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Abstract
Helicobacter pylori is a bacterium that has evolved with humans, 
is transmitted from person to person and persistently colonizes 
the stomach. During its long coexistence with humans, H. pylori 
has developed complex strategies to limit the degree and extent 
of inflammation and damage to the gastric mucosa. It is capable of 
altering the physiology and immune response of the host, thereby 
allowing it to persist throughout life. Infection with H. pylori has been 
linked to such diseases as severe gastritis, peptic ulcers and gastric 
cancer. Differences in the incidence of gastric cancer across the 
world can be attributed to regionally different H. pylori genotypes, 
dietary factors, environmental factors, and host factors, as well 
as virulence gene polymorphisms (particularly cagA and vacA) in 
different strains. The colonization of an individual by more than 
one strain of H. pylori is common, and a recurrent infection during 
childhood provides substrates for the acquisition or recombination 
of new genetic sequences. This review explores the evolutionary 
history of H. pylori during infection recurrence and the genetic 
diversity in humans as well as in an animal model.
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translucent and 1 to 2 mm in diameter [2]. Its genome size averages 
1.7 Mbp, has a G+C content of 35 to 40% and encodes 1500 proteins 
[3]. Approximately 40% of H. pylori isolates contain a 23.3 kb plasmid 
that contains no known virulence factors. Additionally, the bacterium 
possesses at least two operons for each ribosomal ribonucleic acid 
(rRNA): 16S, 23S and 5S [4].

Infection with H. pylori is acquired within the first years of life 
and is related to geographic location [5]. The course of the infection 
is highly variable. Most infected individuals remain asymptomatic; 
only 10-20% develops atrophic gastritis, and of these, less than 3% 
develop gastric cancer [6]. In developed countries, the prevalence of 
H. pylori infection varies from 1.2% to 12.2%; it is low in children 
and adolescents and higher in adults and the elderly. The infection 
rate is higher (80%) in developing countries [7]. The main factor that 
predisposes individuals to infection is socioeconomic status, with 
greater infection prevalence observed among individuals living in 
overcrowded or impoverished conditions [8].

In contrast to many other bacterial pathogens, H. pylori does not 
exhibit clonal propagation in different human populations or within 
groups of patients. An exception to this rule is transmission among 
families, where clonal infectious strains have been observed more 
frequently among mothers and children [9].

Children are particularly vulnerable to infection by H. pylori, 
which is transmitted by infected parents, especially mothers. However, 
little is known about how and when maternal transmission occurs in 
childhood, particularly whether it occurs before or after weaning [10].

The colonization of an individual by more than one strain of 
H. pylori is common, and a recurrent infection during childhood 
provides substrates for the acquisition or recombination of new 
genetic sequences. This review explores the microevolutionary history 

Introduction
Humans are the definitive host of H. pylori. Phylogeographic 

studies have indicated that humans have been colonized by H. pylori 
for ≥ 58,000 years, since the first migration out of Africa [1]. H. pylori 
is a Gram-negative, pleomorphic bacillus that is classified as a non-
invasive bacterium because it does not cross the epithelial barrier. H. 
pylori is motile owing to the presence of four to six sheathed polar 
flagella. It grows in microaerophilic conditions and requires between 
3 and 5 days of growth at 37°C for primary isolation; its colonies are 
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that the recurrence of infection is due to recrudescence in 80% of 
cases [13]. However, the possibility of reinfection with an identical 
community strain that is shared among family members cannot 
be dismissed. Furthermore, different strains may be isolated from 
the same host, representing a broad diversification due to micro 
evolutionary changes in the host itself. This microevolution is driven 
by changes in the genetic background of a bacterial species that results 
in changes in various genes over time and can result in the presence of 
several existing genotypes in a single H. pylori population.

Genetic Diversity of H. pylori
Genetic diversity is the sum of the genetic information that 

exists among the members of a species. H. pylori is a bacterium with 
high genetic diversity. Typically, high genetic diversity in bacteria 
is attributed to the ability to easily incorporate exogenous DNA, 
to the possession of genes with a high mutation rate, to the ability 
to horizontally transfer genes and to recombination events [6,15]. 
Several studies have suggested that the acquisition and loss of genes 
are mechanisms that facilitate the adaptation of the bacterium to 
new host environments beyond the changes that occur in the gastric 
environment [16-23]. Likewise, specificity, inflammatory responses, 
and the availability and distribution of adhesion molecules in the 
human host are factors that may select for divergence between strains 
[24].

Possible scenarios have been proposed to account for the 
generation of variability in H. pylori: monoclonal and polyclonal 
transmission. In the first scenario, a single clone may diverge 
rapidly within the microniches of the stomach to adapt to the new 
environment; however, as soon as the niches are occupied, the 
genetic exchange rate is reduced. Thus, genetic changes can occur 
in a stepwise manner when there is variation in selection pressures. 
According to this scenario, most of the genetic variability of the clone 
was generated during the infancy of the patient (assuming that he or 

of H. pylori during infection recurrence and the genetic diversity in 
humans as well as in an animal model.

