 
arbitrary in different geographic regions where “biologic” age is not 
always synonymous with “chronologic” age [11,12]. In addition, the 

Introduction
In the last decade alone, the percentage of adults over the age 

of 65 in the United States (U.S.) has increased by 18%, and by the 
year 2030 one in five Americans will be 65 years or older [1]. In 
fact, the fastest growing segment of the population are those > 85 
years old which currently represent 1.5% of the population but will 
account for ~5% of the population by 2050 [2]. This demographic 
shift has dramatic implications on the social and economic structure 
of both public and private sectors and will place unprecedented 
demands on our healthcare system. More than 80% of those over 65 
experience multiple chronic conditions, including Type 2 Diabetes 
(T2D), accounting for over 95% of their total healthcare costs [3]. 
The prevalence of T2D has escalated over the last several decades as 
our population has progressively become older and heavier. Obesity 
rates have increased nearly two-fold from 1990 to 2010 [4]. Obesity 
increases the risk of numerous chronic conditions [5] and is a 
principal cause of both insulin resistance (IR) and diminished beta 
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definition of older may be better be delineated not by age, but by an 
individual’s active contribution to society or other socially constructed 
indicators [13]. For instance, the World Health Organization (WHO) 
has proposed a working definition for older persons to be above the age 
of 50 years old in the African subcontinent, a value which combines 
age and social/cultural/functional markers of aging [14]. While we 
realize the important limitations of a standardized definition, for the 
purposes of this review we will adhere to the definition of elderly or 
old age as > 65 years old (unless otherwise noted), but will make all 
attempts to highlight subdivisions in this age demographic based 
on functional status, geographic location, and other socio-cultural 
factors such as race and ethnicity when data is available.

Demographics of T2D in aging

The higher prevalence of T2D in older individuals is seen in both 
men and women and across racial and ethnic groups [2]. However, 
certain ethnic groups are disproportionately affected and successful 
strategies to combat obesity and T2D must account for these critical 
differences.

African-Americans (AAs) in the U.S. have among the highest 
prevalence rates of obesity and T2D [15]. They are also at higher 
risk for the development of cardiovascular disease (CVD), critical 
sequelae of diabetes and the major cause of diabetes-related mortality 
[16,17]. As a consequence, AAs have a 1.3 times greater risk of 
nonfatal stroke, a 1.8 times greater risk of fatal stroke, and a 1.5 times 
greater risk of CV mortality compared to Caucasians [18,19]. These 
ethnic disparities are most pronounced in AA females. Diabetes 
affects 38.2% of AA women between the ages of 65-74 [2] and a 
staggering 58.6% are obese [15]. The prevalence of hypertension 
(HTN) in AA women is also particularly high at 44.0% [19]. In 
AAs, both T2D and HTN are robust predictors of CVD [20]. CVD 
develops approximately 5 years earlier and AAs have higher mortality 
rates when compared to Caucasians of a similar age [21]. AAs are 
also more prone to diabetes-related complications and are at greater 
risk of developing progressive chronic kidney disease (CKD) and end 
stage renal disease (ESRD) compared with other racial groups [22].

Hispanic/Latino Americans are also at greater risk for T2D and 
diabetes-related cardio metabolic abnormalities. ESRD is more likely 
to be present in Hispanics/Latinos [23] and they have higher rates of 
non-traumatic amputation compared to Caucasians [24]. Hispanic/
Latinos residing in the U.S. currently comprise 16% of the population, 
but the U.S. Census Bureau estimates that this will increase to one in 
three Americans by 2050. It is important to recognize that Hispanic/
Latinos are a heterogeneous population and are comprised of diverse 
subgroups including Puerto Ricans, Mexicans, Cubans, and Central 
and South Americans. Critical differences in diabetes prevalence 
by subgroup can therefore be masked by combining all Hispanic/
Latino individuals into a single group. In fact, data from the recent 
Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 
indicates considerable diversity among Hispanic/Latino subgroups 
in diabetes prevalence, as well as differences in the rates of diabetes 
awareness, glycemic control and health insurance status [25]. In 
the HCHS/SOL, the prevalence of total diabetes (both diagnosed 
and undiagnosed) among all Hispanic/Latino groups was 16.9% for 
both men and women, compared to 10.2% for non-Hispanic whites. 
However, when examining Hispanic/Latino groups individually, T2D 
prevalence varied from 18.3% in those of Mexican descent to 10.2% 
in those of South American descent. In between these extremes, 
18.1% of individuals of Dominican and Puerto Rican descent; 17.7% 
of those of Central American descent; and 13.4% of individuals of 
Cuban descent living in the U.S. had T2D. Significant predictors of 
T2D included longer duration of U.S. residency, less education and 
lower income. In addition, the authors noted substandard glycemic 
control (52% of patients) and high rates of uninsured (47.9%) within 
the Hispanic/Latino community [25]. As with other ethnic groups, 
the prevalence of T2D in Hispanic/Latinos increases dramatically 
with advancing age. While 2.6% of men and 2.9% of women 18 to 29 
years old have diabetes, greater than 50% of women and 48.6% of men 
70-74 years old are affected. This enlarging group of older Hispanics/

Latinos with T2D will present unique challenges to our healthcare 
system.

Asian countries have also experienced an alarming increase in the 
rate of diabetes. The heavily populated nations of China and India now 
have the largest number of diabetics in the world, and by the year 2030 
the Asian continent is projected to have the highest global proportion 
of diabetics in the world [26]. The prevalence of diabetes in China 
has increased from 1% in 1980 to 9.7% in 2010 [27] and adult obesity 
rates now exceed 30% [28]. The increases in T2D and obesity in Asian 
countries have been attributed to numerous factors: readily available 
fast food, sedentary lifestyle, poor urban planning, academic pursuits, 
changes in mode of transportation, differences in body composition, 
and factors related to diabetes pathogenesis, among others [29]. In 
addition, Asians are typically diagnosed with diabetes at younger ages 
compared to other ethnicities. For instance, men residing in China and 
Korea on average develop diabetes approximately 3 years earlier than 
Caucasian men [2,30]. Ethnic Asians typically have excess visceral 
adipose tissue (VAT) at lower BMI levels, [31] which is associated 
with increased hepatic fatty acid lipid flux, altered adipokines, non-
alcoholic fatty liver disease (NAFLD), and hepatic insulin resistance 
[32]. Asian individuals also have greater insulin secretory defects, 
either from reduced β-cell mass and/or functional impairment in 
pancreatic β-cells, [33,34] and those with prediabetes have marked 
reductions in β-cell function with minimal insulin resistance [35]. 
This predominance of β-cell dysfunction over insulin resistance may 
be genetically determined [36,37]. Asian individuals are at higher risk 
of developing diabetes-related microvascular complications and CVD 
compared to Caucasians [28,38-40]. Interestingly, Asians also appear 
to have a differential efficacy response to some diabetes medications, 
with greater glycemic lowering effects with acarbose, glucagon-like 
peptide-1 (GLP-1) receptor agonists, and Dipeptidyl peptidase-IV 
(DPP-IV) inhibitors compared to other ethnicities [41,42].