Recurrence of H. pylori Infection
Recurrence of H. pylori infection in children and adults has been 

proposed to have two mechanisms: recrudescence and reinfection. 
Recrudescence is defined as the apparent elimination of infection due 
to suppression but not successful eradication of the bacteria [11,12]. 
By contrast, reinfection occurs after successful eradication, when a 
patient is re-infected with a new strain or with the same strain at least 
one year after eradication (Figure 1) [13,14].

The effectiveness of antimicrobial treatment for H. pylori 
infection may be limited due to patient compliance with the 
treatment regimen, selective pressure for strains with high levels of 
resistance to antimicrobials of choice and high rates of recrudescence 
and reinfection. Furthermore, H. pylori infection recurrence is 
common in patients with low-efficiency treatments. Thus, treatment 
has been proposed to only temporarily suppress the bacteria and to be 
incapable of completely eradicating the infection from the host [14].

The annual recurrence rate of H. pylori is 2.67% in developed 
countries and 13% in developing countries such as Peru, Brazil, 
Chile, Vietnam and Bangladesh [11]. Many cases of recurrence in 
developed countries are due to late recrudescence within the first year 
(46%), while in developing countries the rate of reinfection is more 
pronounced and continues at the same pace as the eradication rate 
[13]. The rates of reinfection are extremely low in Europe and the 
USA; indeed, their rates are similar to that of South Korea, where the 
annual reported rate is approximately 1% [14].

Molecular biology techniques are very useful tools for the 
diagnosis of H. pylori infection. These techniques can identify the 
genotype of the bacteria before and after treatment and determine 
whether strains are genetically identical; thus, it has been confirmed 
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Figure 1: Recurrence of H. pylori infection in children and adults has been proposed to have two mechanisms. 1) Recrudescence: the apparent elimination of 
infection due to suppression but not successful eradication of the bacteria (infection with the same genotype strain by lack of compliance with treatment or antibiotic 
resistance), and 2) Reinfection: occurs after successful eradication, when a patient is re-infected with a new strain or with the same strain at least one year after 
eradication (infection due to strains with different genotype and antimicrobial susceptibility).
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provides an overview of the evolutionary dynamics of infectious 
H. pylori strains within individual families [32]. These studies have 
revealed the presence of five ancestral populations and subpopulations 
of H. pylori: H. pylori Europe (hpEurope), H. pylori Asia 2 (hpAsia2), 
H. pylori North East Africa (hpNEAfrica), H. pylori Africa 1 
(hpAfrica1) and H. pylori East Asia (hpEAsia) (Figure 2) [1,33-35].

Bacterial Strain-Host Interactions
Humans can be colonized by a single strain or multiple strains of 

H. pylori. Over time, the evolutionary dynamics of the organism itself 
can give rise to multiple subpopulations of H. pylori. Processes such 
as mutation or genetic recombination play a fundamental role in this 
diversity [30], thereby allowing the emergence of different genotypes 
such as genotype transitions (presence of chimaeras), virulent or 
toxigenic genotypes and non-virulent or non-toxigenic genotypes.

It has been observed that recombination of H. pylori over long 
periods of time may give rise to new clones. For example, strains with 
the cagA gene, which belongs to the pathogenicity island (cagPAI+), 
can pass cagA+ to cagA- strains through the acquisition of genetic 
material from cagA- strains (cagPAI-) [36,37]. These arrangements 
have not been well studied and are detectable only during the 
transition phase, after passage of an in vitro strain (culture) to an in 
vivo environment (animal) or during colonization of an uninfected 
host [36].

A model has been proposed to explain the evolution and 
transmission of H. pylori. This model assumes that strains containing 
the virulence genes encoding the oncogenic protein CagA, the 
vacuolating cytotoxin VacA, and the adhesin BabA represent a 
“state of maximum welfare” and that the activation of any of these 
genes reduces the physical state of the bacterium. H. pylori lives in 
the stomach of an individual for many years, where it continually 
produces strains that are ccag, vacA or babA positive or -negative 
[38]. The emergence of multiple defective derivatives in some cases 
may overcome the wild-type bacterium, allowing the isolation of 
cag+ and cag- strains from the same patient. However, these defective 
derivatives do not survive for long times and thus represent the loss 
of some branches of the evolutionary tree. Therefore, only strains that 
are efficient in long-term colonization and can participate in person-

she was infected early in life), and therefore the clone was present at 
the initial medical examination [9]. In polyclonal transmission, clonal 
variants are gradually developed over several generations in the host 
as a divergent population; consequently, the genetic variability of 
the clones observed in any host is the sum of all of the accumulated 
variations in all transmissions from previous infections [9].

Recombination events between genes from the same strain 
or between different alleles in the genome of H. pylori have been 
suggested to contribute to the high diversity of strains in the host. 
Therefore, sub clones of the bacterium may differ both in genotype 
and phenotype despite having been isolated from the same biopsy 
[9]. Israel et al. (2001) [25] demonstrated that all the sub clones in 
an individual are unique within the biopsies and between biopsies 
from different parts of the stomach. Mendoza-Elizalde et al. (2015) 
[26] found that 27 of 32 Mexican paediatric patients presented sub 
clones of H. pylori with different genotypes, thereby confirming the 
extensive allelic diversity of the bacteria within a single patient.

Diversity between Nucleotide Sequences of H. pylori
The diversity of H. pylori nucleotide sequences exceeds that of 

other studied bacteria. The most unusual feature of this diversity 
is the high number of unique nucleotide sequences for each gene 
studied. Kansau et al. (1996) [27] analysed the nucleotide sequences 
of the glmM gene (encoding glutamate racemase) in 29 strains of H. 
pylori and found only two strains with identical glmM sequences.

The DNA sequences of virulence and housekeeping genes in H. 
pylori have different genotypes that may predominate in different 
human populations. Global studies have shown that high degrees 
of polymorphism in housekeeping genes is associated with changes 
in the third nucleotide position of codons; therefore, much of the 
observed variation is synonymous [28-30]. Mendoza-Elizalde (2015b) 
[31] observed a high degree of polymorphism in the housekeeping 
genes of 80 H. pylori strains from two Mexican paediatric patients, 
revealing 26 new alleles for the atpA, efp, mutY, ppa, trpC, ureI and 
yphC genes.

Phylogenetic analysis based on housekeeping gene sequences 

         

Figure 2: Ancestral populations and subpopulations of Helicobacter pylori. H. pylori Europe (hpEurope), H. pylori Asia 2 (hpAsia2), H. pylori North East Africa 
(hpNEAfrica), H. pylori Africa 1 (hpAfrica1) with the subpopulations H. pylori West Africa (hspWAfrica) and H. pylori South Africa (hspSAfrica), H. pylori Africa 2 
(hpAfrica2), and H. pylori East Asia (hpEAsia), with the subpopulations H. pylori American-Indio (hspAmerind), H. pylori Maori (hspMaori), and H. pylori East Asia 
(hspEAsia).
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to-person transmission will endure and direct the evolution of the 
species [37,38].

Animal Model of H. pylori Infection
As mentioned above, H. pylori displays a high level of genetic 

diversity due to high rates of mutation and recombination that allow 
the generation of variability between different strains. The use of 
animal models that are informative and manageable allows control 
over the presence or absence of bacterial antigens during different 
stages of infection. Therefore, animal models are routinely used 
to study the relationships between the immune response or basic 
genetics and susceptibility to bacterial infection and to identify 
factors related to survival and growth [23,39].

Microbial populations in infected or colonized hosts are subjected 
to selective forces and therefore are dynamic. The population 
dynamics of H. pylori during colonization of an infected animal 
offers an experimental model in which phenotypic and genotypic 
evolution are quantifiable in vivo, from the initial inoculation until 
the definitive establishment of a quasi species [40]. The spectrum of 
organisms used to study the pathogenesis of H. pylori includes rhesus 
monkeys, mice, and gerbils [41,42]. Since Hirayama et al. (1996) 
[43] reported the establishment of a persistent H. pylori infection 
in Mongolian gerbils (Meriones unguiculatus), research has been 
conducted on the association between H. pylori and gastric diseases. 
Some findings have suggested that H. pylori is directly related to 
gastric carcinogenesis [42].

The Mongolian gerbil infection model is considered useful 
because the changes observed in the gastric mucosa in this model are 
similar to those seen in human stomachs after infection with H. pylori 
[44]. Nakagawa et al. (2005) [42] reported that gastric colonization by 
H. pylori in Mongolian gerbils is related to several bacterial factors, 
including urease production and motility. Iwao et al. (1999) [45] 
reported that H. pylori motility was an important factor for the gastric 
colonization of Mongolian gerbils and that there were differences in 
gastric colonization due to phenotypic differences between the strains 
in the gerbils. Karita et al. (1991) [46] and Ohkusa et al. (2003) [47] 
observed that different strains induced different levels of infection 
severity in Mongolian gerbils. Furthermore, the cag PAI has been 
reported to play an essential role in the inflammatory process and 
formation of ulcers in vivo in Mongolian gerbils [48].

The microevolutionary history of H. pylori infection in humans 
reveals a remarkably high level of genetic diversity in this bacterium 
that is mainly generated by point mutations and by recombination 
(intra genomic or inter genomic) [49,50]. In turn, this high level 
of diversity has allowed the identification of different strains, sub 
clones or genotypes in the same individual that may occupy different 
microniches in the stomach. These strains may have selective 
advantages at different times during colonization and may allow the 
emergence of new bacterial populations [51]. Additionally, the use 
of an animal model has allowed the analysis of microevolutionary 
changes in the bacterium that occur during colonization, persistence 
and induction of disease in animals.
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