In the U.S., Asian-Americans and Native Hawaiians and other 
Pacific Islanders (NHPIs) are fast growing minority populations who 
are at higher risk for T2D than Caucasians [43-45]. State-based data 
from the CDC Behavioral Risk Factor Surveillance System (BRFSS) 
from 2011-2014 indicates that the age-adjusted prevalence of T2D 
in NHPIs is as high as 19.1% in the state of California and among 
Asians as high as 15.3% in New York state [2]. On average NHPIs 
have higher rates of obesity and are less educated than Asians (both 
independent predictors of T2D); however, both ethnic groups are 
disproportionately affected by high rates of obesity and physical 
inactivity [43,45]. These trends extend to the elderly population. In 
Asian-American males the prevalence of diabetes rises from 1.3% in 
those 0-44 years old to 22.5% in those 65-74 years old and in Asian-
American females the increase is 1.4% to 29.4% [2].  Asian-Americans 
and NHPIs are more likely to have diabetic nephropathy and ESRD 
and NPHPIs carry the highest risk of non-traumatic amputation of all 
ethnic groups [23,24].

The above findings mandate a more ethnic-conscious approach 
to diabetes management extending throughout the lifespan. Given the 
average earlier age of diabetes diagnosis in Asians and NHPIs, these 
ethnicities should be targeted earlier in life with implementable and 
successful preventative strategies to reduce obesity and diabetes risk and 
limit diabetes-related complications in old age. There is clear evidence 
that intensive treatment of T2D early in the course of the disease has a 
substantial “legacy” effect in preventing long-term complications [46] 
even if glycemic control deteriorates over time (although ethnic-specific 
data is currently lacking). As Asians and NHPIs age, practitioners 
must be acutely aware of the duration of their diabetes, which may be 
more prolonged in these ethnic groups, and tailor glycemic targets and 
interventions appropriately. In NHPIs, an effective educational strategy 
may be prudent given their average lack of education compared to 
other ethnic groups. In those individuals of AA, Asian, and Hispanic/
Latino descent, a culturally appropriate lifestyle intervention to reduce 
obesity is likely to be effective, with Asians targeted at lower BMI levels 
than other ethnic groups. One study, in fact, indicated that AAs and 
Hispanics were more likely to follow exercise recommendations from 
a healthcare professional than other ethnic groups [47]. Promoting 
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factors (obesity and sedentary lifestyle), [52,53]  potential age-
related changes in insulin action and secretion, [54] inflammatory 
and hormonal dysregulation, [55,56] genetic factors, [57] changes in 
sleep pattern, [58,59] increased oxidative stress, [60] and increased 
use of medications that increase hyperglycemic propensity [61,62]. A 
number of different organ systems and tissues are therefore affected 
during the aging process with profound ramifications on diabetes risk 
(Figure 1).

Obesity is an important cause of both insulin resistance (IR) 
and impaired beta (β)-cell function, the two major factors leading to 
T2D [6], and the risk of developing poor glycemic control increases 
linearly with body mass index (BMI) [63,64]. In those ≥ 65 years old, 
obesity rates have increased from 23.6% in 1990 to 39.6% in 2010. The 
close positive association of BMI with T2D risk, insulin dependence, 
and macro vascular and micro vascular complications was recently 
shown in a continuous longitudinal survey of Medicare beneficiaries 
from 1991-2010 [65]. In this analysis, the risk of T2D in older patients 
was three-fold higher in those with morbid obesity (BMI ≥ 40 kg.m2) 
compared to normal weight individuals, insulin-dependence was five 
times higher, and the risks of CVD, cerebrovascular disease, renal, and 
ocular complications were 1.5 to 4 times greater. The obesity epidemic 
is largely due to excess caloric intake and/or sedentary lifestyle [66] 
in the presence of genetic susceptibility [67]. Compared to other age 
groups, older adults are the most sedentary [68]. On average, older 
adults spend upwards of 80% of their time awake doing sedentary 
activities [68,69]. A systematic review of 24 studies reported at least 

de-acculturation which advocates eating more fresh foods from their 
native country and less “Western” style foods has also been successful 
with Mexican-Americans [48-50]. In the AA community, a culturally-
sensitive community-based combined lifestyle and pharmacologic 
approach should be undertaken, as with lifestyle alone 40-50% of 
prediabetic subjects still progress to T2D, while pharmacologic 
intervention is uniformly more successful (reviewed in [51]). These 
lifestyle interventions must be culture-appropriate, as a cross-sectional 
analysis of the 2007 SHIELD US survey showed that despite a similar 
percentage of respondents from different racial groups receiving exercise 
recommendations from a healthcare professional, there were large racial 
differences in the actual implementation of these recommendations [47]. 
Most importantly, further studies on the impact of ethnicity on diabetic 
treatment therapeutics and detailed pharmacogenetic studies are needed, 
as “one size” may not fit all in diabetes management.

In summary, the rising prevalence of T2D in the elderly spans all 
racial/ethnic groups. Identifying, recognizing, and then implementing 
culturally-specific interventions is paramount to good clinical care. 
In addition, translational research is required that is focused on 
epidemiological, phenotypic and genetic differences between racial/
ethnic groups and their differential responses to treatment within the 
context of varied socioeconomic environments.

Pathogenesis of T2D in the elderly
There are many potential etiologic reasons for the increase in T2D 

prevalence with advancing age. These include lifestyle and cultural 
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Figure 1: Changes in hepatic, skeletal muscle, pancreas and adipose tissue during the aging process.
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a moderate degree of evidence for a direct relationship between 
sedentary behavior, BMI and the metabolic syndrome in adults > 
60 years old [70]. Greater sedentary time was also associated with 
increased all-cause mortality.

Despite the increased prevalence of T2D in older adults, the 
fundamental effects of the aging process itself on insulin sensitivity 
remain relatively unexplored, with the limited available data 
supporting divergent conclusions. Insulin resistance is broadly 
defined as a subnormal biological response to normal insulin 
concentrations, but in clinical practice typically refers to a subnormal 
glucose response [71]. It manifests as the inability of insulin to 
adequately stimulate peripheral tissue (mainly skeletal muscle) 
glucose uptake and suppress hepatic glucose production. Although 
some studies have reported that older patients have increased insulin 
resistance [72-75], others have found that aging does not per se cause 
significant insulin resistance [76,77]. These discrepant results may be 
related to differences in physical activity level and body composition 
among study populations [78].

Aging is associated with a progressive decline in muscle mass, 
quality, and strength with resultant weakness and declining mobility 
that can culminate in the syndromes of sarcopenia and/or frailty [79]. 
Of note, prominent risk factors for sarcopenia include both obesity 
and insulin resistance [80], and insulin sensitizing agents significantly 
reduce loss of fat free mass in obese insulin resistant subjects [81]. A 
direct causal relationship between insulin resistance and sarcopenia 
however is uncertain. In some obese individuals, muscle mass is much 
lower than expected, a condition termed ‘sarcopenic obesity’. This 
syndrome is accompanied by changes in muscle fiber type [82], fatty 
infiltration [83], and reduced muscle strength [84]. These changes are 
at least partly attributable to inflammatory mediators and resultant 
lipotoxicity [85,86]. On a cellular metabolic level, common obesity-
associated derangements in mitochondrial function, endoplasmic 
reticulum (ER) stress, lipid deposition, and stress-related pathways 
appear to converge in both insulin resistance and sarcopenia [87,88], 
but the capacity for glucose utilization remains an undetermined 
component of the sarcopenia syndrome. Whether increased adiposity 
and loss of muscle mass (as evident in ‘sarcopenic obesity’) provide 
a complete explanation for any observed age-related increases in 
insulin resistance is unclear. However, even when study populations 
are matched for physical activity level and percent lean body mass, 
results have not been consistent. Older individuals evaluated by the 
hyperinsulinemic-euglycemic clamp, the gold standard for assessment 
of insulin sensitivity, may or may not have reduced peripheral glucose 
uptake [89,90].

Along with changes to skeletal muscle mass, the aging liver 
undergoes many changes: reduction in blood supply of ~1% per year, 
number of liver cells and elasticity along with a reduced capacity 
for metabolic function and detoxification. The ability of insulin to 
suppress hepatic glucose production (i.e. hepatic insulin sensitivity) 
in elderly subjects has been evaluated in a small number of studies 
mainly involving healthy, normal weight patients [72,91,92]. Again, 
these publications have yielded contradictory results with studies 
showing greater [91], no difference [92], or less [91] insulin-mediated 
suppression of hepatic glucose production in the older patient 
population. Of note, comparison studies of overweight/obese, 
younger versus older patients, following weight loss by any method 
have not been performed and represent a significant gap in our 
understanding of weight loss interventions in older adults.

Changes to pancreatic morphology with aging were first noted in 
the 1970’s [93]. Cellular senescence of pancreatic β-cells has since been 
implicated in the pathogenesis of T2D. The aging pancreas exhibits 
definite defects in β-cell mass [94], as β-cell proliferation is reduced 
in aging humans [95,96]. Whether this translates into a decline in 
β-cell function is controversial. In humans, disorderly insulin release, 
a decrease in insulin pulse amplitudes, and decreased response to 
glucose oscillations as well as alterations in insulin clearance have all 
been observed [97], which may be related to a loss of pancreatic β-cell 
GLUT2 expression in humans [98] as well as differences in β-cell 

glucose oxidation [99]. However, in a study of young (ages 23-25) 
vs. older (ages 64-66) adults, the older patients had greater defects in 
insulin secretion only in the presence of impaired glucose tolerance 
or frank T2D. This suggests that there may not be a strict decline in 
β-cell function with aging, but this decrement may manifest solely in 
those with existing dysregulation of glucose homeostasis.

Aging is a biological process that is characterized by a decline 
in basic metabolic processes. According to the free radical theory 
of aging, reactive oxygen species (ROS) can elicit damage to cellular 
proteins, nucleic acids, and lipids and ultimately lead to age-related 
organ dysfunction [100]. ROS produced by the mitochondrial 
respiratory chain damage mitochondrial proteins, lipids and DNA, 
and accumulated insults during a lifespan lead to a decline in the 
bioenergetic function of mitochondria [101]. Experimental evidence 
indicates that oxidative stress is an important mechanism for the 
development of not only T2D, but also the metabolic syndrome, 
CVD, and nonalcoholic steatohepatitis (NASH) [102-108]. The role 
of oxidative stress in T2D is rapidly evolving. As a direct result of the 
activation of the oxidative stress cascade, insulin signaling is disrupted 
through serine phosphorylation of insulin receptor substrate 
(IRS) proteins [109]. In addition, ROS can directly affect systemic 
inflammation and the expression of the anti-inflammatory factor 
adiponectin, as plasma markers of oxidative stress correlate negatively 
with circulating adiponectin levels [110]. We have previously shown 
that older compared to younger mice fed a high-fat diet (HFD) have 
reduced glucose tolerance, advanced atherosclerosis, and pathologic 
changes resembling human non-alcoholic steatohepatitis (NASH) 
largely due to excess oxidative stress and generation of ROS with loss 
of antioxidant enzyme capacity, and that this effect can be reversed 
by insulin sensitizing agents [111]. These results indicate that chronic 
overproduction of redox signaling pathways, leading to excess 
oxidative stress and ROS generation may contribute to cell aging and 
act as an important mediator in dysglycemia.

To summarize, the pathogenesis of T2D in the elderly is 
multifactorial. The obesity epidemic is a major contributing factor 
to the rising prevalence of T2D, as excess adiposity is associated 
with insulin resistance and inadequate β-cell function. It is unclear; 
however, if aging has an independent effect on these two major factors 
and whether changes to muscle composition resulting in ‘sarcopenic 
obesity’ is a major driver of dysregulated metabolism. While it is 
clear that important changes to numerous organs (including skeletal 
muscle, pancreas, liver) and adipose tissue occur with aging, their 
relative contributions to the rising prevalence of T2D in elderly 
patients remains uncertain. Most importantly, well-designed trials 
of weight loss specifically in the older patient population will shed 
light on the benefits and drawbacks of intervening in this vulnerable 
group.

‘Inflammaging’ and T2D in the elderly

Obesity and its associated comorbidities (including T2D, 
CVD, NAFLD/NASH, and cognitive impairment) promote a state 
of chronic low-grade inflammation detected both systemically 
and within specific tissues [112] and is now recognized as a major 
cause of decreased insulin sensitivity and T2D [113]. Activation 
of proinflammatory pathways leads to the secretion of numerous 
cytokines [114] which induce changes in gene expression that can 
directly impair insulin signaling and glucose uptake [115]. Aging 
is the most prominent risk factor for a myriad of obesity-related 
chronic diseases including T2D, Alzheimer’s disease, frailty and 
sarcopenia, CVD, fatty liver and steatohepatitis, and certain forms of 
cancer. A common feature that links these age-related conditions is 
chronic inflammation, a process that has been termed ‘Inflammaging’ 
[116,117]. Individuals over the age of 65 have increased serum levels 
of multiple pro-inflammatory factors including interleukin (IL)-6, 
IL-1β and IL-18 and tumor necrosis factor-α (TNF-alpha) [118,119]. 
Although a complete discussion of the role of inflammation in the 
aging process and its contribution to age-related declines is beyond 
the scope of this review (see the comprehensive review by Goldberg, 
et al. [56]), inflammatory pathway activation has been observed in 
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all insulin target tissues/organs, including adipose [120], liver [121], 
brain [122], kidney [123], intestine [124], pancreas [125] and skeletal 
muscle [126,127], underscoring the global role of inflammation in 
driving the pathogenesis of T2D [113,128].

Acting as the body’s primary long-term energy reservoir, adipose 
tissue (AT) is now recognized as the largest endocrine organ, 
secreting over fifty metabolically-active adipokines, cytokines, and 
chemokines [129]. In fact, the early stages of systemic inflammatory 
gene expression are selectively induced in AT, rather than liver 
and skeletal muscle [130]. Weight gain occurs when caloric intake 
exceeds energy expenditure, resulting in adipose tissue expansion 
to accommodate increased energy storage demands. In obesity, 
excessive expansion substantially alters adipose tissue histology 
and function. As adipocytes enlarge, some become apoptotic and 
are surrounded by macrophages to form crown-like structures, 
a hallmark of adipose inflammation [131]. Interactions among 
adipocytes and adipose immune cells at different stages of this process 
enhance pro-inflammatory and suppress anti-inflammatory immune 
cell accumulation and production of metabolically-active mediators.

A comprehensive, balanced system of pro- and anti-inflammatory 
mediators and immune cells is required to maintain normal adipose 
storage, endocrine function, and systemic insulin action, all critical to 
whole body metabolism [132]. Recent, transformative animal studies 
highlight the importance of several immune cells in maintaining 
lean adipose tissue, creating a shifting paradigm in obesity research. 
Lean AT is populated predominantly by alternatively-activated 
macrophages (AAMacs), eosinophils, type 2 innate lymphoid cells 
(ILC2s), invariant natural killer T (iNKT) cells, and CD4+ Type 2 
helper (Th2) and regulatory T (Treg) cells that contribute to a cytokine-
associated type 2 anti-inflammatory axis (Figure 2). Eosinophil-
derived interleukin (IL)-4 promotes the differentiation and 
maintenance of Th2s, Tregs, and AAMacs. Accordingly, eosinophil-
deficiency leads to high-fat diet (HFD)-induced insulin resistance, 
while IL-4 deficient mice are rescued in proportion to the number 
of adoptively-transferred wild-type eosinophils entering into 
adipose tissue [133]. IL-33 and IL-25 also rapidly activate ILC2s 

[134] to produce IL-13 and IL-5 that further promote adipose tissue 
eosinophil and M2 ATM accumulation, [135] and lead to activation 
of iNKTs [136,137]. Adoptive transfer of iNKTs into obese mice 
induces weight loss and improves glucose tolerance in a cytokine-
dependent manner [138]. Thus, a newly defined ILC2-eosinophil-
NKT axis helps maintain lean mice AT metabolic homeostasis; but 
this axis has yet to be explored in humans.

In obesity, the immunologic milieu of adipose tissue shifts from 
a cytokine-associated type 2 anti-inflammatory to a type 1 pro-
inflammatory environment. In this context, the normal architecture, 
energy storage, and endocrine activities of adipocytes are profoundly 
altered as they accumulate triglycerides and become hypertrophic. 
In fact, adipocytes may initiate the cascade of adipose tissue 
inflammation, as they link storage capacity and endocrine function 
and are the predominant source of adiponectin, leptin, and other key 
mediators [139]. Leptin has multiple pro-inflammatory effects and 
increases soon after exposure to nutrient excess. Leptin stimulates 
production of pro-inflammatory IL-1, IL-6, IL-12, and tumor necrosis 
factor alpha (TNFα) by innate immune cells, and directly increases 
CD4+ Th1 polarization and inhibits Treg proliferation. Both leptin and 
MHCII expression promote Th1 cell polarization and activation, since 
adipose inflammation is markedly attenuated in both leptin- and 
MHCII-deficient obese mice [140]. The effects are also opposed by 
IL-4 and -10 from Th2 and Treg cells [141].

Emerging evidence highlights the importance of Tregs in defining 
the immunologic milieu of lean and obese AT. In the lean state, 
the stability of Tregs is enhanced by IL-10 [142], a potent adipocyte-
derived anti-inflammatory cytokine that is also produced by anti-
inflammatory macrophages and T lymphocytes. Furthermore, 
adiponectin decreases MHCII expression which is required by antigen 
presenting cells (APCs) to increase Treg abundance [139]. Surprisingly, 
Tregs comprise 50% of CD4+ adipose resident T cells (ARTs) in VAT 
of lean mice, but decline to about 15% of the CD4+ ART population 
in obesity [143]. Adipose tissue Tregs also regulate systemic insulin 
action and strongly inhibit pro-inflammatory responses of other T 
cell subtypes. Insulin-sensitizing PPARγ ligands increase adipose 

         

Lean Obese

Excess
nutrients

Adipocyte

M1

M2

Th1

Th2
Treg
CD8+T

ILC2

Eosinophil
Type II NKT
NK

Figure 2: Inflammatory regulation in lean and obese adipose tissue. Recent animal studies highlight the importance of several immune cells in maintaining lean 
adipose tissue. Lean adipose tissue in rodents is populated predominantly by alternatively-activated macrophages (AAMacs), eosinophils, type 2 innate lymphoid 
cells (ILC2s), invariant natural killer T (iNKT) cells, and CD4+ helper Type 2 (Th2) and regulatory T (Treg) cells that contribute to a Type 2 anti-inflammatory axis. 
In obesity, the immunologic environment of adipose tissue shifts from a cytokine-associated Type 2 anti-inflammatory to a Type 1 pro-inflammatory environment 
populated predominantly by M1 macrophages, CD4+ helper Type 1 (Th1) cells, and CD8+ cells. In this context, the normal architecture, energy storage, and 
endocrine activities of adipocytes are changed. Abbreviations: Sfrp5: Secreted frizzled-related protein 5.
Figure reproduced with permission from Annual Reviews of Pathology [251].
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Treg content, while Treg-specific PPARγ deficiency impairs ligand-
induced insulin sensitivity [144]. Adoptive transfer of Tregs to obese, 
insulin-resistant mice improves insulin action, underscoring the role 
of Tregs in insulin sensitivity [145]. In fact, we found remarkably high 
Treg levels (50% of CD4+ARTs) in HFD-fed mice lacking MHCII in 
their adipocytes (aMHCII-/- mice) that explained their improved 
insulin sensitivity, suggesting that adipocyte MHCII activity regulates 
Treg abundance and function [140]. In humans we found not only 
that adipocyte MHCII up-regulation occurs in obesity [140], but 
expression of adipose tissue Treg markers decrease, and expression 
of Th1 markers and IFNу increases [145-147]. Of relevance to the 
aging process, the VAT Treg pool decreases with advancing age in 
animal models [143]. This finding has yet to be replicated in humans 
and a subsequent study demonstrated that mice deficient in AT 
Tregs are protected against age-associated insulin resistance [148]. If 
confirmed, the decrease in Tregs may be due to reduced IL-33 [149]. 
Recently, IL-33 was identified as an indispensable factor for the 
development and maintenance of VAT Tregs, since genetic ablation of 
IL-33 or its receptor severely reduces adipose Treg abundance [150]. 
IL-33 thus has important actions on both Tregs and ILC2s, and has 
emerged as a central regulator of cells that limits inflammation in lean 
AT. Therefore, further human studies are needed to clarify the role of 
Tregs in human aging and determine whether these immunometabolic 
AT changes contribute to higher rates of T2D during the human 
aging process.

Complications of T2D in the elderly
A number of complications and geriatric syndromes are more 

common in patients with T2D. The risk of nephropathy is doubled.  
T2D also accelerates CVD [151,152], the primary cause of mortality 
in T2D patients. In fact, 65% of diabetics die from heart disease or 
stroke. The risks of retinopathy and macular degeneration (the 
two primary causes of blindness) are both higher in the diabetic 
population. Depression is independently associated with poor 
glycemic control [153]. Disabilities in activities of daily living (ADL’s) 
are 1.5 times more likely with T2D. Older diabetics also have a two-
fold inability to climb stairs and an increased risk of falling. Even 
prediabetes, which is present in > 50% of those > 75 years old, may 
be associated with increased mortality and CV events based on a 
small number of studies [154,155]. Polypharmacy is an important 
risk in this patient population and this risk is increasing over time. In 
a longitudinal study of community-dwelling adults 62-85 years old, 
concurrent use of > 5 prescription medications increased from 30.6% 
to 35.8% over the periods of 2005-2006 to 2010-2011 [156]. Over 15% 
of older adults in 2010-2011 were deemed to be at risk for a major 
drug-drug interaction compared to 8.4% in 2005-2006.

With an aging population, there has been an alarming increase in 
the prevalence of cognitive dysfunction including dementia. Dementia 
now affects 6-10% of those over the age of 65, 30-50% of those over 
the age of 95, and nearly 70% in those over the age of 95, making it 
a leading public health concern. The metabolic syndrome (including 
central obesity) has been associated with the risk of cognitive decline, 
overall dementia and vascular dementia [157]. The presence of insulin 
resistance (IR), in itself, has been linked to an increased risk of mild 
cognitive impairment (MCI) [158] and the degree of IR negatively 
correlates with tests of cognitive function and brain preservation 
by imaging [159]. Insulin has direct effects on the brain; affects the 
production, degradation and clearance of β-amyloid leading to plaque 
deposition [160] and plays a pivotal role in the phosphorylation of tau 
to form neurofibrillary tangles, which are implicated in Alzheimer-
associated dementia [161]. In addition, insulin and hyperglycemia 
have direct effects on the vasculature, increasing the risk of vascular 
cognitive impairment and vascular dementia. A recent meta-analysis 
demonstrated significant improvement in memory and executive 
function after weight loss [162]. No other recently published study 
examined the post-surgical impact of bariatric surgery on cognition 
using a neuropsychometric test battery but was performed in middle-
aged subjects. Gunstad, et al. analyzed data from 109 bariatric surgery 
patients (mean age 44.7 years old) and 41 obese controls at baseline 
and at 12 week follow-up (with results now extending out to 3 years) 

[163]. Compared to controls, surgical patients had improved memory 
performance and executive function, raising the possibility that large-
scale weight loss with bariatric surgery may have a protective effect on 
cognition in older obese individuals; a critical yet untested outcome 
measure.

Glycemic targets for T2D in older patients

There are few studies specifically addressing optimal glycemic 
goals in older patients. The vast majority of the available data 
derives from younger and middle-aged Type 2 diabetic patients 
and may not necessarily be applicable to older patients. Most of the 
large randomized control trials that form the basis of our current 
understanding on preventing diabetic complications were not 
designed to evaluate those > 75 years old and do not take functional 
status into account. For instance, the United Kingdom Prospective 
Diabetes Study (UKPDS) [46] excluded patients > 65 years old 
and the ACCORD [164], VADT [165] and ADVANCE [166] trials 
excluded those > 80 years old. The American Diabetes Association 
(ADA) Consensus Development Conference on Diabetes and Older 
Adults in 2012 admitted that “There are essentially no directly 
applicable clinical trial data on glucose control for large segments of 
the older diabetic patient population” [167,168]. Neither the ADA 
nor the U.S. Department of Veteran Affairs and the U.S. Department 
of Defenses (VA/DOD) guidelines specifically mention age and there 
is no attempt to discriminate based on decade of life [169]. In fact, 
one of the major obstacles in determining therapeutic options in an 
older patient group is the lack of glycemic targets based on varying 
age and comorbid subgroups. We recognize that subdividing older 
patients by age may a useful component in establishing such targets, 
but the literature is devoid of studies using this approach (although 
they may indirectly utilize age grouping as a criterion by taking into 
account life expectancy), and this approach is somewhat limited 
by the extreme differences in functional status, body composition, 
comorbidities, etc. that exist in older patients of the same chronologic 
age.

Elderly individuals with T2D fall generally into two predominant 
categories: those who acquire the condition in middle age and those 
who acquire T2D later in life (i.e. middle-aged onset diabetes and 
elderly- onset diabetes) [170]. The vast majority of older patients 
with T2D are middle-aged onset and these patients suffer a greater 
burden of microvascular disease and are at higher risk for inferior 
glycemic control [171,172]. Despite these differences, however, the 
limited evidence that underlies our current treatment approaches 
does not take diabetes duration into account. In addition, although 
macrovascular disease appears to be related to age at diabetes onset, 
it is unclear if this is an important factor for the development of CVD 
[172]. Overall glycemic control may also be a mitigating factor of 
diabetes duration in determining all-cause mortality, as one study 
showed that elderly-onset diabetes was only associated with higher 
mortality if the initial glycated hemoglobin (HgbA1c) was ≥ 7.5% 
[173].

In determining glycemic targets in older patients, it is important to 
devise strategies that not only limit hyperglycemia which can increase 
complication risk, lead to dehydration, and create vision and cognitive 
changes which can increase fall risk; but also limit hypoglycemia which 
can also increase the risk of CVD [174], cognitive impairment [175] 
and falls. In addition, adding anti-diabetic medications can contribute 
to polypharmacy.  Most of the available proposed guidelines are 
ultimately based upon an individual’s overall health and projected 
life expectancy [168,176]. Since studies have demonstrated that ~8 
years are required before the benefits of improved glycemic control 
are reflected in decreased microvascular complications, a frail, older 
patient with < 10 year projected life expectancy who is at risk for 
CVD disease may benefit from less stringent control that avoids 
hypoglycemia (i.e. HgBA1c < 8%). In contrast, a fit, older patient 
with > 10 year life expectancy without complications would benefit 
from more stringent control (i.e. HgBA1c < 7.0%). A patient with 
advanced complications and/or life expectancy < 5 years may require 
even less stringent targets (i.e. HgbA1c 8-9%).  A general framework 
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for glycemic targets as proposed by the ADA can be seen in table 1. 
These broad recommendations, however, could certainly be refined 
by future well-designed trials directly applicable to specific segments 
of the older adult population.

In summary, the lack of available evidence-based guidelines for 
large segments of the elderly diabetic population is a major impediment 
to providing optimal clinical care. Large, randomized trials specifically 
in older adults are necessary to better refine an individual’s glycemic 
control targets and to tailor treatment accordingly. In addition, trials 
of older patients with certain phenotypic characteristics and specific 
comorbidities must be performed to ascertain if the results found in 
younger adults can be properly translated to elderly patients.

Treatment of T2D in the elderly

The treatment of T2D in older patients must be individualized 
not only to ensure effectiveness, but to maximize patient safety and 
quality of life. Guiding principles before deciding on a treatment 
regimen should include an assessment of multiple factors: patient 
risk for atherosclerotic disease and diabetes-related comorbidities, 
medication history, functional status to determine if the patient is 
able to independently manage his/her T2D, presence of depression 
and/or cognitive impairment, history of urinary incontinence and/or 
falls, severe hypoglycemia or attenuated awareness of hypoglycemia, 
and duration of diabetes, among others. Treatment options generally 
fall into 3 categories.

Lifestyle modification: The effectiveness of standard lifestyle 
intervention in weight management and glycemic control has been 
largely unsuccessful due to poor patient adherence and long-term 
sustainability. In the UKPDS, for example, all patients were advised 
to follow a low calorie, low fat, high complex carbohydrate diet in 
addition to regular physical exercise as recommended by the ADA 
[177]. After three years, only 3% of those in the lifestyle intervention 
group had achieved and maintained the desired fasting blood 
glucose concentration below 108 mg/dL. Sustained weight loss has 
also been difficult to achieve with health care provider dietary and 
physical activity advice. As an example, a meta-analysis of behavior 
intervention (diet and exercise recommendations) trials failed to 
show significant weight loss compared to controls [178]. In contrast, 
a well-designed and more intensive lifestyle intervention has been 
shown to be an effective weight loss strategy and improve glucose 
homeostasis [179]. Data from the recent multicenter Look AHEAD 
(Action for Health in Diabetes) trial found that intensive lifestyle 
intervention (initial weekly meetings to discuss reduced-calorie 1200-
1800 kcal diet, use of meal replacements, decreased fat intake to < 30% 
of total daily calories and instructions for moderate-intensity physical 
activity of ≥ 175 minutes/week) resulted in greater weight loss and 
decrease in HgbA1c compared with standard diabetes support and 
education [179]. However, the average age of the participants in the 
Look AHEAD study was 58.6 years old.

Despite the above findings, there is evidence that older patients 
can respond positively to lifestyle interventions, and age should not 

in itself be a deterrent to improving one’s lifestyle. In the Diabetes 
Prevention Program (DPP), those > 60 years old had the largest 
improvement in glycemic control, largely due to greater adherence 
compared to younger participants [180]. The lifestyle intervention in 
the DPP consisted of a weight loss goal of 7% initial body weight in 
the first 6 months accomplished by: 1) a physical activity expenditure 
goal of > 700 kcal/week through at least 150 minutes of moderate 
intensity activity combined with 75 minutes of strength training per 
week, and 2) dietary modification that subtracted 500-1,000 kcal 
from daily caloric intake and limited fat consumption to 25% or 
total calories [181]. Older adults with T2D may benefit from caloric 
restriction and increased physical activity with even a modest weight 
loss goal of 5% [168]. In an RCT tailoring nutrition to the individual’s 
medical, lifestyle, and personal factors called Medical Nutrition 
Therapy (MNT), the intervention group had greater improvements 
in fasting glucose and HgBA1c levels [182].

The effect of differing dietary macronutrient composition 
on metabolism and glycemic control in younger versus older 
individuals is largely unknown. The American Diabetes Association 
(ADA) recommends both nutrition therapy and exercise as non-
pharmacological cornerstones in the management of T2DM. The 
American Heart Association (AHA) also recommends a dietary 
macronutrient composition of 45-65% carbohydrate, ≤ 20% protein 
and 25-35% fat with reduction in saturated and Tran’s fats [183]. 
Despite these recommendations, beneficial effects in both diabetic 
and non-diabetic subjects, including improved glycemic control and 
greater weight loss, have been observed by increasing dietary protein 
and lowering carbohydrate intake [184-190]. Data from a series of 
studies conducted in adults without T2DM found that, compared 
with high-carbohydrate low-calorie diet therapy, high-protein/low 
carbohydrate low-calorie diet therapy caused a greater loss of body 
fat and preservation of fat-free mass [191,192], greater improvements 
in lipid profile [193,194], more favorable postprandial glucose and 
insulin responses [195] and greater improvements in insulin sensitivity 
and β-cell function [196]. Data from several studies conducted in 
patients with T2DM have found specific benefits of low-calorie diets 
that contain increased protein and decreased carbohydrate than low-
calorie diets with higher carbohydrate content, including a protein-
mediated increase in insulin secretion [197] and greater decreases in 
body weight, HgbA1c and use of diabetes medications [198]. These 
studies, however, were all conducted in young to middle-aged adults. 
In healthy subjects, an increased protein intake of up to 30% does not 
adversely affect renal function [199,200], however the EURODIAB 
IDDM Complications study showed that Type 1 diabetics who 
consumed > 20% of their calories from protein had higher albumin 
excretion rates [201]. Short-term studies (< 12 month duration) in 
Type 2 Diabetics have yet to replicate the adverse effects of increasing 
protein intake on nephropathy [202-204] but longer-term studies 
are needed and current guidelines do not distinguish by patient age. 
Older adults with T2D, in particular, are at risk for greater loss of 
muscle strength compared to younger patients and may benefit from 
increased protein intake, but studies are limited. The metabolic effects 

Table 1: Consensus framework for considering treatment goals for glycemia in older adults with diabetes. Adapted with permission from American Diabetes Association 
Older Adults. Section 10. In Standards of Medical Care in Diabetes - 2016. Diabetes Care 2016; 39 (Suppl. 1): S81–S85. 

Patient characteristics/health status Rationale Reasonable A1C goal Fasting or pre-prandial glucose Bedtime glucose
Healthy (few coexisting chronic illnesses, 
intact cognitive and functional status)

Longer remaining life 
expectancy

< 7.5% 90–130 mg/dL 90–150 mg/dL

Complex/intermediate (multiple 
coexisting chronic illnesses* or 2+ 
instrumental ADL impairments or mild-to-
moderate cognitive impairment)

Intermediate remaining life 
expectancy, high treatment 
burden, hypoglycemia 
vulnerability, fall risk

< 8.0% 90–150 mg/dL 100–180 mg/dL

Very complex/poor health (LTC or end-
stage chronic illnesses** or moderate-to-
severe cognitive impairment or 2+ ADL 
dependencies)

Limited remaining life 
expectancy makes benefit 
uncertain

< 8.5% 100–180 mg/dL 110–200 mg/dL

*Coexisting chronic illnesses are conditions serious enough to require medications or lifestyle management and may include arthritis, cancer, congestive heart failure, 
depression, emphysema, falls, hypertension, incontinence, stage 3 or worse chronic kidney disease, myocardial infarction, and stroke. By “multiple,” the authors mean 
at least three, but many patients may have five or more.
**The presence of a single end-stage chronic illness, such as stage 3–4 congestive heart failure or oxygen-dependent lung disease, chronic kidney disease requiring 
dialysis, or uncontrolled metastatic cancer, may cause significant symptoms or impairment of functional status and significantly reduce life expectancy. Abbreviations: 
LTC: Long-term care; ADL: Activities of Daily Living.
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of altering dietary composition in an elderly population and their role 
in preserving lean mass, especially muscle mass, is thus relatively 
unknown and requires further investigation.

The effect of differing exercise regimens and diet on cognitive 
function in older individuals and their relationship to metabolic 
improvements remains controversial. There is clear evidence 
that physical activity can contribute to healthy aging and reduce 
morbidity and mortality [205,206]. There is also strong evidence that 
moderate-to-high levels of physical activity (mainly by increasing 
cardiorespiratory fitness) may delay and/or prevent the onset of 
cognitive decline [207-209]. Yet there are only a limited number of 
studies, with small population sizes, addressing the effect of exercise 
in tertiary prevention of cognitive decline in those with existing 
dementia [210,211]. Research on the effect of dietary modification 
to prevent cognitive decline is also in its infancy and the benefits of 
changing macronutrient content is oftentimes difficult to separate 
from their effects on associated comorbidities such as obesity, 
diabetes, and CVD [212].

One of the major limitations in our current knowledge is the lack 
of established guidelines and evidence-based studies for exercise and 
diet in older patients with T2D. In general, adults between the ages 
of 18 and 64 years old are recommend by the Centers for Disease 
Control (CDC) to engage in 150 minutes of moderate-intensity or 
75 minutes of vigorous-intensity aerobic activity per week combined 
with muscle-strengthening activities on ≥ 2 days of the work (working 
all major muscle groups). These same guidelines advise older adults 
to increase their activity to 300 minutes of moderate-intensity or 
150 minutes of vigorous-intensity exercise per week combined with 

muscle training activities [213]. However, recommendations specific 
for an older type 2 diabetic patient are lacking. The ADA, for instance, 
endorses a similar amount of exercise in diabetics as the CDC does for 
the general population aged 18 to 64, but provides no specific exercise 
recommendations in those over the age of 65 [214]. In addition, the 
ADA has very generalized guidelines for dietary caloric content and 
macronutrient composition in Type 2 Diabetics, does not set an ideal 
percentage of calories from carbohydrates, protein, or fat, and does 
not dictate specific recommendations based on patient age [214].

Drug therapy for T2D in older patients: There is a paucity of 
data related to specific drug therapy in older patients with T2D [215]. 
All types of oral and injectable diabetes medications (Table 2) can 
theoretically be used in patients > 65 years old, although the therapy 
must be individualized based on functional status, hypoglycemic 
risk and awareness, and presence/absence of comorbidities [168]. In 
older patients, a major consideration is selecting therapeutic agents 
that limit hypoglycemia in the setting of an age-related decline in 
renal function and/or frank chronic kidney disease. Hypoglycemia 
in older individuals is associated with significant morbidities leading 
to both physical and cognitive dysfunction, and recurrent hospital 
admissions due to frequent hypoglycemia are associated with further 
deterioration in patients’ general health that can eventually lead to 
frailty and disability [216]. Patients with dementia are four times more 
likely to be admitted for hypoglycemia episodes compared to those 
with normal cognition [217]. Severe hypoglycemia can result in acute 
vascular complications including stroke, heart failure and arrhythmia 
[218]. In addition, the brain is dependent on glucose and is exquisitely 
vulnerable to the effect of hypoglycemia. After a single hypoglycemia 

Table 2: Non-Insulin pharmacotherapy options for Type 2 Diabetes Mellitus in the elderly. Listed medications are limited to those commercially available in the U.S. 
at time of manuscript submission.

Type of Medication

(Generic names)
Primary Mechanism of Action Benefits in the Elderly Concerns in the Elderly

Biguanide 

(metformin)

Reduce Hepatic Glucose Production •	 High Efficacy

•	 Low cost

•	 Modest Weight Loss

•	 Low Risk of Hypoglycemia

•	 Caution with Renal Disease, Heart 
Failure, Liver Disease Due to Risk of 
Lactic Acidosis

Sulfonylureas 

(glimepiride, glyburide, glipizide)

Insulin Secretagogue •	 High efficacy

•	 Low cost

•	 Hypoglycemic risk with Advancing Age

•	 Caution in Liver Disease
Meglitinides 

(nateglinide, repaglinide)

Insulin Secretagogue •	 Lower Risk of Hypoglycemia 
Compared to Sulfonylureas

•	 Hypoglycemic risk with advancing age

•	 Frequent administration

•	 Caution in Liver Disease
Glucagon-like peptide-1 
Agonists 

(liraglutide, exenatide, exenatide 
XR, albiglutide, dulaglutide)

Insulin Secretagogue

Increase Incretin Effect

•	 Low risk for Hypoglycemia

•	 Weight loss

•	 Gastroparesis

•	 Pancreatitis

•	 Injectable therapy

Dipeptidyl-peptidase IV 
Inhibitors 

(sitagliptin, linagliptin, alogliptin, 
saxagliptin)

Insulin Secretagogue

Increase Incretin Effect

•	 Low Risk for Hypoglycemia; Weight 
neutral

•	 Pancreatitis

•	 Modest Reduction in HgBA1c

•	 Expensive

Thiazolidinediones 

(pioglitazone, rosiglitazone)

Increase Insulin Sensitivity •	 Low risk of hypoglycemia Lower BMD and increase fracture risk249

Caution in Renal and Liver disease, Heart 
Failure

Weight gain and Fluid retention
Alpha-glucosidase inhibitors 

(acarbose, miglitol)

Reduce Carbohydrate Absorption •	 Possible reduction in Cardiovascular 
events [237].

•	 Caution in Renal, Liver Disease and  
Malabsorptive Syndromes

•	 Gastrointestinal side effects common
Sodium-glucose co-transporter-2 
Inhibitors 

(empagliflozin, canagliflozin, 
dapagliflozin)  

Increase Urinary Glucose Excretion •	 Possible Cardiovascular Benefit 
[238].

•	 Reduction in blood pressure

•	 Increased risk of UTI and yeast infection

•	 Dehydration common side effect

•	 Increased urinary frequency

•	 Limited efficacy with chronic kidney 
disease

•	 Expensive
Amylin replacement 

(pramlintide) 

Amylin Replacement •	 Weight Loss •	 Gastro paresis

•	 Multiple daily injections

•	 Modest HgBA1c reduction
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event, cognitive changes occur, and recurrent hypoglycemia leads to a 
graded increased risk of dementia with each subsequent hypoglycemic 
episode [175]. Given that the risk of hypoglycemia is also increased 
by 3-4 folds in obesity, the inter-relationship between T2D, obesity, 
cognitive dysfunction and hypoglycemia during aging must be given 
consideration in determining a safe treatment regimen.

According to the most recent ADA guidelines, metformin (a 
biguanide) is considered first-line therapy in T2D [219]. Given its 
low hypoglycemic risk profile and low cost, metformin may also be 
beneficial in older adults. However, limitations to its use include 
side effects (predominantly gastrointestinal), weight loss which may 
preclude its use in frail patients, and a small risk of lactic acidosis in 
patients with renal dysfunction. Sulfonylureas are also cost-effective, 
but are limited by hypoglycemia that may be problematic for older 
patients, especially those with reduced glomerular filtration capacity 
or poor appetites. The shorter duration glipizide and the glinides 
(repaglinide and nateglinide) may be preferable in this scenario; but 
overall the risk of prolonged hypoglycemia with all sulfonylureas and 
glinides makes their use largely inadvisable in the elderly population. 
Alpha-glucosidase inhibitors such as acarbose specifically target 
post-prandial hyperglycemia and have low hypoglycemia risk; 
however, gastrointestinal side effects, frequent dosing, and relatively 
low efficacy may limit their applicability in some older patients. 
Thiazolidinediones (pioglitazone and rosiglitazone) improve 
sensitivity to insulin predominantly by binding to the PPARγ 
receptor. However, they have been associated with weight gain, 
edema, heart failure, bone fractures, and bladder cancer, precluding 
their use in certain older adults.  Dipeptidyl peptidase-IV (DPP-
4) inhibitors (sitagliptin, linagliptin, saxagliptin, and alogliptin) 
preferentially target post-prandial hyperglycemia, carry limited 
hypoglycemic potential, and are generally well tolerated. This 
suggests that they may be useful for older patients; but applicable 
prospective studies are limited. A recent retrospective observational 
study focused on the safety and tolerability of the DPP-4 inhibitors 
in type 2 diabetics aged 65 years and older. Researchers reviewed the 
medical records of 431 patients with type 2 diabetes (mean age of 74 
years) and demonstrated a trend towards less mild hypoglycemia 
among those taking DPP-4 inhibitors as compared to those 
taking non-DPP-4 inhibitors (3% vs. 8%, p = 0.062). Additionally, 
patients on DPP-4 inhibitors showed a reduction in HgBA1c from 
approximately 8.3% to 7.4%, consistent with previous literature 
in younger subjects. Among patients receiving DPP-4 inhibitors 
identified in this study, most patients were taking sitagliptin (74.3%), 
followed by vildagliptin (21.8%) and saxagliptin (3.9%) [220]. A 
systematic review of 18 articles and 3 presentations of studies of 
DPP-4 inhibitors administered as monotherapy or in combination 
with metformin, a thiazolidinedione, glimepiride, glibenclamide, or 
insulin to elderly patients (generally defined as ≥ 65 years of age) with 
T2D, showed significant HgBA1c reductions with addition of DPP-
4 medications that ranged from ~0.7% (baseline HgBA1c 7.8%) to 
1.2% (baseline HgBA1c 8.3). In addition, no significant differences 
were noted in the HgBA1c-lowering effects of these agents between 
elderly and younger patients. Less information about the incidence 
of hypoglycemia or weight gain in elderly patients was reported, 
but the available results suggest that the risk of hypoglycemia with 
DPP-4 inhibitors was not significantly different from that of placebo 
and that these agents were weight neutral (weight change of ≤ 0.9 
kg) [221]. Glucagon-like peptide-1 (GLP-1) receptor agonists (twice 
daily exenatide, once daily liraglutide, once weekly exenatide XR, 
dulaglutide, and albiglutide) are also useful in preventing post-
prandial hyperglycemia and impart low hypoglycemic risk. They can 
promote weight loss, and at higher doses, liraglutide is approved for 
weight reduction independent of diabetes status. However, they can 
cause nausea, promote weight loss, and are injectable therapies and 
thus may not be ideal for frail patients or those with vision, sensory 
or hearing impairment. Both the DPP-4 and GLP-1 receptor agonists 
also require dose reductions with kidney dysfunction and are largely 
unstudied with coexistent hepatic impairment. Sodium-glucose 

co-transporter-2 (SGLT2) inhibitors (canagliflozin, empagliflozin, 
and dapagliflozin) are newer oral diabetes medications, but there 
experience in older adults is unknown. Their use may also be limited 
by side effects (dehydration, increased thirst, polyuria), increased risk 
of genital and urinary tract infections and reduced effectiveness in 
patients with preexisting kidney disease.

Insulin therapy can be used successfully in select older adults 
with T2D, and generally have similar efficacy and hypoglycemia risk 
compared to younger patients. The biggest limitation is the potential 
for hypoglycemia and this risk must carefully be assessed in an 
individual older patient. A 12 month study of insulin either through 
multiple daily injections (MDI) or an insulin pump, demonstrated 
that healthy, functional adults with a mean age of 66 years old could 
maintain an HgBA1c of 7% with a low occurrence of hypoglycemia 
[222]. A separate study demonstrated that long-acting insulin in 
older patients (mean age 69 years old) with T2D did not increase the 
risk of hypoglycemia compared to younger patients [223]. However, 
patients with much comorbidity were excluded from these trials and 
there is limited data in patients > 75 years old. In addition, vision 
impairment and limited manual dexterity may be barriers to insulin 
therapy compliance for some older adults.

Bariatric surgery as a treatment modality in obese older patients: 
Nearly half of adult patients with T2D fail to achieve adequate glycemic 
control with medication and lifestyle modifications alone. In contrast, 
marked weight loss following bariatric surgery (BS) often results in 
complete remission of T2D [224]. Conventional bariatric surgery 
procedures include Roux-en-Y gastric bypass (RYGB), laparoscopic 
adjustable gastric banding (LAGB), laparoscopic sleeve gastrectomy 
(SG), biliopancreatic diversion (BPD) and biliopancreatic diversion 
with duodenal switch (BPD-DS). Currently, the three most popular 
bariatric surgical procedures performed in the United States and 
worldwide are the RYGB, SG and LAGB procedures [225]. Eligibility 
criteria for bariatric surgery have been expanded from the original 
NIH Consensus Conferences of 1991 to include individuals up to 
60 years of age [226,227]. Although the majority of outcome data 
related to BS derives from studies of young and middle-aged patients, 
there has been a discernable increase in the number of older patients 
undergoing BS [228-231], especially laparoscopic SG. This increase 
is likely related to the perceived safety and effectiveness of the SG 
procedure, with shorter operating times, abbreviated hospital stays, 
substantial weight loss and remission of comorbidities [232,233].

Despite the increasing popularity of BS, aging is an important 
negative predictor of diabetes remission following BS [234]. However, 
BS can still be successful in older obese patients. Retrospective 
data of operations, mainly performed by laparoscopy, have shown 
that older obese adults undergoing bariatric surgery have more 
baseline co-morbidities and require more medications than younger 
subjects, but lose clinically significant amounts of weight and have 
a significant reduction in co-morbidities post-surgery [228-231]. A 
recent systematic review of RYGB in the elderly (> 65 years old) that 
included eight primary studies of over 1800 patients showed that the 
mean excess weight loss at study endpoint was 66.2%, mean 30 day 
mortality was 0.14%, and total complication rate was 21.1% [235,236]. 
Based on these results it was determined that RYGB is effective in 
producing marked weight loss in patients over the age of 65 with an 
acceptable safety profile. However, the effect of age on BS-induced 
changes in insulin sensitivity and β-cell function are currently 
unknown and further studies on the metabolic improvements and 
limitations of BS in older patients are certainly warranted.

Conclusions
The number of elderly individuals in the U.S. is growing. 

Within this rapidly expanding demographic, the rates of T2D and 
obesity are reaching epidemic proportions. Patients > 65 years 
old will soon constitute the majority of patients with T2D in most 
developed countries including the U.S. T2D in old age carries an 
increased risk of the traditional diabetes-associated complications 
including microvascular and macrovascular disease, but also age-
related comorbidities including cognitive impairment, urinary 
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incontinence, sarcopenia, and increased falls. An overall state of 
chronic inflammation and dysregulated immunometabolism may 
underlie these increased risks. Unfortunately, a majority of the clinical 
trial data related to risk profiles, glycemic targets, and therapeutic 
interventions for T2D are not applicable for large segments of the 
older patient population. Recognition of this knowledge gap is 
not adequate. We need strong evidence-based data upon which to 
successfully intervene in a heterogeneous group of elderly patients 
with T2D. In order to truly recognize, understand and ultimately treat 
metabolic disease in older individuals, we must first address several 
substantial limitations in our fundamental understanding of T2D 
pathogenesis and treatment during the aging process. These include: 
1) the effect of race/ethnicity and socio-economic factors on diabetes 
and obesity risk during the aging process, 2) the effect of aging on 
insulin release and action and the roles of frailty and sarcopenia, 3) the 
effects of obesity and immunometabolism on healthy aging and the 
relative importance of weight loss interventions, 4) the effect of age 
on diabetic complications and comorbidities, and 5) the differential 
effects of the aging process on therapeutic responses and treatment 
options.  Most importantly, evidence-based data from studies in 
younger diabetic patients need to either be validated or refuted in 
older patients to truly individualize diabetic care and ultimately 
improve patient outcomes.
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